首页 > 最新文献

Micro and Nano Systems Letters最新文献

英文 中文
One-step electropolymerization of methylene blue films on highly flexible carbon fiber electrode as supercapacitors 在高柔性碳纤维电极上一步电聚合亚甲基蓝薄膜作为超级电容器
IF 3.6 Q1 Engineering Pub Date : 2021-02-22 DOI: 10.1186/s40486-021-00130-7
Leandro Marques Samyn, Rajendran Suresh Babu, Mani Devendiran, Ana Lucia Ferreira de Barros

Energy crisis and environmental pollution have been one of the major global issues. In this regard, the search for new energy storage materials is cheap, flexible and high-performance supercapacitors electrode which has become intensive. Also, reducing the amount of organic dyes polluting in water is a great significance. Herein, one-step electropolymerization of methylene blue on carbon fiber and the resulting films were applied to the supercapacitor. The high performance is associated to the outstanding conductivity, electrochemical stability and superior mechanical flexibility of carbon fiber. A new flexible electrode for supercapacitors was successfully fabricated by demonstrating with a good electrochemical performance and a promising alternative to reduce the water pollution.

能源危机和环境污染已成为全球性的重大问题之一。在这方面,寻找廉价、柔性和高性能的超级电容器电极的新型储能材料已变得密集。同时,减少水中的有机染料污染也具有重要意义。本文将亚甲基蓝在碳纤维上一步电聚合,并将聚合膜应用于超级电容器。碳纤维具有优异的导电性、电化学稳定性和优异的机械柔韧性。成功制备了一种新型超级电容器柔性电极,具有良好的电化学性能,是减少水污染的理想选择。
{"title":"One-step electropolymerization of methylene blue films on highly flexible carbon fiber electrode as supercapacitors","authors":"Leandro Marques Samyn,&nbsp;Rajendran Suresh Babu,&nbsp;Mani Devendiran,&nbsp;Ana Lucia Ferreira de Barros","doi":"10.1186/s40486-021-00130-7","DOIUrl":"https://doi.org/10.1186/s40486-021-00130-7","url":null,"abstract":"<p>Energy crisis and environmental pollution have been one of the major global issues. In this regard, the search for new energy storage materials is cheap, flexible and high-performance supercapacitors electrode which has become intensive. Also, reducing the amount of organic dyes polluting in water is a great significance. Herein, one-step electropolymerization of methylene blue on carbon fiber and the resulting films were applied to the supercapacitor. The high performance is associated to the outstanding conductivity, electrochemical stability and superior mechanical flexibility of carbon fiber. A new flexible electrode for supercapacitors was successfully fabricated by demonstrating with a good electrochemical performance and a promising alternative to reduce the water pollution.</p>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40486-021-00130-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4853791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Study on thickness-dependence characteristics of bismuth ferrite (BFO) for ultraviolet (UV) photodetector application 用于紫外(UV)光电探测器的铋铁氧体(BFO)厚度依赖特性的研究
IF 3.6 Q1 Engineering Pub Date : 2021-01-04 DOI: 10.1186/s40486-020-00128-7
Shahnaz Kossar, R. Amiruddin, Asif Rasool

The present research work reports on the fabrication of ultraviolet (UV) photodetectors using bismuth ferrite (BiFeO3, BFO) thin films with varying thickness. Using the spray pyrolysis technique, BFO thin films were deposited on the glass substrate at 673?K. The deposited BFO thin films were characterized by Raman and FTIR spectroscopic analysis. The morphological analysis reveals uniform grain distribution for the prepared BFO samples. The optical analysis reveals that transmittance value decreases upon an increase in the thickness of BFO thin films and the calculated optical band gap value lies between 2.0 to 2.3?eV. The varying thickness of the BFO active layer was stacked between ITO and Al electrodes and the current–voltage (I–V) characteristics of the fabricated ITO/BFO/Al devices were studied under dark and UV illumination (λ?=?365?nm). It was observed that BFO with an optimum thickness (365?nm) exhibits higher photoresponsivity of 110?mA/W with an external quantum efficiency (EQE) of 37.30%. The impact of different thickness of the BFO active layer, the role of adsorption and desorption of oxygen (O2) molecules upon the surface of BFO layers towards UV photoresponse characteristics were investigated.

