首页 > 最新文献

Micro and Nano Systems Letters最新文献

英文 中文
Textile-type triboelectric nanogenerator using Teflon wrapping wires as wearable power source 采用聚四氟乙烯缠绕线作为可穿戴电源的纺织型摩擦电纳米发电机
IF 3.6 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2022-07-05 DOI: 10.1186/s40486-022-00150-x
Seonghyeon Kim, Woosung Cho, Dong-Joon Won, Joonwon Kim

Wearable electronic devices such as mobile communication devices, portable computers, and various sensors are the latest significant innovations in technology which use the Internet of Things (IoT) to track personal data. Wearable energy harvesters are required to supply electricity to such devices for the convenience of users. In this study, a textile-type triboelectric nanogenerator (T-TENG), produced using commercial electrode fibers, was fabricated to generate electrical energy using external mechanical stimulation. The commercial fiber was an electrode coated with Teflon on a copper wire with a diameter of ~ 320 μm. Using this commercial fiber, a T-TENG was easily fabricated by knitting and weaving. The performance of the T-TENG was analyzed to understand the effect of force and frequency. It was observed that the performance of the T-TENG did not degrade even under harsh conditions and treatment. The textile-type TENG possessed an energy harvesting capability with an output power density of ~ 0.36 W/m2 and could operate electronic devices by charging a capacitor.

移动通信设备、便携式计算机和各种传感器等可穿戴电子设备是利用物联网(IoT)跟踪个人数据的最新重大技术创新。为了方便用户使用,需要可穿戴式能量采集器为这些设备供电。在这项研究中,利用商业电极纤维制造了一种织物型摩擦电纳米发电机(T-TENG),利用外部机械刺激产生电能。该商用光纤是在直径约320 μm的铜线上包覆聚四氟乙烯的电极。利用这种商业纤维,通过针织和编织,可以很容易地制造出T-TENG。分析了T-TENG的性能,了解了力和频率对其性能的影响。据观察,T-TENG的性能即使在恶劣的条件和处理下也没有退化。织物型TENG具有能量收集能力,输出功率密度约为0.36 W/m2,可以通过给电容器充电来操作电子设备。
{"title":"Textile-type triboelectric nanogenerator using Teflon wrapping wires as wearable power source","authors":"Seonghyeon Kim,&nbsp;Woosung Cho,&nbsp;Dong-Joon Won,&nbsp;Joonwon Kim","doi":"10.1186/s40486-022-00150-x","DOIUrl":"10.1186/s40486-022-00150-x","url":null,"abstract":"<div><p>Wearable electronic devices such as mobile communication devices, portable computers, and various sensors are the latest significant innovations in technology which use the Internet of Things (IoT) to track personal data. Wearable energy harvesters are required to supply electricity to such devices for the convenience of users. In this study, a textile-type triboelectric nanogenerator (T-TENG), produced using commercial electrode fibers, was fabricated to generate electrical energy using external mechanical stimulation. The commercial fiber was an electrode coated with Teflon on a copper wire with a diameter of ~ 320 μm. Using this commercial fiber, a T-TENG was easily fabricated by knitting and weaving. The performance of the T-TENG was analyzed to understand the effect of force and frequency. It was observed that the performance of the T-TENG did not degrade even under harsh conditions and treatment. The textile-type TENG possessed an energy harvesting capability with an output power density of ~ 0.36 W/m<sup>2</sup> and could operate electronic devices by charging a capacitor.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"10 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-022-00150-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134795515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Multi-height micropyramids based pressure sensor with tunable sensing properties for robotics and step tracking applications 基于多高度微金字塔的压力传感器,具有可调的传感特性,适用于机器人和步进跟踪应用
IF 3.6 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2022-06-10 DOI: 10.1186/s40486-022-00149-4
Dongik Oh, Jungyeon Seo, Hang Gyeom Kim, Chaehyun Ryu, Sang-Won Bang, Sukho Park, Hoe Joon Kim

Precise sensing of pressure is essential for various mechanical and electrical systems. The recent emergence of flexible pressure sensors has enabled novel applications, such as human–machine interfaces, soft robotics, and wearable devices. Specifically, the piezoresistive sensing scheme is widely adapted for flexible pressure sensors as it is simple and exhibits outstanding measurement sensitivity and stability. The sensing properties of piezoresistive pressure sensors mainly depends on the materials and contact morphologies at the interface. This paper proposes a flexible pressure sensor based on multi-height microstructures in which the measurement sensitivity and detection range are tunable. Such tunability is due to the sequential contact of micropyramids with different heights. The multi-height micropyramid structured PDMS layer with stamp-coated multi-walled carbon nanotubes (MWCNTs) acts as a conductive active layer and a gold interdigitated electrode (IDE) patterned polyimide (PI) layer works as the bottom electrode. The fabricated sensor exhibits a sensitivity of 0.19 kPa−1, a fast response speed of 20 ms, and a detection range of up to 100 kPa. The sensor is applied to a robotic gripper for object recognition and integrated into a shoe to track walking motions.

