Pub Date : 2021-06-20DOI: 10.1109/Transducers50396.2021.9495462
Zeyuan Cao, Yao Chu, Shiwen Wang, Zibo Wu, Rong Ding, X. Ye
Air breakdown effect, which restricts the increase of the surface charge density, is the major limitation for further improving the output performance of triboelectric nanogenerator (TENG). To solve this problem, a universal strategy which only requires adding an appropriate external capacitor to TENG is proposed in this work. By connecting a 68 pF external capacitor with a $2times 2 text{cm}^{2}$ contact-separation (CS) mode TENG in parallel, the output energy per cycle can be increased to 2.5 times of that without an external capacitor. This research provides a novel and simple way to suppress the air breakdown effect and improve the output performance of CS-TENG.
{"title":"A Strategy to Reduce Air Breakdown Effect and Boost Output Energy for Contact-Separation Mode Triboelectric Nanogenerator","authors":"Zeyuan Cao, Yao Chu, Shiwen Wang, Zibo Wu, Rong Ding, X. Ye","doi":"10.1109/Transducers50396.2021.9495462","DOIUrl":"https://doi.org/10.1109/Transducers50396.2021.9495462","url":null,"abstract":"Air breakdown effect, which restricts the increase of the surface charge density, is the major limitation for further improving the output performance of triboelectric nanogenerator (TENG). To solve this problem, a universal strategy which only requires adding an appropriate external capacitor to TENG is proposed in this work. By connecting a 68 pF external capacitor with a $2times 2 text{cm}^{2}$ contact-separation (CS) mode TENG in parallel, the output energy per cycle can be increased to 2.5 times of that without an external capacitor. This research provides a novel and simple way to suppress the air breakdown effect and improve the output performance of CS-TENG.","PeriodicalId":6814,"journal":{"name":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","volume":"60 1","pages":"451-454"},"PeriodicalIF":0.0,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85537046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-20DOI: 10.1109/Transducers50396.2021.9495394
N. J. Engelsen, Aman R. Agrawal, Dalziel J. Wilson
Strained nanomechanical resonators have recently achieved quality factors of 1 billion through the phenomenon of dissipation dilution. Remarkably, the potential of these devices seems unexhausted, exhibiting a scaling law of roughly one order of magnitude (in $Q$ factor) every three years. This paper reviews advances which led to this point, including phononic crystal “soft-clamping,” strain engineering, and a trend towards centimeter-scale devices with extreme aspect ratios. Recent trends include investigation of strained crystalline thin films, fractal-patterned supports, and machine-learning-optimized supports. New possibilities emerging from these advances range from cavity free quantum optomechanics to ultra-sensitive accelerometry.
{"title":"Ultra-High-Q Nanomechanics Through Dissipation Dilution: Trends and Perspectives","authors":"N. J. Engelsen, Aman R. Agrawal, Dalziel J. Wilson","doi":"10.1109/Transducers50396.2021.9495394","DOIUrl":"https://doi.org/10.1109/Transducers50396.2021.9495394","url":null,"abstract":"Strained nanomechanical resonators have recently achieved quality factors of 1 billion through the phenomenon of dissipation dilution. Remarkably, the potential of these devices seems unexhausted, exhibiting a scaling law of roughly one order of magnitude (in $Q$ factor) every three years. This paper reviews advances which led to this point, including phononic crystal “soft-clamping,” strain engineering, and a trend towards centimeter-scale devices with extreme aspect ratios. Recent trends include investigation of strained crystalline thin films, fractal-patterned supports, and machine-learning-optimized supports. New possibilities emerging from these advances range from cavity free quantum optomechanics to ultra-sensitive accelerometry.","PeriodicalId":6814,"journal":{"name":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","volume":"12 1","pages":"201-205"},"PeriodicalIF":0.0,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79497184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-20DOI: 10.1109/Transducers50396.2021.9495711
Shuhei Takatsuka, Takeshi Kubota, Yuta Kurashina, H. Onoe
This paper describes a near-infrared (NIR) light-triggered drug release system using alginate hydrogel microbeads. As a drug carrier, calcium alginate hydrogel microbeads encapsulating heat transducing particle (Fe304 particles) were fabricated by a centrifugal based fabrication method. The Fe304 particles instantly generate heat due to localized surface plasmon resonance when irradiated with NIR light. As a result, the calcium alginate hydrogel is thermally denatured to release a drug model. By irradiating NIR-laser to the hydrogel microbeads, we confirmed the release of fluorescent polystyrene particles (~ 10 nm) as a drug model. This result indicates that the polymer network of the calcium alginate hydrogel responded to the heat at the molecular scale, even though calcium alginate hydrogel is generally stable to heat. This NIR light-triggered drug release system using Fe3O4 particles would be an effectiveand safe platform for on-demand drug delivery.