本文报道了利用不同厚度的铋铁氧体(BiFeO3, BFO)薄膜制备紫外光电探测器的研究工作。采用喷雾热解技术,在673 K温度下在玻璃基板上沉积BFO薄膜。用拉曼光谱和傅里叶红外光谱对制备的BFO薄膜进行了表征。形态学分析表明制备的BFO样品晶粒分布均匀。光学分析表明,透射率随BFO薄膜厚度的增加而减小,计算得到的光学带隙值在2.0 ~ 2.3 eV之间。在ITO和Al电极之间堆叠不同厚度的BFO有源层,并在暗光源和紫外光源(λ = 365nm)下研究了制备的ITO/BFO/Al器件的电流-电压(I-V)特性。结果表明,最佳厚度为365nm的BFO具有较高的光响应率,达到110?mA/W,外量子效率(EQE)为37.30%。研究了BFO活性层厚度、氧分子在BFO活性层表面的吸附和解吸对紫外光响应特性的影响。
{"title":"Study on thickness-dependence characteristics of bismuth ferrite (BFO) for ultraviolet (UV) photodetector application","authors":"Shahnaz Kossar,&nbsp;R. Amiruddin,&nbsp;Asif Rasool","doi":"10.1186/s40486-020-00128-7","DOIUrl":"https://doi.org/10.1186/s40486-020-00128-7","url":null,"abstract":"<p>The present research work reports on the fabrication of ultraviolet (UV) photodetectors using bismuth ferrite (BiFeO<sub>3,</sub> BFO) thin films with varying thickness. Using the spray pyrolysis technique, BFO thin films were deposited on the glass substrate at 673?K. The deposited BFO thin films were characterized by Raman and FTIR spectroscopic analysis. The morphological analysis reveals uniform grain distribution for the prepared BFO samples. The optical analysis reveals that transmittance value decreases upon an increase in the thickness of BFO thin films and the calculated optical band gap value lies between 2.0 to 2.3?eV. The varying thickness of the BFO active layer was stacked between ITO and Al electrodes and the current–voltage (I–V) characteristics of the fabricated ITO/BFO/Al devices were studied under dark and UV illumination (λ?=?365?nm). It was observed that BFO with an optimum thickness (365?nm) exhibits higher photoresponsivity of 110?mA/W with an external quantum efficiency (EQE) of 37.30%. The impact of different thickness of the BFO active layer, the role of adsorption and desorption of oxygen (O<sub>2</sub>) molecules upon the surface of BFO layers towards UV photoresponse characteristics were investigated.</p>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40486-020-00128-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4501805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 27
All-soft multiaxial force sensor based on liquid metal for electronic skin 电子皮肤用液态金属全软多轴力传感器
IF 3.6 Q1 Engineering Pub Date : 2021-01-04 DOI: 10.1186/s40486-020-00126-9
Kyuyoung Kim, Junseong Ahn, Yongrok Jeong, Jungrak Choi, Osman Gul, Inkyu Park

Electronic skin (E-skin) capable of detecting various physical stimuli is required for monitoring external environments accurately. Here, we report an all-soft multiaxial force sensor based on liquid metal microchannel array for electronic skin applications. The proposed sensor is composed of stretchable elastomer and Galinstan, a eutectic gallium-indium alloy, providing a high mechanical flexibility and electro-mechanical durability. Liquid metal microchannel arrays are fabricated in multilayer and positioned along a dome structure to detect multi-directional forces, supported by numerical simulation results. By adjusting the height of the dome, we could control the response of the multiaxial sensor with respect to the deflection. As a demonstration of multiaxial force sensing, we were able to monitor the direction of multidirectional forces using a finger by the response of liquid metal microchannel arrays. This research could be applied to various fields including soft robotics, wearable devices, and smart prosthetics for artificial intelligent skin applications.