对各种机械和电气系统来说,精确的压力传感是必不可少的。最近出现的柔性压力传感器使人机界面、软机器人和可穿戴设备等新应用成为可能。具体来说,压阻式传感方案因其简单且具有出色的测量灵敏度和稳定性而广泛适用于柔性压力传感器。压阻式压力传感器的传感性能主要取决于界面上的材料和接触形态。提出了一种基于多高度微结构的柔性压力传感器,该传感器的测量灵敏度和检测范围可调。这种可调性是由于不同高度的微金字塔的顺序接触。采用邮票涂覆多壁碳纳米管(MWCNTs)的多高度微金字塔结构PDMS层作为导电活性层,金交叉电极(IDE)图案聚酰亚胺(PI)层作为底电极。该传感器的灵敏度为0.19 kPa−1,响应速度可达20 ms,检测范围可达100 kPa。该传感器被应用到机器人的抓取器上进行物体识别,并集成到鞋子中以跟踪行走动作。
{"title":"Multi-height micropyramids based pressure sensor with tunable sensing properties for robotics and step tracking applications","authors":"Dongik Oh,&nbsp;Jungyeon Seo,&nbsp;Hang Gyeom Kim,&nbsp;Chaehyun Ryu,&nbsp;Sang-Won Bang,&nbsp;Sukho Park,&nbsp;Hoe Joon Kim","doi":"10.1186/s40486-022-00149-4","DOIUrl":"10.1186/s40486-022-00149-4","url":null,"abstract":"<div><p>Precise sensing of pressure is essential for various mechanical and electrical systems. The recent emergence of flexible pressure sensors has enabled novel applications, such as human–machine interfaces, soft robotics, and wearable devices. Specifically, the piezoresistive sensing scheme is widely adapted for flexible pressure sensors as it is simple and exhibits outstanding measurement sensitivity and stability. The sensing properties of piezoresistive pressure sensors mainly depends on the materials and contact morphologies at the interface. This paper proposes a flexible pressure sensor based on multi-height microstructures in which the measurement sensitivity and detection range are tunable. Such tunability is due to the sequential contact of micropyramids with different heights. The multi-height micropyramid structured PDMS layer with stamp-coated multi-walled carbon nanotubes (MWCNTs) acts as a conductive active layer and a gold interdigitated electrode (IDE) patterned polyimide (PI) layer works as the bottom electrode. The fabricated sensor exhibits a sensitivity of 0.19 kPa<sup>−1</sup>, a fast response speed of 20 ms, and a detection range of up to 100 kPa. The sensor is applied to a robotic gripper for object recognition and integrated into a shoe to track walking motions.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"10 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-022-00149-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65886457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Surrogate model for optimizing annealing duration of self-assembled membrane-cavity structures 自组装膜腔结构退火时间优化代理模型
IF 3.6 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2022-06-06 DOI: 10.1186/s40486-022-00148-5
Mun Goung Jeong, Taeyeong Kim, Bong Jae Lee, Jungchul Lee

We propose a scheme to establish a surrogate model for optimizing the annealing duration of the self-assembled membrane-cavity structures from hole patterned silicon wafers. Although it has been reported that the design space of post-annealing shape can be extended by increasing the dimensions of hole arrays, the annealing duration for large hole arrays has not been well examined. A two-dimensional axisymmetric phase-field model in commercial FEM software is employed to establish the surrogate model with respect to three variables (i.e., radius, aspect ratio (AR), and normalized spacing). The established surrogate model based on the neural network indicates that the hole radius dominantly affects annealing duration and the temperature elevation (i.e., acceleration of diffusion speed) is necessary to achieve the practical annealing duration when the hole radius is larger than 1 μm.

我们提出了一种方案来建立一个替代模型来优化自组装膜腔结构的退火时间。虽然已有报道通过增加孔阵列的尺寸可以延长退火后形状的设计空间,但对于大孔阵列的退火时间尚未得到很好的研究。利用商业有限元软件中的二维轴对称相场模型,建立了基于半径、宽高比和归一化间距三个变量的替代模型。基于神经网络建立的替代模型表明,孔径半径对退火时间影响较大,当孔径半径大于1 μm时,需要提高温度(即加速扩散速度)才能达到实际退火时间。
{"title":"Surrogate model for optimizing annealing duration of self-assembled membrane-cavity structures","authors":"Mun Goung Jeong,&nbsp;Taeyeong Kim,&nbsp;Bong Jae Lee,&nbsp;Jungchul Lee","doi":"10.1186/s40486-022-00148-5","DOIUrl":"10.1186/s40486-022-00148-5","url":null,"abstract":"<div><p>We propose a scheme to establish a surrogate model for optimizing the annealing duration of the self-assembled membrane-cavity structures from hole patterned silicon wafers. Although it has been reported that the design space of post-annealing shape can be extended by increasing the dimensions of hole arrays, the annealing duration for large hole arrays has not been well examined. A two-dimensional axisymmetric phase-field model in commercial FEM software is employed to establish the surrogate model with respect to three variables (i.e., radius, aspect ratio (AR), and normalized spacing). The established surrogate model based on the neural network indicates that the hole radius dominantly affects annealing duration and the temperature elevation (i.e., acceleration of diffusion speed) is necessary to achieve the practical annealing duration when the hole radius is larger than 1 μm.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"10 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-022-00148-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65886874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Electrochemical activity of glassy carbon electrode modified with ZnO nanoparticles prepared Via Senna Alata L. leaf extract towards antiretroviral drug 泻泻叶提取物制备的ZnO纳米修饰玻碳电极对抗逆转录病毒药物的电化学活性研究
IF 3.6 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2022-05-17 DOI: 10.1186/s40486-022-00147-6
Harits Atika Ariyanta, Fakhrur Roji, Dewangga Oky Bagus Apriandanu

