首页 > 最新文献

Additive manufacturing letters最新文献

英文 中文
Enhancing dental model accuracy through optimized vat photopolymerization additive manufacturing parameters 通过优化大桶光聚合增材制造参数,提高牙科模型精度
IF 4.2 Q2 ENGINEERING, MANUFACTURING Pub Date : 2025-03-15 DOI: 10.1016/j.addlet.2025.100278
Clément Tien , Camille Jean , Lucas Poupaud , Floriane Laverne , Frédéric Segonds
This study investigates the key additive manufacturing (AM) process parameters that influence the dimensional accuracy of dental models produced using the vat photopolymerization Digital Light Processing (DLP) technology. By applying the Taguchi method, 7AM process factors were analyzed. A standardized post-processing protocol was used to maintain consistency, allowing a focused assessment of the printing parameters. Dimensional deviations were analyzed using 3D scanning and point cloud comparison software, with particular attention to reducing warping and shrinkage. The results identified layer thickness, projector power, exposure energy, and vat temperature as the key AM factors affecting the accuracy of the final model. These findings highlight the importance of optimizing these parameters to achieve high-quality dental models, contributing to future advancements in precision and efficiency. Further research is recommended to determine optimal settings for different resins and more complex dental structures.
本研究探讨了影响使用还原光聚合数字光处理(DLP)技术生产的牙齿模型尺寸精度的关键增材制造(AM)工艺参数。采用田口法对7AM工艺因素进行了分析。采用标准化的后处理方案来保持一致性,以便对打印参数进行重点评估。使用三维扫描和点云比较软件分析尺寸偏差,特别注意减少翘曲和收缩。结果确定了层厚度、投影机功率、曝光能量和还原缸温度是影响最终模型精度的关键AM因素。这些发现强调了优化这些参数以实现高质量牙齿模型的重要性,有助于未来精度和效率的提高。建议进一步研究以确定不同树脂和更复杂的牙齿结构的最佳设置。
{"title":"Enhancing dental model accuracy through optimized vat photopolymerization additive manufacturing parameters","authors":"Clément Tien ,&nbsp;Camille Jean ,&nbsp;Lucas Poupaud ,&nbsp;Floriane Laverne ,&nbsp;Frédéric Segonds","doi":"10.1016/j.addlet.2025.100278","DOIUrl":"10.1016/j.addlet.2025.100278","url":null,"abstract":"<div><div>This study investigates the key additive manufacturing (AM) process parameters that influence the dimensional accuracy of dental models produced using the vat photopolymerization Digital Light Processing (DLP) technology. By applying the Taguchi method, 7AM process factors were analyzed. A standardized post-processing protocol was used to maintain consistency, allowing a focused assessment of the printing parameters. Dimensional deviations were analyzed using 3D scanning and point cloud comparison software, with particular attention to reducing warping and shrinkage. The results identified layer thickness, projector power, exposure energy, and vat temperature as the key AM factors affecting the accuracy of the final model. These findings highlight the importance of optimizing these parameters to achieve high-quality dental models, contributing to future advancements in precision and efficiency. Further research is recommended to determine optimal settings for different resins and more complex dental structures.</div></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"13 ","pages":"Article 100278"},"PeriodicalIF":4.2,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143687742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Qualification of additively manufactured polymer fluid manifolds for life-detection instruments 生命检测仪器用增材制造聚合物流体歧管的鉴定
IF 4.2 Q2 ENGINEERING, MANUFACTURING Pub Date : 2025-03-04 DOI: 10.1016/j.addlet.2025.100277
Theresa Juarez, Nathan J. Oborny, Andrew Berg, Aaron C. Noell
The development of autonomous life detection instruments is being driven by the advancement of multiple space exploration missions to investigate the subsurface oceans of icy worlds, particularly Titan, Enceladus, and Europa. A fundamental feature of this type of instrument is a compact, reliable, and chemically inert internal liquid transport network. Additively manufactured (AM) custom liquid manifolds produced via vat photopolymerization (VPP) methods can meet these requirements. However, before these materials can be considered, basic spaceflight requirements, qualification for flight worthiness and functionality must be addressed. In this study, mechanical properties, outgassing behavior, polymeric characteristics, and chemical compatibility are assessed for select commercially available AM polymers. The results indicate basic materials qualification requirements are met, including sufficiently characterized mechanical properties, the identification of a bakeout protocol for reduced outgassing to meet NASA standards, and chemical compatibility with liquids and reagents used in candidate instrumentation under development for life detection missions.