电子皮肤(E-skin)需要能够检测各种物理刺激,以准确监测外部环境。在这里,我们报告了一种基于液态金属微通道阵列的全软多轴力传感器,用于电子皮肤。该传感器由可拉伸弹性体和Galinstan(一种共晶镓铟合金)组成,具有很高的机械灵活性和机电耐用性。采用多层结构制备液态金属微通道阵列,沿圆顶结构定位,用于检测多向力,并得到数值模拟结果的支持。通过调整穹顶的高度,我们可以控制多轴传感器对挠度的响应。作为多轴力传感的演示,我们能够通过液态金属微通道阵列的响应,用手指监测多向力的方向。这项研究可以应用于软机器人、可穿戴设备、人工智能皮肤应用的智能假肢等多个领域。
{"title":"All-soft multiaxial force sensor based on liquid metal for electronic skin","authors":"Kyuyoung Kim,&nbsp;Junseong Ahn,&nbsp;Yongrok Jeong,&nbsp;Jungrak Choi,&nbsp;Osman Gul,&nbsp;Inkyu Park","doi":"10.1186/s40486-020-00126-9","DOIUrl":"https://doi.org/10.1186/s40486-020-00126-9","url":null,"abstract":"<p>Electronic skin (E-skin) capable of detecting various physical stimuli is required for monitoring external environments accurately. Here, we report an all-soft multiaxial force sensor based on liquid metal microchannel array for electronic skin applications. The proposed sensor is composed of stretchable elastomer and Galinstan, a eutectic gallium-indium alloy, providing a high mechanical flexibility and electro-mechanical durability. Liquid metal microchannel arrays are fabricated in multilayer and positioned along a dome structure to detect multi-directional forces, supported by numerical simulation results. By adjusting the height of the dome, we could control the response of the multiaxial sensor with respect to the deflection. As a demonstration of multiaxial force sensing, we were able to monitor the direction of multidirectional forces using a finger by the response of liquid metal microchannel arrays. This research could be applied to various fields including soft robotics, wearable devices, and smart prosthetics for artificial intelligent skin applications.</p>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40486-020-00126-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4163145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Hollow polydimethylsiloxane (PDMS) foam with a 3D interconnected network for highly sensitive capacitive pressure sensors 中空聚二甲基硅氧烷(PDMS)泡沫,具有3D互连网络,用于高灵敏度电容压力传感器
IF 3.6 Q1 Engineering Pub Date : 2020-12-14 DOI: 10.1186/s40486-020-00127-8
Dong Hwan Kim, Young Jung, Kyungkuk Jung, Dong Hwa Kwak, Dong Min Park, Myung Gyu Shin, Hyeong Jun Tak, Jong Soo Ko

We propose a highly sensitive capacitive pressure sensor made of hollow polydimethylsiloxane (PDMS) foam with a three-dimensional network structure. The stiffness of the foam is adjusted by the viscosity of the PDMS solution. The fabricated PDMS-30 (PDMS 30 wt%) foam shows extremely high porosity (>?86%) approximately 19 times that of bare PDMS (PDMS 100 wt%) foam. Capacitive pressure sensors fabricated using the foam possess high sensitivity, good compressibility (up to 80% strain), and consistent output characteristics in a 2000-cycle test.