{"title":"Near Infrared Light-Triggerd on-Demand Drug Delivery From Non-Toxic Hydrogel Microbeads with Heat Transducer","authors":"Shuhei Takatsuka, Takeshi Kubota, Yuta Kurashina, H. Onoe","doi":"10.1109/Transducers50396.2021.9495711","DOIUrl":"https://doi.org/10.1109/Transducers50396.2021.9495711","url":null,"abstract":"This paper describes a near-infrared (NIR) light-triggered drug release system using alginate hydrogel microbeads. As a drug carrier, calcium alginate hydrogel microbeads encapsulating heat transducing particle (Fe304 particles) were fabricated by a centrifugal based fabrication method. The Fe304 particles instantly generate heat due to localized surface plasmon resonance when irradiated with NIR light. As a result, the calcium alginate hydrogel is thermally denatured to release a drug model. By irradiating NIR-laser to the hydrogel microbeads, we confirmed the release of fluorescent polystyrene particles (~ 10 nm) as a drug model. This result indicates that the polymer network of the calcium alginate hydrogel responded to the heat at the molecular scale, even though calcium alginate hydrogel is generally stable to heat. This NIR light-triggered drug release system using Fe3O4 particles would be an effectiveand safe platform for on-demand drug delivery.","PeriodicalId":6814,"journal":{"name":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","volume":"39 1","pages":"1000-1003"},"PeriodicalIF":0.0,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79843355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-20DOI: 10.1109/Transducers50396.2021.9495463
Reshmi Waikhom, Lung-Jieh Yang, Horng-Yuan Shih, C. Kuo
This paper reports a new design of polysilicon flow sensor fabricated by UMC $0.18 mu mathrm{m}$ CMOS MEMS foundry. Our self-heating design is different from the conventional one which has floating plate with resistive temperature detectors (RTDs) heated by another heater aside, and our self-heating RTD half-bridge is only $300times 250 mu mathrm{m}^{2}$ in chip size. This new design outputs a normalized sensitivity of $138 mu mathrm{V}/mathrm{V}/(mathrm{m}/mathrm{s})$ within the speed range of 0-15 m/s. This sensitivity is 89% of Y.-K. Lee's work in IEEE MEMS 2020. The dummy specimen and the orientation-free wind tunnel tests also confirmed the sensor performance.
本文报道了一种由UMC $0.18 mu mathm {m}$ CMOS MEMS代工厂制造的多晶硅流量传感器的新设计。我们的自热设计不同于传统的由另一个加热器加热的带有电阻温度检测器(RTD)的浮板设计,我们的自热RTD半桥芯片尺寸仅为$300 乘以250 mu math {m}^{2}$。这种新设计输出的归一化灵敏度为$138 mu mathrm{V}/mathrm{V}/(mathrm{m}/mathrm{s})$,速度范围为0-15 m/s。灵敏度是y - k的89%。李在IEEE MEMS 2020中的工作。假体试验和无方向风洞试验也验证了传感器的性能。
{"title":"Self-Heating CMOS Flow Sensor","authors":"Reshmi Waikhom, Lung-Jieh Yang, Horng-Yuan Shih, C. Kuo","doi":"10.1109/Transducers50396.2021.9495463","DOIUrl":"https://doi.org/10.1109/Transducers50396.2021.9495463","url":null,"abstract":"This paper reports a new design of polysilicon flow sensor fabricated by UMC $0.18 mu mathrm{m}$ CMOS MEMS foundry. Our self-heating design is different from the conventional one which has floating plate with resistive temperature detectors (RTDs) heated by another heater aside, and our self-heating RTD half-bridge is only $300times 250 mu mathrm{m}^{2}$ in chip size. This new design outputs a normalized sensitivity of $138 mu mathrm{V}/mathrm{V}/(mathrm{m}/mathrm{s})$ within the speed range of 0-15 m/s. This sensitivity is 89% of Y.-K. Lee's work in IEEE MEMS 2020. The dummy specimen and the orientation-free wind tunnel tests also confirmed the sensor performance.","PeriodicalId":6814,"journal":{"name":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","volume":"12 1","pages":"1279-1282"},"PeriodicalIF":0.0,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83304171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-20DOI: 10.1109/Transducers50396.2021.9495680
P. Frigerio, L. Molinari, A. Barbieri, R. Carminati, N. Boni, G. Langfelder
The work presents a novel closed-loop control to improve scanning linearity in piezoelectric micromirrors with embedded Lead-Zirconate-Titanate (PZT) actuation and piezoresistive sensing. The system includes two feedback loops aimed at pushing the control bandwidth beyond the microelectromechanical system (MEMS) resonance, at damping the closed-loop quality factor, at nulling the steady-state control error and at rejecting effects of MEMS high-order modes. Overall, the strategy reduces linearity errors down to ± 0.03°, but the latter aspect is particularly challenging: management of spurious resonances is indeed shown to affect the optimal control strategy, suggesting further investigation of predictive feedback techniques.