自主生命探测仪器的发展是由多个太空探索任务的进步推动的,这些任务旨在调查冰冷世界的地下海洋,特别是土卫六、土卫二和木卫二。这种类型的仪器的一个基本特点是紧凑,可靠,化学惰性的内部液体输送网络。通过还原光聚合(VPP)方法生产的增材制造(AM)定制液体歧管可以满足这些要求。然而,在考虑这些材料之前,必须解决基本的航天要求、飞行价值和功能的资格。在本研究中,对选择的市售增材制造聚合物的机械性能、脱气行为、聚合物特性和化学相容性进行了评估。结果表明,基本的材料资格要求得到满足,包括充分表征的机械性能,确定了减少脱气的烘烤方案,以满足NASA的标准,以及与正在开发的用于生命探测任务的候选仪器中使用的液体和试剂的化学相容性。
{"title":"Qualification of additively manufactured polymer fluid manifolds for life-detection instruments","authors":"Theresa Juarez,&nbsp;Nathan J. Oborny,&nbsp;Andrew Berg,&nbsp;Aaron C. Noell","doi":"10.1016/j.addlet.2025.100277","DOIUrl":"10.1016/j.addlet.2025.100277","url":null,"abstract":"<div><div>The development of autonomous life detection instruments is being driven by the advancement of multiple space exploration missions to investigate the subsurface oceans of icy worlds, particularly Titan, Enceladus, and Europa. A fundamental feature of this type of instrument is a compact, reliable, and chemically inert internal liquid transport network. Additively manufactured (AM) custom liquid manifolds produced via vat photopolymerization (VPP) methods can meet these requirements. However, before these materials can be considered, basic spaceflight requirements, qualification for flight worthiness and functionality must be addressed. In this study, mechanical properties, outgassing behavior, polymeric characteristics, and chemical compatibility are assessed for select commercially available AM polymers. The results indicate basic materials qualification requirements are met, including sufficiently characterized mechanical properties, the identification of a bakeout protocol for reduced outgassing to meet NASA standards, and chemical compatibility with liquids and reagents used in candidate instrumentation under development for life detection missions.</div></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"13 ","pages":"Article 100277"},"PeriodicalIF":4.2,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143706047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of raster orientation on large-scale robotic 3D printing of short carbon fiber-reinforced PLA composites 栅格取向对短碳纤维增强PLA复合材料大规模机器人3D打印的影响
IF 4.2 Q2 ENGINEERING, MANUFACTURING Pub Date : 2025-02-18 DOI: 10.1016/j.addlet.2025.100276
E. Baharlou , J. Ma
Additive manufacturing in building construction can be extended for mass customization of building components or even complex mold making. This study examines the process parameters of raster orientation of short carbon fiber-reinforced polylactic acid (SCF-PLA) and neat PLA in large-scale 3D printing. Three raster orientations—unidirectional, cross-ply, and quasi-isotropic layups—were printed using a pellet extruder assembled on an industrial robotic arm. Tensile and flexural tests were conducted to characterize the differences between SCF-PLA and neat PLA across all raster orientations. This study shows that neat PLA has higher tensile strength compared to SCF-PLA, and quasi-isotropic orientation can improve the week mechanical properties of both SCF-PLA and PLA. This research highlights the interface bonding challenges encountered with larger 3D printed filaments, which result in more significant pores. Furthermore, any factor that modifies rheological properties of the filament, such as carbon filling, can lead to a higher likelihood of material defects. To understand this discrepancy, microstructure analyses were conducted on intact and fractured 3D printed samples, including the analysis of micro voids, interlayer voids, and bonding between SCF and the PLA matrix. This suggests that the effects of quasi-isotropic layups can be applied to enhance 3D print large-scale polymer-based building components.