我们提出了一种具有三维网络结构的中空聚二甲基硅氧烷(PDMS)泡沫材料制成的高灵敏度电容式压力传感器。泡沫的刚度由PDMS溶液的粘度来调节。制备的PDMS-30 (PDMS 30 wt%)泡沫具有极高的孔隙率(>?86%),约为裸PDMS (PDMS 100 wt%)泡沫的19倍。使用泡沫制成的电容式压力传感器具有高灵敏度,良好的压缩性(高达80%的应变),并且在2000次循环测试中具有一致的输出特性。
{"title":"Hollow polydimethylsiloxane (PDMS) foam with a 3D interconnected network for highly sensitive capacitive pressure sensors","authors":"Dong Hwan Kim,&nbsp;Young Jung,&nbsp;Kyungkuk Jung,&nbsp;Dong Hwa Kwak,&nbsp;Dong Min Park,&nbsp;Myung Gyu Shin,&nbsp;Hyeong Jun Tak,&nbsp;Jong Soo Ko","doi":"10.1186/s40486-020-00127-8","DOIUrl":"https://doi.org/10.1186/s40486-020-00127-8","url":null,"abstract":"<p>We propose a highly sensitive capacitive pressure sensor made of hollow polydimethylsiloxane (PDMS) foam with a three-dimensional network structure. The stiffness of the foam is adjusted by the viscosity of the PDMS solution. The fabricated PDMS-30 (PDMS 30 wt%) foam shows extremely high porosity (&gt;?86%) approximately 19 times that of bare PDMS (PDMS 100 wt%) foam. Capacitive pressure sensors fabricated using the foam possess high sensitivity, good compressibility (up to 80% strain), and consistent output characteristics in a 2000-cycle test.</p>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40486-020-00127-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4568222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Correction to: Microfluidic resonators with two parallel channels for independent sample loading and effective density tuning 修正:微流体谐振器具有两个平行通道,用于独立的样品加载和有效的密度调谐
IF 3.6 Q1 Engineering Pub Date : 2020-11-20 DOI: 10.1186/s40486-020-00125-w
Jungchul Lee, Faheem Khan, Thomas Thundat, Bong Jae Lee
{"title":"Correction to: Microfluidic resonators with two parallel channels for independent sample loading and effective density tuning","authors":"Jungchul Lee,&nbsp;Faheem Khan,&nbsp;Thomas Thundat,&nbsp;Bong Jae Lee","doi":"10.1186/s40486-020-00125-w","DOIUrl":"https://doi.org/10.1186/s40486-020-00125-w","url":null,"abstract":"","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40486-020-00125-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4802073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rayleigh–Bénard instability in nanofluids: a comprehensive review 纳米流体中的瑞利-巴姆纳德不稳定性:综合综述
IF 3.6 Q1 Engineering Pub Date : 2020-11-13 DOI: 10.1186/s40486-020-00123-y
Jyoti Ahuja, Jyoti Sharma

The extraordinary enhancement in heat transfer efficiency of nanofluids at extremely low volume fractions has attracted a lot of attention in identifying the governing mechanisms. The nanoscale effects, Brownian motion (random motion of particles inside the base fluid) and thermophoresis (diffusion of particles due to temperature gradient) are found to be important slip mechanisms in nanofluids. Based on these findings, a set of partial differential equations for conservation laws for nanofluids was formed. Since then, a large number of mathematical studies on convective heat transfer in nanofluids became feasible. The present paper summarizes the studies pertaining to instability of a horizontal nanofluid layer under the impact of various parameters such as rotation, magnetic field, Hall currents and LTNE effects in both porous and non-porous medium. Initially, investigations were made using the model considering fixed initial and boundary conditions on the layer, gradually the model was revised in the light of more practical boundary conditions and recently it has been modified to get new and more interesting results. The exhaustive analysis of instability problems is presented in the paper and prospects for future research are also identified.