{"title":"Closed-Loop Control of Quasi-Static Scanning PZT Micromirrors with Embedded Piezoresistive Sensing and Spurious Mode Rejection","authors":"P. Frigerio, L. Molinari, A. Barbieri, R. Carminati, N. Boni, G. Langfelder","doi":"10.1109/Transducers50396.2021.9495680","DOIUrl":"https://doi.org/10.1109/Transducers50396.2021.9495680","url":null,"abstract":"The work presents a novel closed-loop control to improve scanning linearity in piezoelectric micromirrors with embedded Lead-Zirconate-Titanate (PZT) actuation and piezoresistive sensing. The system includes two feedback loops aimed at pushing the control bandwidth beyond the microelectromechanical system (MEMS) resonance, at damping the closed-loop quality factor, at nulling the steady-state control error and at rejecting effects of MEMS high-order modes. Overall, the strategy reduces linearity errors down to ± 0.03°, but the latter aspect is particularly challenging: management of spurious resonances is indeed shown to affect the optimal control strategy, suggesting further investigation of predictive feedback techniques.","PeriodicalId":6814,"journal":{"name":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","volume":"77 1","pages":"435-438"},"PeriodicalIF":0.0,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83387998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-20DOI: 10.1109/Transducers50396.2021.9495640
S. Pala, Yande Peng, Hong Ding, J. Xie, Liwei Lin
This work presents the attenuation effect due to the surface curvature for the ultrasound pulse-echo detection scheme. The magnitude of attenuation due to the curved surface is simulated and experimentally validated by a piezoelectric micromachined transducer (pMUT) array as a model with 39 × 39 elements and 3 mm × 3mm in size made of 1 µm-thick A1N piezoelectric layer, and 5 urn-thick Si elastic layer. Experimental validations have been conducted to measure the diameter variations of silicone tubes with different diameters in the mineral oil environment to mimic the acoustic properties of the human tissue and blood vessel. Under an applied voltage of 12 V, three sine cycles of 1–10 MHz frequency are emitted and the echo signals from tubes with diameters 2 to 12 mm at a distance of 25 mm are captured. The measured and simulated attenuation is around 7dB for those surfaces to emulate arteries and veins for applications in blood pressure measurements. These results help both the design and analysis of ultrasound detections by pMUTs encountering non-flat surfaces both qualitatively and quantitatively for various applications.