The phytosynthesis method was used to prepare ZnO nanoparticles (ZnO NPs) via Senna alata L. leaf extract (SALE) by involving alkaloids, which play an essential role as a source of weak bases during the formation reaction of NPs. ZnO NPs on glassy carbon electrodes (GCE/ZnO NP) have been introduced to investigate its electrochemical activity towards the antiretroviral drug, lamivudine (3TC). Several characterization techniques, such as Fourier Transform Infra-Red (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), and Dynamic Light Scattering (DLS) techniques were employed to analyze the properties of GCE/ZnO NPs. As a result, ZnO NPs in spherical shape showed a high purity crystalline hexagonal wurtzite structure with a particle diameter of 40–60 nm. A Cyclic Voltammetry (CV) measurement confirmed that the electrochemical reduction of 3TC on GCE/ZnO NPs exhibited an excellent linear range of 10–300 µM with a detection limit of 1.902 µM, quantitation limit of 6.330 µM, and sensitivity of 0.0278 µA/µM. Thus, this research suggests a facile method for the preparation of material-based ZnO NPs as a promising antiretroviral drug sensors due to their excellent electrochemical properties.

采用植物合成的方法,以泻泻叶提取物(SALE)为原料制备ZnO纳米颗粒(ZnO NPs),其中生物碱在纳米颗粒形成反应中起着弱碱的重要作用。介绍了玻璃碳电极上ZnO纳米粒子(GCE/ZnO NP)对抗逆转录病毒药物拉米夫定(3TC)的电化学活性。采用傅里叶变换红外(FTIR)、x射线衍射(XRD)、扫描电子显微镜(SEM)、能量色散x射线能谱(EDS)和动态光散射(DLS)等表征技术分析了GCE/ZnO纳米粒子的性能。结果表明,球形ZnO纳米粒子具有高纯度的六方纤锌矿结构,粒径为40 ~ 60 nm。循环伏安法(CV)测试证实,3TC在GCE/ZnO纳米粒子上的电化学还原具有良好的线性范围(10 ~ 300µM),检测限为1.902µM,定量限为6.330µM,灵敏度为0.0278µA/µM。因此,本研究提出了一种制备基于材料的ZnO NPs的简便方法,由于其优异的电化学性能,ZnO NPs有望成为抗逆转录病毒药物传感器。
{"title":"Electrochemical activity of glassy carbon electrode modified with ZnO nanoparticles prepared Via Senna Alata L. leaf extract towards antiretroviral drug","authors":"Harits Atika Ariyanta,&nbsp;Fakhrur Roji,&nbsp;Dewangga Oky Bagus Apriandanu","doi":"10.1186/s40486-022-00147-6","DOIUrl":"10.1186/s40486-022-00147-6","url":null,"abstract":"<div><p>The phytosynthesis method was used to prepare ZnO nanoparticles (ZnO NPs) via <i>Senna alata L.</i> leaf extract (SALE) by involving alkaloids, which play an essential role as a source of weak bases during the formation reaction of NPs. ZnO NPs on glassy carbon electrodes (GCE/ZnO NP) have been introduced to investigate its electrochemical activity towards the antiretroviral drug, lamivudine (3TC). Several characterization techniques, such as Fourier Transform Infra-Red (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), and Dynamic Light Scattering (DLS) techniques were employed to analyze the properties of GCE/ZnO NPs. As a result, ZnO NPs in spherical shape showed a high purity crystalline hexagonal wurtzite structure with a particle diameter of 40–60 nm. A Cyclic Voltammetry (CV) measurement confirmed that the electrochemical reduction of 3TC on GCE/ZnO NPs exhibited an excellent linear range of 10–300 µM with a detection limit of 1.902 µM, quantitation limit of 6.330 µM, and sensitivity of 0.0278 µA/µM. Thus, this research suggests a facile method for the preparation of material-based ZnO NPs as a promising antiretroviral drug sensors due to their excellent electrochemical properties.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"10 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-022-00147-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134878349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Ethanol-sensing properties of cobalt porphyrin-functionalized titanium dioxide nanoparticles as chemiresistive materials that are integrated into a low power microheater 钴卟啉功能化二氧化钛纳米颗粒作为化学电阻材料集成到低功率微加热器中的乙醇传感性能
IF 3.6 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2022-04-19 DOI: 10.1186/s40486-022-00146-7
Kwanhun Kim, Yunsung Kang, Kyubin Bae, Jongbaeg Kim