纳米流体在极低体积分数下传热效率的显著提高引起了人们对其控制机制的关注。纳米尺度效应、布朗运动(粒子在基流体内部的随机运动)和热泳动(粒子由于温度梯度而扩散)是纳米流体中重要的滑动机制。在此基础上,建立了纳米流体守恒定律的偏微分方程。自此,对纳米流体中对流换热的大量数学研究成为可能。本文综述了在多孔和非多孔介质中,受旋转、磁场、霍尔电流和LTNE效应等参数影响的水平纳米流体层的不稳定性研究。最初,使用考虑层上固定初始条件和边界条件的模型进行研究,逐渐根据更实际的边界条件对模型进行修改,最近又进行了修改,得到了新的更有趣的结果。本文对不稳定性问题进行了详尽的分析,并对今后的研究进行了展望。
{"title":"Rayleigh–Bénard instability in nanofluids: a comprehensive review","authors":"Jyoti Ahuja,&nbsp;Jyoti Sharma","doi":"10.1186/s40486-020-00123-y","DOIUrl":"https://doi.org/10.1186/s40486-020-00123-y","url":null,"abstract":"<p>The extraordinary enhancement in heat transfer efficiency of nanofluids at extremely low volume fractions has attracted a lot of attention in identifying the governing mechanisms. The nanoscale effects, Brownian motion (random motion of particles inside the base fluid) and thermophoresis (diffusion of particles due to temperature gradient) are found to be important slip mechanisms in nanofluids. Based on these findings, a set of partial differential equations for conservation laws for nanofluids was formed. Since then, a large number of mathematical studies on convective heat transfer in nanofluids became feasible. The present paper summarizes the studies pertaining to instability of a horizontal nanofluid layer under the impact of various parameters such as rotation, magnetic field, Hall currents and LTNE effects in both porous and non-porous medium. Initially, investigations were made using the model considering fixed initial and boundary conditions on the layer, gradually the model was revised in the light of more practical boundary conditions and recently it has been modified to get new and more interesting results. The exhaustive analysis of instability problems is presented in the paper and prospects for future research are also identified.</p>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2020-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40486-020-00123-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4555282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Design and performance evaluation of thin-film actuators based on flexible Ni-Co substrates 基于柔性镍钴基板的薄膜致动器设计与性能评价
IF 3.6 Q1 Engineering Pub Date : 2020-11-13 DOI: 10.1186/s40486-020-00122-z
Suhwan Kim, Woojin Kim, Yongdae Kim

This paper proposes a new design of bimorph-type electrothermal actuators based on flexible Ni-Co substrates and describes the results of the finite element method (FEM) simulation and performance evaluation of the actuators. In the design of the actuators, a multilayer structure consisting of an adhesion layer, two insulation layers, and a Pt (platinum) heater layer was formed on the Ni-Co flexible substrate that was patterned in an individual shape. The thin-film actuators proposed in this study could be detached from a Si carrier wafer and adhered to other micro or macrostructural elements. To investigate the temperature distribution and mechanical behavior of the actuators, multiphysics FEM simulations combining electrothermal and static structural analyses were carried out. The actuators were fabricated using conventional microfabrication and electroplating technologies on Si carrier wafer; then, the actuators were peeled off from the carrier wafer using the release process proposed in this paper. After fabricating the actuators, the deflection of their tips was evaluated and compared with that obtained from the FEM simulations.

提出了一种基于柔性镍钴基板的双晶型电热致动器的新设计方案,并对该致动器进行了有限元仿真和性能评价。在致动器的设计中,多层结构由附着层、两个绝缘层和一个Pt(铂)加热层组成,形成在Ni-Co柔性衬底上,该衬底以单独的形状图案。本研究提出的薄膜致动器可以从硅载体晶片上分离出来,并粘附在其他微观或宏观结构元件上。为了研究致动器的温度分布和力学行为,进行了多物理场有限元模拟,并结合了电热和静力结构分析。采用传统的微细加工和电镀工艺在硅载体晶片上制备致动器;然后,采用本文提出的释放工艺将致动器从载体晶片上剥离。在制作完成后,对执行器的尖端挠度进行了评估,并与有限元模拟结果进行了比较。
{"title":"Design and performance evaluation of thin-film actuators based on flexible Ni-Co substrates","authors":"Suhwan Kim,&nbsp;Woojin Kim,&nbsp;Yongdae Kim","doi":"10.1186/s40486-020-00122-z","DOIUrl":"https://doi.org/10.1186/s40486-020-00122-z","url":null,"abstract":"<p>This paper proposes a new design of bimorph-type electrothermal actuators based on flexible Ni-Co substrates and describes the results of the finite element method (FEM) simulation and performance evaluation of the actuators. In the design of the actuators, a multilayer structure consisting of an adhesion layer, two insulation layers, and a Pt (platinum) heater layer was formed on the Ni-Co flexible substrate that was patterned in an individual shape. The thin-film actuators proposed in this study could be detached from a Si carrier wafer and adhered to other micro or macrostructural elements. To investigate the temperature distribution and mechanical behavior of the actuators, multiphysics FEM simulations combining electrothermal and static structural analyses were carried out. The actuators were fabricated using conventional microfabrication and electroplating technologies on Si carrier wafer; then, the actuators were peeled off from the carrier wafer using the release process proposed in this paper. After fabricating the actuators, the deflection of their tips was evaluated and compared with that obtained from the FEM simulations.</p>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2020-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40486-020-00122-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4553369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Planar free-standing metal layer fabrication: implementing sub-structures in micromirror arrays for light steering applications 平面独立金属层制造:实现用于光导向应用的微镜阵列的子结构
IF 3.6 Q1 Engineering Pub Date : 2020-11-09 DOI: 10.1186/s40486-020-00124-x
Natalie Worapattrakul, Andreas Tatzel, Volker Viereck, Hartmut Hillmer