建筑施工中的增材制造可以扩展到建筑部件的大规模定制甚至复杂的模具制造。研究了短碳纤维增强聚乳酸(SCF-PLA)和整齐聚乳酸在大规模3D打印中的光栅取向工艺参数。三种光栅方向——单向、交叉铺层和准各向同性铺层——使用装配在工业机械臂上的颗粒挤出机进行打印。进行了拉伸和弯曲试验,以表征SCF-PLA和整齐PLA在所有光栅方向上的差异。研究表明,纯PLA的抗拉强度高于SCF-PLA,准各向同性取向可以改善SCF-PLA和PLA的周力学性能。这项研究强调了更大的3D打印细丝所遇到的界面粘合挑战,这会导致更大的孔隙。此外,任何改变长丝流变特性的因素,如碳填充,都可能导致材料缺陷的可能性更高。为了理解这种差异,研究人员对完整和断裂的3D打印样品进行了微观结构分析,包括微观空隙、层间空隙以及SCF与PLA基体之间的结合。这表明准各向同性铺层的效果可以应用于增强3D打印大型聚合物建筑组件。
{"title":"Effect of raster orientation on large-scale robotic 3D printing of short carbon fiber-reinforced PLA composites","authors":"E. Baharlou ,&nbsp;J. Ma","doi":"10.1016/j.addlet.2025.100276","DOIUrl":"10.1016/j.addlet.2025.100276","url":null,"abstract":"<div><div>Additive manufacturing in building construction can be extended for mass customization of building components or even complex mold making. This study examines the process parameters of raster orientation of short carbon fiber-reinforced polylactic acid (SCF-PLA) and neat PLA in large-scale 3D printing. Three raster orientations—unidirectional, cross-ply, and quasi-isotropic layups—were printed using a pellet extruder assembled on an industrial robotic arm. Tensile and flexural tests were conducted to characterize the differences between SCF-PLA and neat PLA across all raster orientations. This study shows that neat PLA has higher tensile strength compared to SCF-PLA, and quasi-isotropic orientation can improve the week mechanical properties of both SCF-PLA and PLA. This research highlights the interface bonding challenges encountered with larger 3D printed filaments, which result in more significant pores. Furthermore, any factor that modifies rheological properties of the filament, such as carbon filling, can lead to a higher likelihood of material defects. To understand this discrepancy, microstructure analyses were conducted on intact and fractured 3D printed samples, including the analysis of micro voids, interlayer voids, and bonding between SCF and the PLA matrix. This suggests that the effects of quasi-isotropic layups can be applied to enhance 3D print large-scale polymer-based building components.</div></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"13 ","pages":"Article 100276"},"PeriodicalIF":4.2,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143510071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Process screening in additive manufacturing: Detection of keyhole mode using surface topography and machine learning 增材制造中的工艺筛选:使用表面形貌和机器学习检测钥匙孔模式
IF 4.2 Q2 ENGINEERING, MANUFACTURING Pub Date : 2025-02-17 DOI: 10.1016/j.addlet.2025.100275
Mingzhang Yang, Ali Rezaei, Mihaela Vlasea
Screening of defective additive manufactured (AM) parts is crucial for ensuring process consistency and part reliability, yet common microstructural inspection methods can be time-consuming or destructive. This study explores how surface analysis combined with machine learning (ML) algorithms can effectively infer the microstructure of laser powder bed fusion (LPBF) parts. As a case study, non-spherical ZrH₂ nanoparticle-enhanced AA7075 aluminum powders was fabricated using 60 different LPBF recipes. ML classification models were then employed to link side-surface topographical features to keyhole melting occurring within the parts. Among the tested ML models, random forest (RF) achieving a testing accuracy of 95 % and an F1-score of 0.98, outperforming both the neural network (NN) and support vector machine (SVM) models. To enhance the interpretability of the ML model, the RF model was leveraged to identify the hierarchical importance of surface features associated with keyhole melting mode. This resulted in the development of keyhole-probability maps based on superficial surface parameters, providing engineers with an effective and easy-to-use tool for screening keyhole mode parts. While further validation is needed, the proposed strategy lays a foundation for leveraging surface topography to infer microstructural features and adapting the method to different material systems.