Gaseous ethanol detection has attracted significant interest owing to its practical applications such as in breath analysis, chemical process monitoring, and safety evaluations of food packaging. In this study, titanium dioxide (TiO2) nanoparticles functionalized with cobalt porphyrin (CoPP) are utilized as resistive ethanol-sensing materials, and are integrated with a suspended micro-heater for low power consumption. The micro-heater with the suspended structure inhibits substrate heat transfer, resulting in power consumption as low as 18 mW when the operating temperature is approximately 300 °C. CoPP functionalization allows an enhanced response (197.8%) to 10 ppm ethanol compared to that of pristine TiO2 nanoparticles. It is confirmed that the sensor response is reliable upon exposure to 10 ppm ethanol for three cycles. In addition, responses of different magnitude are obtained under exposure to ethanol at various concentrations from 9 to 1 ppm, indicating that the resistance change originates from a charge transfer between the sensing materials and target gas. The sensing mechanism of CoPP-functionalized TiO2 in relation to charge transfer is analyzed, and the performance of the proposed sensor with previously reported TiO2-based ethanol sensors is compared. Considering that it is processed by batch fabrication, consumes low power, and offers high sensitivity, the proposed sensor is promising for use as a portable sensor in the distributed monitoring of gaseous ethanol.

气体乙醇检测由于其在呼吸分析、化学过程监测和食品包装安全评价等方面的实际应用而引起了人们的极大兴趣。在本研究中,二氧化钛(TiO2)纳米粒子与钴卟啉(CoPP)功能化用作电阻式乙醇传感材料,并与悬浮式微加热器集成,以降低功耗。采用悬浮结构的微型加热器可抑制衬底传热,当工作温度约为300°C时,功耗低至18 mW。与原始TiO2纳米颗粒相比,CoPP功能化允许对10 ppm乙醇的响应增强(197.8%)。经证实,传感器的响应是可靠的暴露于10ppm乙醇三个周期。此外,在暴露于不同浓度的乙醇(9 - 1ppm)下,得到了不同幅度的响应,表明电阻变化源于传感材料和目标气体之间的电荷转移。分析了copp功能化TiO2与电荷转移相关的传感机理,并将该传感器的性能与先前报道的基于TiO2的乙醇传感器进行了比较。考虑到该传感器采用批量制造,功耗低,灵敏度高,有望作为便携式传感器用于气体乙醇的分布式监测。
{"title":"Ethanol-sensing properties of cobalt porphyrin-functionalized titanium dioxide nanoparticles as chemiresistive materials that are integrated into a low power microheater","authors":"Kwanhun Kim,&nbsp;Yunsung Kang,&nbsp;Kyubin Bae,&nbsp;Jongbaeg Kim","doi":"10.1186/s40486-022-00146-7","DOIUrl":"10.1186/s40486-022-00146-7","url":null,"abstract":"<div><p>Gaseous ethanol detection has attracted significant interest owing to its practical applications such as in breath analysis, chemical process monitoring, and safety evaluations of food packaging. In this study, titanium dioxide (TiO<sub>2</sub>) nanoparticles functionalized with cobalt porphyrin (CoPP) are utilized as resistive ethanol-sensing materials, and are integrated with a suspended micro-heater for low power consumption. The micro-heater with the suspended structure inhibits substrate heat transfer, resulting in power consumption as low as 18 mW when the operating temperature is approximately 300 °C. CoPP functionalization allows an enhanced response (197.8%) to 10 ppm ethanol compared to that of pristine TiO<sub>2</sub> nanoparticles. It is confirmed that the sensor response is reliable upon exposure to 10 ppm ethanol for three cycles. In addition, responses of different magnitude are obtained under exposure to ethanol at various concentrations from 9 to 1 ppm, indicating that the resistance change originates from a charge transfer between the sensing materials and target gas. The sensing mechanism of CoPP-functionalized TiO<sub>2</sub> in relation to charge transfer is analyzed, and the performance of the proposed sensor with previously reported TiO<sub>2</sub>-based ethanol sensors is compared. Considering that it is processed by batch fabrication, consumes low power, and offers high sensitivity, the proposed sensor is promising for use as a portable sensor in the distributed monitoring of gaseous ethanol.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"10 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-022-00146-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4743008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Toluene sensing characteristics of tin oxide-based gas sensor deposited with various amounts of metalloporphyrin 不同量金属卟啉沉积的氧化锡基气体传感器的甲苯传感特性
IF 3.6 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2022-03-08 DOI: 10.1186/s40486-022-00145-8
Byeonghwa Cho, Jongbaeg Kim