We present a method to fabricate planar metal layers to be used as micromachined mirrors. Released mirrors of pure metal involve severe stress and reveal specific challenges to obtain planar mirror structures. Introducing sub-structures generating corrugated patterns, the metal mirror layers can be mechanically stabilized and undesired mirror bending can be reduced. For our investigations we used different arrangements of line structures on our metal mirrors, such as a group of straight or curved lines oriented differently. Comparing all the implemented different designs, planar micromirrors were achieved via sub-structures with a combination of straight lines arranged orthogonally to a single line. These planar micromirrors allow steering of the incident light by reflection and adjustment of the window transmittance. The presented low-cost method is suitable for large area fabrication of micromirror arrays, but also can be customized for other applications, where planar free-standing metal layers are required.

提出了一种用于微加工镜面的平面金属层的制备方法。释放的纯金属反射镜涉及到严重的应力,并揭示了获得平面反射镜结构的特殊挑战。引入产生波纹图案的子结构,金属镜面层可以机械稳定,并且可以减少不希望的镜面弯曲。在我们的研究中,我们在金属镜子上使用了不同排列的线结构,例如一组直线或弯曲的不同方向的线。比较所有实现的不同设计,平面微镜是通过与单线垂直排列的直线组合的子结构实现的。这些平面微镜可以通过反射和调整窗口透光率来控制入射光。提出的低成本方法适用于微镜阵列的大面积制造,但也可以定制用于需要平面独立金属层的其他应用。
{"title":"Planar free-standing metal layer fabrication: implementing sub-structures in micromirror arrays for light steering applications","authors":"Natalie Worapattrakul,&nbsp;Andreas Tatzel,&nbsp;Volker Viereck,&nbsp;Hartmut Hillmer","doi":"10.1186/s40486-020-00124-x","DOIUrl":"https://doi.org/10.1186/s40486-020-00124-x","url":null,"abstract":"<p>We present a method to fabricate planar metal layers to be used as micromachined mirrors. Released mirrors of pure metal involve severe stress and reveal specific challenges to obtain planar mirror structures. Introducing sub-structures generating corrugated patterns, the metal mirror layers can be mechanically stabilized and undesired mirror bending can be reduced. For our investigations we used different arrangements of line structures on our metal mirrors, such as a group of straight or curved lines oriented differently. Comparing all the implemented different designs, planar micromirrors were achieved via sub-structures with a combination of straight lines arranged orthogonally to a single line. These planar micromirrors allow steering of the incident light by reflection and adjustment of the window transmittance. The presented low-cost method is suitable for large area fabrication of micromirror arrays, but also can be customized for other applications, where planar free-standing metal layers are required.</p>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4399636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative study of elastic properties and mode I fracture energy of carbon nanotube/epoxy and carbon fibre/epoxy laminated composites 碳纳米管/环氧树脂与碳纤维/环氧复合材料弹性性能及I型断裂能的比较研究
IF 3.6 Q1 Engineering Pub Date : 2020-10-07 DOI: 10.1186/s40486-020-00120-1
Jyotikalpa Bora, Sushen Kirtania