筛查有缺陷的增材制造(AM)零件对于确保工艺一致性和零件可靠性至关重要,但常见的微观结构检测方法可能会耗费大量时间或具有破坏性。本研究探讨了表面分析与机器学习(ML)算法相结合如何有效地推断激光粉末床熔融(LPBF)零件的微观结构。作为案例研究,使用 60 种不同的 LPBF 配方制造了非球形 ZrH₂ 纳米粒子增强 AA7075 铝粉。然后采用 ML 分类模型将侧面表面地形特征与零件内部发生的锁孔熔化联系起来。在测试的 ML 模型中,随机森林(RF)的测试准确率达到 95%,F1 分数为 0.98,优于神经网络(NN)和支持向量机(SVM)模型。为了提高 ML 模型的可解释性,利用 RF 模型识别了与钥匙孔熔化模式相关的表面特征的层次重要性。这样就开发出了基于表面参数的锁孔概率图,为工程师筛选锁孔模式零件提供了有效且易于使用的工具。虽然还需要进一步验证,但所提出的策略为利用表面形貌推断微观结构特征以及将该方法适用于不同材料系统奠定了基础。
{"title":"Process screening in additive manufacturing: Detection of keyhole mode using surface topography and machine learning","authors":"Mingzhang Yang,&nbsp;Ali Rezaei,&nbsp;Mihaela Vlasea","doi":"10.1016/j.addlet.2025.100275","DOIUrl":"10.1016/j.addlet.2025.100275","url":null,"abstract":"<div><div>Screening of defective additive manufactured (AM) parts is crucial for ensuring process consistency and part reliability, yet common microstructural inspection methods can be time-consuming or destructive. This study explores how surface analysis combined with machine learning (ML) algorithms can effectively infer the microstructure of laser powder bed fusion (LPBF) parts. As a case study, non-spherical ZrH₂ nanoparticle-enhanced AA7075 aluminum powders was fabricated using 60 different LPBF recipes. ML classification models were then employed to link side-surface topographical features to keyhole melting occurring within the parts. Among the tested ML models, random forest (RF) achieving a testing accuracy of 95 % and an F1-score of 0.98, outperforming both the neural network (NN) and support vector machine (SVM) models. To enhance the interpretability of the ML model, the RF model was leveraged to identify the hierarchical importance of surface features associated with keyhole melting mode. This resulted in the development of keyhole-probability maps based on superficial surface parameters, providing engineers with an effective and easy-to-use tool for screening keyhole mode parts. While further validation is needed, the proposed strategy lays a foundation for leveraging surface topography to infer microstructural features and adapting the method to different material systems.</div></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"13 ","pages":"Article 100275"},"PeriodicalIF":4.2,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143445387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of the laser strategy on bi-metallic interfaces printed via multi-material laser-based powder bed fusion 激光策略对多材料激光粉末床熔合打印双金属界面的影响
IF 4.2 Q2 ENGINEERING, MANUFACTURING Pub Date : 2025-02-10 DOI: 10.1016/j.addlet.2025.100274
Isabel B. Prestes, Eric A. Jägle
Metallic Multi-material Additive Manufacturing (MMAM) is an emerging research topic, with potential applications in heat exchangers, metamaterials and satellite components. In recent years, new multi-material laser powder bed fusion (PBF-LB) techniques have been developed. However, processing challenges may arise, since materials with dissimilar properties are mixed at the interfaces, which might lead to defects such as cracks. This work aims to investigate the influence of different laser scan strategies to achieve sound interfaces with different material mixing gradients. The samples, made of Inconel 718 and Invar were deposited by the patterning drums technique and were analyzed by means of optical microscopy and energy-dispersive X-ray spectroscopy (EDS) mappings and line scans. The orientation in which melt pools cross the material interface plays an important role in mixing the materials. Different orientations in subsequent layers create a certain “jagged” pattern of mixing at the interface. Sigmoid functions of Boltzmann fitted to the line scans show a significant slope steepness increase – up to 75 % – in the element count from double scan to single scan, suggesting a stronger material mixing. The double scan strategy leads to porosity at the interface and thus should be avoided. The remelt at the interface partially healed defects such as cracks but does not seem to influence the mixing width at the interface. These findings give general guidance for selecting scan strategies in MMAM depending on the desired mixing pattern at the material interface.