In this study, the sensing characteristics of tin oxide-based gas sensors deposit with different amounts of metalloporphyrin, which is a functionalization substance, are evaluated. The mass of metalloporphyrin deposited is 3, 10, 20, 30, and 40 mg for 5 different sensors prepared. The deposition of 3 mg of metalloporphyrin result in an island form of functionalization instead of a thin film; meanwhile, thin films with thicknesses of 25, 35, 74, and 92 nm are formed for the other four cases. As the deposition amount of metalloporphyrin increase, the performance of the sensor deteriorate. The samples are prepared by subdividing the amount of metalloporphyrin source to determine the optimized deposition amount. A sample is prepared with deposition amounts ranging between 1 to 10 mg. The sensors deposit with 3–5 mg metalloporphyrin has excellent response, response, and recovery time characteristics.

本文研究了不同功能化物质金属卟啉含量的氧化锡基气体传感器镀层的传感特性。制备的5种不同传感器的金属卟啉沉积质量分别为3、10、20、30和40 mg。3 mg金属卟啉的沉积形成岛状功能化而不是薄膜;同时,在另外四种情况下形成厚度分别为25、35、74和92 nm的薄膜。金属卟啉的沉积量越大,传感器的性能越差。通过细分金属卟啉源量制备样品,确定最佳沉积量。样品的沉积量在1至10毫克之间。3 ~ 5 mg金属卟啉沉积的传感器具有良好的响应特性、响应特性和恢复时间特性。
{"title":"Toluene sensing characteristics of tin oxide-based gas sensor deposited with various amounts of metalloporphyrin","authors":"Byeonghwa Cho,&nbsp;Jongbaeg Kim","doi":"10.1186/s40486-022-00145-8","DOIUrl":"10.1186/s40486-022-00145-8","url":null,"abstract":"<div><p>In this study, the sensing characteristics of tin oxide-based gas sensors deposit with different amounts of metalloporphyrin, which is a functionalization substance, are evaluated. The mass of metalloporphyrin deposited is 3, 10, 20, 30, and 40 mg for 5 different sensors prepared. The deposition of 3 mg of metalloporphyrin result in an island form of functionalization instead of a thin film; meanwhile, thin films with thicknesses of 25, 35, 74, and 92 nm are formed for the other four cases. As the deposition amount of metalloporphyrin increase, the performance of the sensor deteriorate. The samples are prepared by subdividing the amount of metalloporphyrin source to determine the optimized deposition amount. A sample is prepared with deposition amounts ranging between 1 to 10 mg. The sensors deposit with 3–5 mg metalloporphyrin has excellent response, response, and recovery time characteristics.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"10 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-022-00145-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4346790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Green synthesis of silver nanoparticles and its antibacterial activity using fungus Talaromyces purpureogenus isolated from Taxus baccata Linn. 绿色合成纳米银及其抑菌活性研究。
IF 3.6 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2022-01-20 DOI: 10.1186/s40486-022-00144-9
Ankush Sharma, Anand Sagar, Jagriti Rana, Reena Rani

The present study is focused on the synthesis of silver nanoparticles (AgNPs) utilizing endophytic fungus Talaromyces purpureogenus, isolated from Taxus baccata Linn. Extracellular extract of Talaromyces purpureogenus has shown occurrence of secondary metabolites viz. terpenoids and phenols. Gas chromatography-mass spectroscopy analysis showed the presence of 16 compounds. Techniques like Ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, dynamic light scattering, field emission gun scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction were employed to characterize the synthesized AgNPs. UV–Vis spectroscopy showed sharp peaks at 380–470 nm which indicates the presence of metallic silver. FTIR analysis showed the presence of various functional groups like phenols, hydroxyl groups, and primary amines. In DLS, Z-average size and PdI of synthesized AgNPs were 240.2 r.nm and 0.720 respectively, with zeta potential − 19.6 mV. In FEG-SEM and HRTEM the spherical AgNPs showed diameter in the range of 30–60 nm. In EDS analysis the weight percent of Ag is 67.26% and atomic percent is 43.13%. From XRD analysis the size of AgNPs was found to be 49.3 nm with face-centered cubic crystalline nature of fungal synthesized AgNPs. These nanoparticles have shown significant antibacterial activity against tested strains viz. Listeria monocytogenes (13 ± 0.29 mm), Escherichia coli (17 ± 0.14 mm), Shigella dysenteriae (18 ± 0.21 mm) and Salmonella typhi (14 ± 0.13 mm). These synthesized AgNPs have shown effective free radical scavenging activity against 2,2′-diphenyl-1-picrylhydrazyl. The present study showed that the endophytic fungus Talaromyces purpureogenus can be used as a prominent source to synthesize AgNPs by using biological, ecofriendly, and in a non-toxic way accompanied by antibacterial and antioxidant properties which further can reduce the harvesting pressure faced by Taxus baccata.