A comparative study of elastic properties and mode I fracture energy has been presented between conventional carbon fibre (CF)/epoxy and advanced carbon nanotube (CNT)/epoxy laminated composite materials. The volume fraction of CNT fibres has been considered as 15%, 30%, and 60% whereas; the volume fraction of CF has been kept constant at 60%. Three stacking sequences of the laminates viz.[0/0/0/0], [0/90/0/90] and [0/30/–30/90] have been considered in the present analysis. Periodic microstructure model has been used to calculate the elastic properties of the laminated composites. It has been observed analytically that the addition of only 15% CNT in epoxy will give almost the same value of longitudinal Young’s modulus as compared to the addition of 60% CF in epoxy. Finite element (FE) analysis of double cantilever beam specimens made from laminated composite has also been performed. It has been observed from FE analysis that the addition of 15% CNT in epoxy will also give almost the same value of mode I fracture energy as compared to the addition of 60% CF in epoxy. The value of mode I fracture energy for [0/0/0/0] laminated composite is two times higher than the other two types of laminated composites.

对传统碳纤维/环氧树脂与先进碳纳米管/环氧树脂层合复合材料的弹性性能和I型断裂能进行了比较研究。碳纳米管纤维的体积分数被认为是15%,30%和60%,而;CF的体积分数保持60%不变。本文分析了层合板的三种堆叠顺序:[0/0/0]、[0/90/0/90]和[0/30/ -30/90]。采用周期微观结构模型计算了层合复合材料的弹性性能。通过分析可以观察到,在环氧树脂中添加15%碳纳米管与在环氧树脂中添加60%碳纳米管相比,其纵向杨氏模量几乎相同。本文还对层合复合材料制成的双悬臂梁进行了有限元分析。从有限元分析中可以观察到,在环氧树脂中添加15%碳纳米管与在环氧树脂中添加60%碳纳米管相比,也会产生几乎相同的I型断裂能值。[0/0/0/0]层状复合材料的I型断裂能值比其他两种类型的层状复合材料高2倍。
{"title":"Comparative study of elastic properties and mode I fracture energy of carbon nanotube/epoxy and carbon fibre/epoxy laminated composites","authors":"Jyotikalpa Bora,&nbsp;Sushen Kirtania","doi":"10.1186/s40486-020-00120-1","DOIUrl":"https://doi.org/10.1186/s40486-020-00120-1","url":null,"abstract":"<p>A comparative study of elastic properties and mode I fracture energy has been presented between conventional carbon fibre (CF)/epoxy and advanced carbon nanotube (CNT)/epoxy laminated composite materials. The volume fraction of CNT fibres has been considered as 15%, 30%, and 60% whereas; the volume fraction of CF has been kept constant at 60%. Three stacking sequences of the laminates viz.[0/0/0/0], [0/90/0/90] and [0/30/–30/90] have been considered in the present analysis. Periodic microstructure model has been used to calculate the elastic properties of the laminated composites. It has been observed analytically that the addition of only 15% CNT in epoxy will give almost the same value of longitudinal Young’s modulus as compared to the addition of 60% CF in epoxy. Finite element (FE) analysis of double cantilever beam specimens made from laminated composite has also been performed. It has been observed from FE analysis that the addition of 15% CNT in epoxy will also give almost the same value of mode I fracture energy as compared to the addition of 60% CF in epoxy. The value of mode I fracture energy for [0/0/0/0] laminated composite is two times higher than the other two types of laminated composites.</p>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40486-020-00120-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4319051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A silver nanowire-based flexible pressure sensor to measure the non-nutritive sucking power of neonates 一种基于银纳米线的柔性压力传感器,用于测量新生儿非营养性吸吮力
IF 3.6 Q1 Engineering Pub Date : 2020-10-07 DOI: 10.1186/s40486-020-00121-0
Jean G. de Oliveira, Tausif Muhammad, Sohee Kim