金属多材料增材制造(MMAM)是一个新兴的研究课题,在热交换器、超材料和卫星部件等领域具有潜在的应用前景。近年来,新型多材料激光粉末床熔融技术得到了发展。然而,由于具有不同性能的材料在界面处混合,可能导致裂纹等缺陷,因此可能会出现加工挑战。本工作旨在研究不同激光扫描策略对不同材料混合梯度下获得声音界面的影响。采用模鼓法沉积了由Inconel 718和Invar制成的样品,并用光学显微镜、能谱图和线扫描对样品进行了分析。熔池穿过材料界面的方向对材料的混合起着重要的作用。在随后的层中,不同的方向在界面上形成了某种“锯齿状”的混合模式。拟合线扫描的玻尔兹曼Sigmoid函数显示,从两次扫描到一次扫描,元素计数的斜率陡度显著增加,高达75%,表明材料混合更强。双重扫描策略会导致界面处出现孔隙,因此应避免。界面处的熔体部分修复了裂纹等缺陷,但似乎对界面处的混合宽度没有影响。这些发现为根据材料界面所需的混合模式选择MMAM扫描策略提供了一般指导。
{"title":"Influence of the laser strategy on bi-metallic interfaces printed via multi-material laser-based powder bed fusion","authors":"Isabel B. Prestes,&nbsp;Eric A. Jägle","doi":"10.1016/j.addlet.2025.100274","DOIUrl":"10.1016/j.addlet.2025.100274","url":null,"abstract":"<div><div>Metallic Multi-material Additive Manufacturing (MMAM) is an emerging research topic, with potential applications in heat exchangers, metamaterials and satellite components. In recent years, new multi-material laser powder bed fusion (PBF-LB) techniques have been developed. However, processing challenges may arise, since materials with dissimilar properties are mixed at the interfaces, which might lead to defects such as cracks. This work aims to investigate the influence of different laser scan strategies to achieve sound interfaces with different material mixing gradients. The samples, made of Inconel 718 and Invar were deposited by the patterning drums technique and were analyzed by means of optical microscopy and energy-dispersive X-ray spectroscopy (EDS) mappings and line scans. The orientation in which melt pools cross the material interface plays an important role in mixing the materials. Different orientations in subsequent layers create a certain “jagged” pattern of mixing at the interface. Sigmoid functions of Boltzmann fitted to the line scans show a significant slope steepness increase – up to 75 % – in the element count from double scan to single scan, suggesting a stronger material mixing. The double scan strategy leads to porosity at the interface and thus should be avoided. The remelt at the interface partially healed defects such as cracks but does not seem to influence the mixing width at the interface. These findings give general guidance for selecting scan strategies in MMAM depending on the desired mixing pattern at the material interface.</div></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"13 ","pages":"Article 100274"},"PeriodicalIF":4.2,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143418995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of a typical scanner delay processing parameter on local microstructure in metallic laser-based powder bed fusion 典型扫描仪延迟处理参数对金属激光粉末床熔合中局部显微组织的影响
IF 4.2 Q2 ENGINEERING, MANUFACTURING Pub Date : 2025-02-09 DOI: 10.1016/j.addlet.2025.100273
Brenda Leticia Valadez Mesta , Pascal Thome , Marcus C. Lam , Sammy Tin , Jorge Mireles , Ryan B. Wicker
In laser-based powder bed fusion of metals (PBF-LB/M), variations in laser scanner movements, particularly lesser-studied parameters like scanner delays that control laser directional changes, can influence the microstructure in a part during fabrication as each of typically millions of individual laser vectors impact part thermal history and resulting microstructure. While the impact of commonly researched parameters such as laser power, scan speed, hatch spacing, and layer thickness on part microstructure have been well studied, considerably less attention has been given to scanner delays such as the polygon delay. This study uses electron backscatter diffraction to investigate the microstructural variations caused by polygon delay values ranging from 0 to 450 microseconds, beginning with individual scan tracks. The study then extends single tracks to a simple three-dimensional part to examine if microstructure differences due to polygon delays may be influenced by localized heating and cooling caused by nearby hatch vectors and successive layers. The results reveal that varying polygon delay clearly affects grain morphology during individual scan tracks, although these effects are less clear during a three-dimensional build. Future PBF-LB/M studies should focus more on understanding time-resolved laser beam processing effects to better reduce inconsistencies and improve part quality.