{"title":"Attenuation of Curved Structural Surfaces in PMUT Measurements","authors":"S. Pala, Yande Peng, Hong Ding, J. Xie, Liwei Lin","doi":"10.1109/Transducers50396.2021.9495640","DOIUrl":"https://doi.org/10.1109/Transducers50396.2021.9495640","url":null,"abstract":"This work presents the attenuation effect due to the surface curvature for the ultrasound pulse-echo detection scheme. The magnitude of attenuation due to the curved surface is simulated and experimentally validated by a piezoelectric micromachined transducer (pMUT) array as a model with 39 × 39 elements and 3 mm × 3mm in size made of 1 µm-thick A1N piezoelectric layer, and 5 urn-thick Si elastic layer. Experimental validations have been conducted to measure the diameter variations of silicone tubes with different diameters in the mineral oil environment to mimic the acoustic properties of the human tissue and blood vessel. Under an applied voltage of 12 V, three sine cycles of 1–10 MHz frequency are emitted and the echo signals from tubes with diameters 2 to 12 mm at a distance of 25 mm are captured. The measured and simulated attenuation is around 7dB for those surfaces to emulate arteries and veins for applications in blood pressure measurements. These results help both the design and analysis of ultrasound detections by pMUTs encountering non-flat surfaces both qualitatively and quantitatively for various applications.","PeriodicalId":6814,"journal":{"name":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","volume":"11 1","pages":"246-249"},"PeriodicalIF":0.0,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81134598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-20DOI: 10.1109/Transducers50396.2021.9495552
Yongfang Li, T. Omori, K. Watabe, H. Toshiyoshi
This paper describes two innovative methods for improving the sensitivity of piezoelectric MEMS acoustic emission (AE) sensors. By optimizing the top electrode dimensions and adding a dummy structure to it, the peak sensitivity of the fabricated MEMS AE sensors at resonance can be improved to 148 V/m/s, which is about 10-fold greater than that of sensors with a full-size top electrode. Standard pencil-lead break (PLB) tests are conducted to verify the detection capability of AE waves. As a result, the fabricated single-type piezoelectric MEMS AE sensor, which has a peak sensitivity of 45 V/m/s, is shown to have the same level of detection sensitivity as a commercial bulk piezoelectric AE sensor.
{"title":"Improved Piezoelectric MEMS Acoustic Emission Sensors","authors":"Yongfang Li, T. Omori, K. Watabe, H. Toshiyoshi","doi":"10.1109/Transducers50396.2021.9495552","DOIUrl":"https://doi.org/10.1109/Transducers50396.2021.9495552","url":null,"abstract":"This paper describes two innovative methods for improving the sensitivity of piezoelectric MEMS acoustic emission (AE) sensors. By optimizing the top electrode dimensions and adding a dummy structure to it, the peak sensitivity of the fabricated MEMS AE sensors at resonance can be improved to 148 V/m/s, which is about 10-fold greater than that of sensors with a full-size top electrode. Standard pencil-lead break (PLB) tests are conducted to verify the detection capability of AE waves. As a result, the fabricated single-type piezoelectric MEMS AE sensor, which has a peak sensitivity of 45 V/m/s, is shown to have the same level of detection sensitivity as a commercial bulk piezoelectric AE sensor.","PeriodicalId":6814,"journal":{"name":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","volume":"67 1","pages":"238-241"},"PeriodicalIF":0.0,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82708172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-20DOI: 10.1109/Transducers50396.2021.9495425
Jindong Ye, Zixuan Wu, Yuning Liang, Bizhang Zhong, Zijing Zhou, Zhenyi Li, Yaoming Wei, K. Tao, Jin Wu
In this paper, humidity-resistant, stable and sensitive oxygen gas sensors were fabricated by covering porous membranes on the surface of carrageenan/polyacrylamide (PAM) double-network (DN) hydrogel. The breathable and waterproof porous ecoflex membranes were fabricated via a facile and cost-effective template method. The proposed approach is capable of creating the micropores on the ecoflex membranes using the salt as hard template and water as the solvent. We also proposed the working mechanism of the ion-conducting hydrogel based oxygen sensor. The porous membranes enhance the immunity of the hydrogel sensor to humidity and retain its high response to oxygen. The response of the sensor to oxygen can keep stable in different relative humidity (RH) with the sensitivity of $4.49times 10^{-2}text{ppm}^{-1}$.