Preterm infants are prone to have higher risks of morbidity, disability and developmental delay compared to term infants. The primitive reflexes, inborn behaviors found in early life development, are shown to be a good tool to assess the integrity of the central nervous system of infants and to predict potential malfunctions. Among these reflexes, the non-nutritive sucking reflex plays an important role in indicating congenital abnormalities in brain development and feeding readiness, especially for premature infants. Conventionally, pediatricians evaluate the oral sucking power qualitatively based on their experiences, by using a gloved finger put inside the infant’s mouth. Thus, more quantitative solutions to assess the sucking power of preterm infants are necessary to support healthcare professionals in their evaluation procedures. Here, we developed a silver nanowire (AgNW)-based flexible pressure sensor to measure the non-nutritive sucking power of infants. The flexible sensor was fabricated using silver nanowires deposited on polydimethylsiloxane (PDMS) in a sandwich-like structure. The sensor based on the principle of strain gauge was attached to a ring-shaped connecting module, and then to a pacifier. The negative sucking pressure exerted by the infant deformed the sensor membrane, causing its electrical resistance to change without any contact between the infant’s mouth and the sensing element. The fabricated sensor was characterized and optimized to achieve both the suitable sensitivity and stability. Thanks to the excellent long-term electro-mechanical stability and high sensitivity, the developed sensor is expected to provide the means to quantitatively assess the non-nutritive sucking of infants, with a portable, low-cost, non-invasive and light-weight solution.

与足月婴儿相比,早产儿有更高的发病、残疾和发育迟缓的风险。原始反射是早期生命发育中发现的先天行为,是评估婴儿中枢神经系统完整性和预测潜在功能障碍的良好工具。在这些反射中,非营养性吸吮反射在指示大脑发育和喂养准备的先天性异常中起着重要作用,特别是对于早产儿。传统上,儿科医生根据他们的经验,用戴着手套的手指放进婴儿的嘴里,定性地评估口腔吸吮力。因此,更多的定量解决方案来评估早产儿的吸吮力是必要的,以支持医疗保健专业人员在他们的评估程序。在这里,我们开发了一种基于银纳米线(AgNW)的柔性压力传感器来测量婴儿的非营养性吸吮力。该柔性传感器采用银纳米线沉积在聚二甲基硅氧烷(PDMS)上,形成三明治状结构。基于应变计原理的传感器连接在环形连接模块上,然后连接在安抚奶嘴上。婴儿施加的负吸吮压力使传感器膜变形,使其电阻发生变化,而婴儿的嘴与传感元件之间没有任何接触。对所制备的传感器进行了表征和优化,以达到合适的灵敏度和稳定性。由于其优异的长期机电稳定性和高灵敏度,该传感器有望为定量评估婴儿非营养性吸吮提供一种便携式、低成本、无创和轻量化的解决方案。
{"title":"A silver nanowire-based flexible pressure sensor to measure the non-nutritive sucking power of neonates","authors":"Jean G. de Oliveira,&nbsp;Tausif Muhammad,&nbsp;Sohee Kim","doi":"10.1186/s40486-020-00121-0","DOIUrl":"https://doi.org/10.1186/s40486-020-00121-0","url":null,"abstract":"<p>Preterm infants are prone to have higher risks of morbidity, disability and developmental delay compared to term infants. The primitive reflexes, inborn behaviors found in early life development, are shown to be a good tool to assess the integrity of the central nervous system of infants and to predict potential malfunctions. Among these reflexes, the non-nutritive sucking reflex plays an important role in indicating congenital abnormalities in brain development and feeding readiness, especially for premature infants. Conventionally, pediatricians evaluate the oral sucking power qualitatively based on their experiences, by using a gloved finger put inside the infant’s mouth. Thus, more quantitative solutions to assess the sucking power of preterm infants are necessary to support healthcare professionals in their evaluation procedures. Here, we developed a silver nanowire (AgNW)-based flexible pressure sensor to measure the non-nutritive sucking power of infants. The flexible sensor was fabricated using silver nanowires deposited on polydimethylsiloxane (PDMS) in a sandwich-like structure. The sensor based on the principle of strain gauge was attached to a ring-shaped connecting module, and then to a pacifier. The negative sucking pressure exerted by the infant deformed the sensor membrane, causing its electrical resistance to change without any contact between the infant’s mouth and the sensing element. The fabricated sensor was characterized and optimized to achieve both the suitable sensitivity and stability. Thanks to the excellent long-term electro-mechanical stability and high sensitivity, the developed sensor is expected to provide the means to quantitatively assess the non-nutritive sucking of infants, with a portable, low-cost, non-invasive and light-weight solution.</p>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40486-020-00121-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4318811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
期刊
Micro and Nano Systems Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1