在基于激光的粉末床金属熔合(PBF-LB/M)中,激光扫描仪运动的变化,特别是像控制激光方向变化的扫描仪延迟等较少研究的参数,会影响制造过程中零件的微观结构,因为通常数百万个单独的激光矢量中的每一个都会影响零件的热历史和最终的微观结构。虽然激光功率、扫描速度、舱口间距和层厚等常用参数对零件微观结构的影响已经得到了很好的研究,但对扫描仪延迟(如多边形延迟)的关注却很少。本研究从单个扫描轨迹开始,利用电子后向散射衍射研究了0 ~ 450微秒多边形延迟值引起的微结构变化。然后,该研究将单个轨迹扩展到简单的三维部分,以检查多边形延迟引起的微观结构差异是否可能受到附近舱口矢量和连续层引起的局部加热和冷却的影响。结果表明,在单个扫描轨迹中,不同的多边形延迟明显影响晶粒形态,尽管这些影响在三维构建期间不太明显。未来的PBF-LB/M研究应更多地关注时间分辨激光束加工效果,以更好地减少不一致,提高零件质量。
{"title":"Impact of a typical scanner delay processing parameter on local microstructure in metallic laser-based powder bed fusion","authors":"Brenda Leticia Valadez Mesta ,&nbsp;Pascal Thome ,&nbsp;Marcus C. Lam ,&nbsp;Sammy Tin ,&nbsp;Jorge Mireles ,&nbsp;Ryan B. Wicker","doi":"10.1016/j.addlet.2025.100273","DOIUrl":"10.1016/j.addlet.2025.100273","url":null,"abstract":"<div><div>In laser-based powder bed fusion of metals (PBF-LB/M), variations in laser scanner movements, particularly lesser-studied parameters like scanner delays that control laser directional changes, can influence the microstructure in a part during fabrication as each of typically millions of individual laser vectors impact part thermal history and resulting microstructure. While the impact of commonly researched parameters such as laser power, scan speed, hatch spacing, and layer thickness on part microstructure have been well studied, considerably less attention has been given to scanner delays such as the polygon delay. This study uses electron backscatter diffraction to investigate the microstructural variations caused by polygon delay values ranging from 0 to 450 microseconds, beginning with individual scan tracks. The study then extends single tracks to a simple three-dimensional part to examine if microstructure differences due to polygon delays may be influenced by localized heating and cooling caused by nearby hatch vectors and successive layers. The results reveal that varying polygon delay clearly affects grain morphology during individual scan tracks, although these effects are less clear during a three-dimensional build. Future PBF-LB/M studies should focus more on understanding time-resolved laser beam processing effects to better reduce inconsistencies and improve part quality.</div></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"13 ","pages":"Article 100273"},"PeriodicalIF":4.2,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143387863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of machining and electropolishing for surface quality improvement of shape memory nitinol samples additively manufactured by laser powder bed fusion 激光粉末床熔合增材加工改善形状记忆镍钛诺表面质量的比较分析
IF 4.2 Q2 ENGINEERING, MANUFACTURING Pub Date : 2025-02-01 DOI: 10.1016/j.addlet.2024.100261
Rodrigo Zapata Martínez , Shohom Bose-Bandyopadhyay , Alan Burl , Óscar Contreras-Almengor , Carlos Aguilar Vega , Kyle Saleeby , Thomas Kurfess , Andrés Díaz Lantada , Jon Molina-Aldareguia
Nickel-titanium (NiTi) or nitinol alloys exhibit high corrosion resistance, mechanical strength, biocompatibility, and smart properties, rendering them ideal materials for active biomedical devices. Traditional manufacturing techniques struggle with these alloys, prompting the adoption of Laser Powder Bed Fusion (L-PBF) as a viable alternative for producing geometrically challenging features. However, L-PBF inherently introduces geometric inconsistencies and surface defects, necessitating post-processing. Electropolishing and chemical etching, while effective for surface smoothing, result in non-conformal material removal, potentially altering the designed geometry. This study examines the use of machining as a post-processing method to achieve uniform material removal and maintain geometric fidelity. Planar spring-shaped actuators were fabricated via L-PBF and subsequently machined to their final geometry using a Computer Numerical Controlled (CNC) system. The actuators were assessed for geometric accuracy and shape memory properties. Machining of the actuators lead to a near homogeneous thickness of 300 µm in all cases, whereas the electropolished + chemically etched samples varied dramatically from <50 µm to over 400 µm in thickness. The findings demonstrate that CNC machining effectively enhances the geometric precision of L-PBF-manufactured NiTi components, while preserving shape memory characteristics. This research underscores the potential of integrating L-PBF with CNC machining to improve the precision and functionality of NiTi-based biomedical devices.