Graphical Abstract

研究了利用红豆杉(Taxus baccata Linn)内生真菌Talaromyces purpureogenus合成银纳米粒子(AgNPs)的方法。Talaromyces purpureoogenus的细胞外提取物显示出次生代谢产物,即萜类和酚类物质。经气相色谱-质谱分析,共鉴定出16种化合物。采用紫外可见光谱、傅里叶变换红外光谱、动态光散射、场发射枪扫描电镜、高分辨率透射电镜、能量色散x射线能谱学和x射线衍射等技术对合成的AgNPs进行表征。紫外可见光谱在380 ~ 470 nm处出现尖峰,表明金属银的存在。FTIR分析显示其含有酚类、羟基和伯胺等多种官能团。在DLS下,合成的AgNPs的z -平均尺寸为240.2 r.nm, PdI为0.720,zeta电位为- 19.6 mV。在fg - sem和HRTEM中,球形AgNPs的直径在30-60 nm之间。在EDS分析中,银的质量百分比为67.26%,原子百分比为43.13%。通过XRD分析发现,真菌合成的AgNPs尺寸为49.3 nm,具有面心立方晶的性质。这些纳米颗粒对单核增生李斯特菌(13±0.29 mm)、大肠杆菌(17±0.14 mm)、痢疾志贺氏菌(18±0.21 mm)和伤寒沙门氏菌(14±0.13 mm)具有显著的抗菌活性。这些合成的AgNPs对2,2′-二苯基-1-苦味酰肼具有有效的自由基清除活性。本研究表明,内生真菌Talaromyces purpureogenus可以作为AgNPs的重要来源,利用生物、生态友好、无毒、抗菌和抗氧化的特性,进一步减轻红豆杉(Taxus baccata)面临的收获压力。图形抽象
{"title":"Green synthesis of silver nanoparticles and its antibacterial activity using fungus Talaromyces purpureogenus isolated from Taxus baccata Linn.","authors":"Ankush Sharma,&nbsp;Anand Sagar,&nbsp;Jagriti Rana,&nbsp;Reena Rani","doi":"10.1186/s40486-022-00144-9","DOIUrl":"10.1186/s40486-022-00144-9","url":null,"abstract":"<div><p>The present study is focused on the synthesis of silver nanoparticles (AgNPs) utilizing endophytic fungus <i>Talaromyces purpureogenus</i>, isolated from <i>Taxus baccata</i> Linn. Extracellular extract of <i>Talaromyces purpureogenus</i> has shown occurrence of secondary metabolites viz. terpenoids and phenols. Gas chromatography-mass spectroscopy analysis showed the presence of 16 compounds. Techniques like Ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, dynamic light scattering, field emission gun scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction were employed to characterize the synthesized AgNPs. UV–Vis spectroscopy showed sharp peaks at 380–470 nm which indicates the presence of metallic silver. FTIR analysis showed the presence of various functional groups like phenols, hydroxyl groups, and primary amines. In DLS, Z-average size and PdI of synthesized AgNPs were 240.2 r.nm and 0.720 respectively, with zeta potential − 19.6 mV. In FEG-SEM and HRTEM the spherical AgNPs showed diameter in the range of 30–60 nm. In EDS analysis the weight percent of Ag is 67.26% and atomic percent is 43.13%. From XRD analysis the size of AgNPs was found to be 49.3 nm with face-centered cubic crystalline nature of fungal synthesized AgNPs. These nanoparticles have shown significant antibacterial activity against tested strains viz. <i>Listeria monocytogenes</i> (13 ± 0.29 mm), <i>Escherichia coli</i> (17 ± 0.14 mm), <i>Shigella dysenteriae</i> (18 ± 0.21 mm) and <i>Salmonella typhi</i> (14 ± 0.13 mm). These synthesized AgNPs have shown effective free radical scavenging activity against 2,2′-diphenyl-1-picrylhydrazyl. The present study showed that the endophytic fungus <i>Talaromyces purpureogenus</i> can be used as a prominent source to synthesize AgNPs by using biological, ecofriendly, and in a non-toxic way accompanied by antibacterial and antioxidant properties which further can reduce the harvesting pressure faced by <i>Taxus baccata.</i></p><h3>Graphical Abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"10 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-022-00144-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5087555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Multiple ratiometric nanothermometry using semiconductor BiFeO3 nanowires and quantitative validation of thermal sensitivity 采用半导体BiFeO3纳米线的多重比率纳米热测量及热敏度的定量验证
IF 3.6 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2022-01-10 DOI: 10.1186/s40486-022-00143-w
K. Prashanthi, K. Krishna Mohan, Željka Antić, Kaveh Ahadi, Miroslav D. Dramicanin

Here, we report a very sensitive, non-contact, ratio-metric, and robust luminescence-based temperature sensing using a combination of conventional photoluminescence (PL) and negative thermal quenching (NTQ) mechanisms of semiconductor BiFeO3 (BFO) nanowires. Using this approach, we have demonstrated the absolute thermal sensitivity of ~ 10 mK−1 over the 300–438 K temperature range and the relative sensitivity of 0.75% K−1 at 300 K. Further, we have validated thermal sensitivity of BFO nanowires quantitatively using linear regression and analytical hierarchy process (AHP) and found close match with the experimental results. These results indicated that BFO nanowires are excellent candidates for developing high‐performance luminescence-based temperature sensors.