{"title":"Hydrogel-Based Sensitive and Humidity-Resistant Oxygen Gas Sensors Enabled by Porous Ecoflex Membranes","authors":"Jindong Ye, Zixuan Wu, Yuning Liang, Bizhang Zhong, Zijing Zhou, Zhenyi Li, Yaoming Wei, K. Tao, Jin Wu","doi":"10.1109/Transducers50396.2021.9495425","DOIUrl":"https://doi.org/10.1109/Transducers50396.2021.9495425","url":null,"abstract":"In this paper, humidity-resistant, stable and sensitive oxygen gas sensors were fabricated by covering porous membranes on the surface of carrageenan/polyacrylamide (PAM) double-network (DN) hydrogel. The breathable and waterproof porous ecoflex membranes were fabricated via a facile and cost-effective template method. The proposed approach is capable of creating the micropores on the ecoflex membranes using the salt as hard template and water as the solvent. We also proposed the working mechanism of the ion-conducting hydrogel based oxygen sensor. The porous membranes enhance the immunity of the hydrogel sensor to humidity and retain its high response to oxygen. The response of the sensor to oxygen can keep stable in different relative humidity (RH) with the sensitivity of $4.49times 10^{-2}text{ppm}^{-1}$.","PeriodicalId":6814,"journal":{"name":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","volume":"11 1","pages":"843-846"},"PeriodicalIF":0.0,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90988866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-20DOI: 10.1109/Transducers50396.2021.9495399
Ruicheng Liu, Dongcheng Xie, G. Adedokun, Feng Xue, Lei Xu, Feng Wu
This paper proposes a microcantilever-type zinc oxide (ZnO) gas sensor fabricated using typical micro-electro-mechanical system (MEMS) process. To achieve low power consumption, we developed a long narrow single cantilever beam and the sensing region is at the free end of it. ZnO was sputtered under the atmosphere of O2 as the sensing layer. And a thin Au buried layer was deposited to form the “sandwiched” structure of a thin Au layer between two ZnO layers. Ethanol, as a typical volatile gas, was chosen to verify the performance of the proposed sensor. The results indicate that the “sandwiched” sensing layer shows higher response to ethanol compared with single-layer ZnO, and the best sensitivity to 100 ppm ethanol is 7.11. Besides, the response time is 12 s and the sensor consumes a low power consumption of only 5.81 mW.
{"title":"A Single Microcantilever-Type Gas Sensor with Enhanced Sensitivity to Ethanol by Sputtering ZnO with Au Embedded in O2 Atmosphere","authors":"Ruicheng Liu, Dongcheng Xie, G. Adedokun, Feng Xue, Lei Xu, Feng Wu","doi":"10.1109/Transducers50396.2021.9495399","DOIUrl":"https://doi.org/10.1109/Transducers50396.2021.9495399","url":null,"abstract":"This paper proposes a microcantilever-type zinc oxide (ZnO) gas sensor fabricated using typical micro-electro-mechanical system (MEMS) process. To achieve low power consumption, we developed a long narrow single cantilever beam and the sensing region is at the free end of it. ZnO was sputtered under the atmosphere of O2 as the sensing layer. And a thin Au buried layer was deposited to form the “sandwiched” structure of a thin Au layer between two ZnO layers. Ethanol, as a typical volatile gas, was chosen to verify the performance of the proposed sensor. The results indicate that the “sandwiched” sensing layer shows higher response to ethanol compared with single-layer ZnO, and the best sensitivity to 100 ppm ethanol is 7.11. Besides, the response time is 12 s and the sensor consumes a low power consumption of only 5.81 mW.","PeriodicalId":6814,"journal":{"name":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","volume":"85 1","pages":"819-822"},"PeriodicalIF":0.0,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89438828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-20DOI: 10.1109/Transducers50396.2021.9495516
Shingo Terashima, E. Iwase
In order to realize a flexible thermoelectric generator (TEG) with high output performance and deformability, we have developed TEG with a kind of kirigami-folding structure which called “Tomoe-folding”. The proposed TEG with Tomoe-folding structure not only obtain a large temperature difference due to fold up from the heat source, but also have a flexibility to be attached to a curved surface because of kirigami structure. In this paper, power generation performance was compared with the 2 type TEGs. As a result, we have shown that the output power was dramatically improved by folding TEG into Tomoe-folding structure.
{"title":"Flexible Thermoelectric Generator Using Kirigami-Folding Structure","authors":"Shingo Terashima, E. Iwase","doi":"10.1109/Transducers50396.2021.9495516","DOIUrl":"https://doi.org/10.1109/Transducers50396.2021.9495516","url":null,"abstract":"In order to realize a flexible thermoelectric generator (TEG) with high output performance and deformability, we have developed TEG with a kind of kirigami-folding structure which called “Tomoe-folding”. The proposed TEG with Tomoe-folding structure not only obtain a large temperature difference due to fold up from the heat source, but also have a flexibility to be attached to a curved surface because of kirigami structure. In this paper, power generation performance was compared with the 2 type TEGs. As a result, we have shown that the output power was dramatically improved by folding TEG into Tomoe-folding structure.","PeriodicalId":6814,"journal":{"name":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","volume":"16 1","pages":"467-470"},"PeriodicalIF":0.0,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87774689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}