镍钛(NiTi)或镍钛诺合金具有高耐腐蚀性,机械强度,生物相容性和智能性能,使其成为活性生物医学设备的理想材料。传统的制造技术与这些合金相斗争,促使采用激光粉末床融合(L-PBF)作为生产具有几何挑战性特征的可行替代方案。然而,L-PBF固有地引入几何不一致和表面缺陷,需要后处理。电抛光和化学蚀刻虽然对表面光滑有效,但会导致非保形材料的去除,可能会改变设计的几何形状。本研究考察了使用加工作为后处理方法,以实现均匀的材料去除和保持几何保真度。平面弹簧形驱动器通过L-PBF制造,随后使用计算机数控(CNC)系统加工成最终几何形状。评估了执行器的几何精度和形状记忆性能。在所有情况下,执行器的加工厚度几乎均匀,为300 μ m,而电抛光+化学蚀刻样品的厚度从50 μ m到400 μ m以上变化很大。研究结果表明,数控加工有效地提高了l - pbf制造的NiTi零件的几何精度,同时保持了形状记忆特性。这项研究强调了将L-PBF与CNC加工相结合的潜力,以提高基于niti的生物医学设备的精度和功能。
{"title":"Comparative analysis of machining and electropolishing for surface quality improvement of shape memory nitinol samples additively manufactured by laser powder bed fusion","authors":"Rodrigo Zapata Martínez ,&nbsp;Shohom Bose-Bandyopadhyay ,&nbsp;Alan Burl ,&nbsp;Óscar Contreras-Almengor ,&nbsp;Carlos Aguilar Vega ,&nbsp;Kyle Saleeby ,&nbsp;Thomas Kurfess ,&nbsp;Andrés Díaz Lantada ,&nbsp;Jon Molina-Aldareguia","doi":"10.1016/j.addlet.2024.100261","DOIUrl":"10.1016/j.addlet.2024.100261","url":null,"abstract":"<div><div>Nickel-titanium (NiTi) or nitinol alloys exhibit high corrosion resistance, mechanical strength, biocompatibility, and smart properties, rendering them ideal materials for active biomedical devices. Traditional manufacturing techniques struggle with these alloys, prompting the adoption of Laser Powder Bed Fusion (L-PBF) as a viable alternative for producing geometrically challenging features. However, L-PBF inherently introduces geometric inconsistencies and surface defects, necessitating post-processing. Electropolishing and chemical etching, while effective for surface smoothing, result in non-conformal material removal, potentially altering the designed geometry. This study examines the use of machining as a post-processing method to achieve uniform material removal and maintain geometric fidelity. Planar spring-shaped actuators were fabricated via L-PBF and subsequently machined to their final geometry using a Computer Numerical Controlled (CNC) system. The actuators were assessed for geometric accuracy and shape memory properties. Machining of the actuators lead to a near homogeneous thickness of 300 µm in all cases, whereas the electropolished + chemically etched samples varied dramatically from &lt;50 µm to over 400 µm in thickness. The findings demonstrate that CNC machining effectively enhances the geometric precision of L-PBF-manufactured NiTi components, while preserving shape memory characteristics. This research underscores the potential of integrating L-PBF with CNC machining to improve the precision and functionality of NiTi-based biomedical devices.</div></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"12 ","pages":"Article 100261"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143179870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resin-dependent mechanical anisotropy in laser vat photopolymerization correlates to the initial rate of polymerization and critical energy 激光还原光聚合过程中树脂相关的力学各向异性与初始聚合速率和临界能有关
IF 4.2 Q2 ENGINEERING, MANUFACTURING Pub Date : 2025-02-01 DOI: 10.1016/j.addlet.2024.100264
Dagoberto Torres-Alvarez, Angel Celis-Guzman, Alan Aguirre-Soto
The degree of mechanical anisotropy in objects printed with laser vat photopolymerization (VPP) remains controversial. It has been stated that objects with a higher degree of mechanical isotropy are produced with VPP as compared to other polymer-based additive manufacturing techniques, such as fused filament fabrication (FFF). However, reports on the evaluation of resin-dependency of the mechanical anisotropy obtained with VPP are scarce. Furthermore, the degree of anisotropy (DA) was quantified using different procedures. Here, six commercial resins were selected to evaluate how the DA correlates to the initial rate of polymerization (RP0), critical energy (EC), and penetration depth (DP) for materials with a broader range of properties. State-of-the-art procedures to calculate the degree of mechanical anisotropy are discussed, and an ideal method is proposed, namely, the ratio of the standard deviations related to the inter- and intra-layer forces: DA=(sdinter/sdintra). The elastic modulus (E) was confirmed isotropic with the three resins that were previously reported. However, objects printed with the additional resins that polymerize at higher initial rates (RP0 =72.1 mM/s) and with lower critical energies (EC = 0.36 mJ/cm2) appear more anisotropic. A linear trend was obtained for the scaling of the mechanical DA with RP0. Moreover, a logarithmic correlation between EC and the DA in E was found, which appears inappropriate for EC as a function of the DA in the maximum stress (σMax). This study aims to spur research on the mechanisms underlying the dependence of the mechanical DA on the resin-curing behavior for objects fabricated by VPP.