Graphical abstract

在这里,我们报告了一种非常敏感的、非接触的、比例的、鲁棒的基于发光的温度传感技术,该技术使用了半导体BiFeO3 (BFO)纳米线的传统光致发光(PL)和负热猝灭(NTQ)机制的组合。利用这种方法,我们已经证明了在300 - 438 K温度范围内的绝对热敏度为~ 10 mK−1,在300 K温度范围内的相对灵敏度为0.75% K−1。利用线性回归和层次分析法(AHP)对BFO纳米线的热敏度进行了定量验证,结果与实验结果吻合较好。这些结果表明,BFO纳米线是开发高性能发光温度传感器的理想候选者。图形抽象
{"title":"Multiple ratiometric nanothermometry using semiconductor BiFeO3 nanowires and quantitative validation of thermal sensitivity","authors":"K. Prashanthi,&nbsp;K. Krishna Mohan,&nbsp;Željka Antić,&nbsp;Kaveh Ahadi,&nbsp;Miroslav D. Dramicanin","doi":"10.1186/s40486-022-00143-w","DOIUrl":"10.1186/s40486-022-00143-w","url":null,"abstract":"<div><p>Here, we report a very sensitive, non-contact, ratio-metric, and robust luminescence-based temperature sensing using a combination of conventional photoluminescence (PL) and negative thermal quenching (NTQ) mechanisms of semiconductor BiFeO<sub>3</sub> (BFO) nanowires. Using this approach, we have demonstrated the absolute thermal sensitivity of ~ 10 mK<sup>−1</sup> over the 300–438 K temperature range and the relative sensitivity of 0.75% K<sup>−1</sup> at 300 K. Further, we have validated thermal sensitivity of BFO nanowires quantitatively using linear regression and analytical hierarchy process (AHP) and found close match with the experimental results. These results indicated that BFO nanowires are excellent candidates for developing high‐performance luminescence-based temperature sensors.</p><h3>Graphical abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"10 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-022-00143-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4726482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Two-step hybrid process of movable part inside glass substrate using ultrafast laser 利用超快激光对玻璃基板内的可移动部件进行两步混合加工
IF 4.7 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2021-12-17 DOI: 10.1186/s40486-021-00142-3
Jeongtae Kim, Sung-Il Kim, Yeun-Ho Joung, Jiyeon Choi, Chiwan Koo

We demonstrate a two-step hybrid process for fabricating movable parts inside glass substrate using the selective laser-induced etching (SLE) process that is consisted of laser-direct writing and wet chemical etching. To obtain an influence by the optical characteristics of a glass substrate when fabricating a 3D microstructure using the SLE, we analyzed the relationship of their dimensions between the designed and the fabricated devices. Two 3D microfluidic devices are designed and fabricated on glass substrates as the demonstrations of the hybrid process: a 3D microfluidic valve device with a movable plug and a 3D microfluidic mixer with a rotatable impeller and multilayer microchannels. The valving plug and the impeller of each device are successfully moved and rotated. The smallest structure is a pillar of the impeller device, and its size is 29 μm (diameter) × 277 μm (height). We expect this study to be extended to potential applications in 3D glass microfabrication and microfluidic systems.

我们展示了一种两步混合工艺,即利用由激光直接写入和湿化学蚀刻组成的选择性激光诱导蚀刻(SLE)工艺,在玻璃基板内制造可移动部件。为了了解使用 SLE 制造三维微结构时玻璃基板光学特性的影响,我们分析了设计和制造设备之间的尺寸关系。作为混合工艺的示范,我们在玻璃基板上设计并制造了两种三维微流控装置:一种是带有可移动塞子的三维微流控阀门装置,另一种是带有可旋转叶轮和多层微通道的三维微流控混合器。每个装置的阀塞和叶轮都能成功移动和旋转。最小的结构是叶轮装置的支柱,其尺寸为 29 μm(直径)×277 μm(高度)。我们希望这项研究能扩展到三维玻璃微加工和微流体系统中的潜在应用。
{"title":"Two-step hybrid process of movable part inside glass substrate using ultrafast laser","authors":"Jeongtae Kim,&nbsp;Sung-Il Kim,&nbsp;Yeun-Ho Joung,&nbsp;Jiyeon Choi,&nbsp;Chiwan Koo","doi":"10.1186/s40486-021-00142-3","DOIUrl":"10.1186/s40486-021-00142-3","url":null,"abstract":"<div><p>We demonstrate a two-step hybrid process for fabricating movable parts inside glass substrate using the selective laser-induced etching (SLE) process that is consisted of laser-direct writing and wet chemical etching. To obtain an influence by the optical characteristics of a glass substrate when fabricating a 3D microstructure using the SLE, we analyzed the relationship of their dimensions between the designed and the fabricated devices. Two 3D microfluidic devices are designed and fabricated on glass substrates as the demonstrations of the hybrid process: a 3D microfluidic valve device with a movable plug and a 3D microfluidic mixer with a rotatable impeller and multilayer microchannels. The valving plug and the impeller of each device are successfully moved and rotated. The smallest structure is a pillar of the impeller device, and its size is 29 μm (diameter) × 277 μm (height). We expect this study to be extended to potential applications in 3D glass microfabrication and microfluidic systems.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"9 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-021-00142-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65886856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Micro multi-nozzle jet coating of organic thin film for organic light-emitting diode lighting devices 用于有机发光二极管照明器件的有机薄膜微多喷嘴喷射涂层
IF 4.7 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2021-12-17 DOI: 10.1186/s40486-021-00137-0
Kwon-Yong Shin, Mingyu Kang, Kwan Hyun Cho, Kyung-Tae Kang, Sang-Ho Lee

Uniform deposition across large areas of an organic layer is one of the challenges for the industrial application of solution-based organic light‐emitting diode (OLED). In this paper, we propose an organic thin film deposition method for OLED using a micro multi-nozzle jet coating process. The developed micro multi-nozzle jet head consists of eighteen nozzles (100 μm diameter), a side suction line, inlets, and a nozzle protection outer hole. To demonstrate organic thin film deposition for OLED lighting device fabrication, a poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) solution was used as a hole injection layer (HIL). Thickness uniformity of the PEDOT:PSS thin film was analyzed by regulating the jetting pressure. Through single-path coating of twelve successive stable column-jet flows, PEDOT:PSS organic film of 26 mm width was coated on an ITO substrate at 1 m/s head speed. The PEDOT:PSS thin film of 24.25 ± 1.55 nm (CV = 6.39%) thickness was obtained by the proposed coating method. For the feasibility test, OLED lighting devices with emission areas of 20 mm × 20 mm and 70 mm × 70 mm were successfully fabricated using PEDOT:PSS films deposited by a micro multi-nozzle jet coating method.

大面积有机层的均匀沉积是基于溶液的有机发光二极管(OLED)工业应用的挑战之一。在本文中,我们提出了一种有机发光二极管的有机薄膜沉积方法,采用微多喷嘴喷射镀膜工艺。所研制的微型多喷嘴射流头由18个直径为100 μm的喷嘴、侧吸管、进气道和喷嘴保护外孔组成。为了证明有机薄膜沉积用于OLED照明器件的制造,使用聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)溶液作为孔注入层(HIL)。通过调节喷射压力,分析了PEDOT:PSS薄膜的厚度均匀性。通过连续12个稳定柱射流的单路涂覆,以1m /s的头速将26 mm宽的PEDOT:PSS有机薄膜涂覆在ITO基板上。采用该方法获得了厚度为24.25±1.55 nm (CV = 6.39%)的PEDOT:PSS薄膜。为验证其可行性,采用微喷嘴喷射镀膜方法制备了发光面积分别为20 mm × 20 mm和70 mm × 70 mm的OLED照明器件。
{"title":"Micro multi-nozzle jet coating of organic thin film for organic light-emitting diode lighting devices","authors":"Kwon-Yong Shin,&nbsp;Mingyu Kang,&nbsp;Kwan Hyun Cho,&nbsp;Kyung-Tae Kang,&nbsp;Sang-Ho Lee","doi":"10.1186/s40486-021-00137-0","DOIUrl":"10.1186/s40486-021-00137-0","url":null,"abstract":"<div><p>Uniform deposition across large areas of an organic layer is one of the challenges for the industrial application of solution-based organic light‐emitting diode (OLED). In this paper, we propose an organic thin film deposition method for OLED using a micro multi-nozzle jet coating process. The developed micro multi-nozzle jet head consists of eighteen nozzles (100 μm diameter), a side suction line, inlets, and a nozzle protection outer hole. To demonstrate organic thin film deposition for OLED lighting device fabrication, a poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) solution was used as a hole injection layer (HIL). Thickness uniformity of the PEDOT:PSS thin film was analyzed by regulating the jetting pressure. Through single-path coating of twelve successive stable column-jet flows, PEDOT:PSS organic film of 26 mm width was coated on an ITO substrate at 1 m/s head speed. The PEDOT:PSS thin film of 24.25 ± 1.55 nm (CV = 6.39%) thickness was obtained by the proposed coating method. For the feasibility test, OLED lighting devices with emission areas of 20 mm × 20 mm and 70 mm × 70 mm were successfully fabricated using PEDOT:PSS films deposited by a micro multi-nozzle jet coating method.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"9 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-021-00137-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138520601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Micro and Nano Systems Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1