激光还原光聚合(VPP)打印物体的力学各向异性程度仍然存在争议。与其他基于聚合物的增材制造技术(如熔丝制造(FFF))相比,用VPP生产具有更高机械各向同性程度的物体。然而,关于VPP获得的力学各向异性的树脂依赖性评价的报道很少。此外,采用不同的方法对各向异性程度(DA)进行了量化。在这里,选择了六种商业树脂来评估DA如何与具有更广泛性质的材料的初始聚合速率(r0),临界能量(EC)和渗透深度(DP)相关。讨论了计算力学各向异性程度的最新方法,并提出了一种理想的方法,即与层间力和层内力相关的标准差之比:DA=(sdinter/sdintra)。弹性模量(E)与之前报道的三种树脂确认各向同性。然而,用更高初始聚合速率(r0 =72.1 mM/s)和更低临界能量(EC = 0.36 mJ/cm2)的额外树脂打印的物体表现出更多的各向异性。机械DA的标度随r0呈线性变化趋势。此外,E中EC与DA呈对数相关,不适合将EC作为最大应力(σMax)中DA的函数。本研究旨在促进对机械DA对VPP材料树脂固化行为依赖机制的研究。
{"title":"Resin-dependent mechanical anisotropy in laser vat photopolymerization correlates to the initial rate of polymerization and critical energy","authors":"Dagoberto Torres-Alvarez,&nbsp;Angel Celis-Guzman,&nbsp;Alan Aguirre-Soto","doi":"10.1016/j.addlet.2024.100264","DOIUrl":"10.1016/j.addlet.2024.100264","url":null,"abstract":"<div><div>The degree of mechanical anisotropy in objects printed with laser vat photopolymerization (VPP) remains controversial. It has been stated that objects with a higher degree of mechanical isotropy are produced with VPP as compared to other polymer-based additive manufacturing techniques, such as fused filament fabrication (FFF). However, reports on the evaluation of resin-dependency of the mechanical anisotropy obtained with VPP are scarce. Furthermore, the degree of anisotropy (DA) was quantified using different procedures. Here, six commercial resins were selected to evaluate how the DA correlates to the initial rate of polymerization (R<sub>P0</sub>), critical energy (E<sub>C</sub>), and penetration depth (D<sub>P</sub>) for materials with a broader range of properties. State-of-the-art procedures to calculate the degree of mechanical anisotropy are discussed, and an ideal method is proposed, namely, the ratio of the standard deviations related to the inter- and intra-layer forces: DA=(sd<sub>inter</sub>/sd<sub>intra</sub>). The elastic modulus (<em>E</em>) was confirmed isotropic with the three resins that were previously reported. However, objects printed with the additional resins that polymerize at higher initial rates (R<sub>P0</sub> =72.1 mM/s) and with lower critical energies (E<sub>C</sub> = 0.36 mJ/cm<sup>2</sup>) appear more anisotropic. A linear trend was obtained for the scaling of the mechanical DA with R<sub>P0</sub>. Moreover, a logarithmic correlation between E<sub>C</sub> and the DA in <em>E</em> was found, which appears inappropriate for E<sub>C</sub> as a function of the DA in the maximum stress (σ<sub>Max</sub>). This study aims to spur research on the mechanisms underlying the dependence of the mechanical DA on the resin-curing behavior for objects fabricated by VPP.</div></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"12 ","pages":"Article 100264"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143179871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Micro-X-ray-CT for analysis of particle size segregation during powder spreading in Binder Jet Printing 用微x射线ct分析粘合剂喷射印刷中粉末扩散过程中的粒度偏析
IF 4.2 Q2 ENGINEERING, MANUFACTURING Pub Date : 2025-02-01 DOI: 10.1016/j.addlet.2024.100266
Julia G. Behnsen , Joseph W. Roberts , Oliver J. Rogan , James M. McArdle , Kate Black
The uniformity of the powder bed in Binder Jet Printing can impact the final properties of additively manufactured components. Granular flow phenomena, such as particle size segregation can influence the uniformity of the powder bed. Due to the 3D nature of the powder bed and the standard requirement for sintering parts following printing, direct experimental observation of the particle distribution and packing density can be difficult. The use of Micro-X-ray-CT however, enables the high-resolution imaging of components manufactured by binder jetting and allows quantification of particle size distribution and packing density throughout the powder bed. This study analyses the periodicity of effects such as in-layer particles size segregation and packing density. The results presented here show that particles segregate by size within each layer of the binder jet printed sample, which resulted in a periodic density change within each layer. The particle size distribution changes over the length of the power-bed, with the volume fraction of smaller particles increased near the front of the powder bed, and the volume fraction of larger particles increased near the back. The insights gained from the Micro-X-ray-CT characterisation approach allow for an enhanced understanding of the powder spreading process in additive manufacturing, paving the way forward for possible part optimisation.
粘合剂喷射印刷中粉末床的均匀性会影响快速成型部件的最终性能。粒度偏析等颗粒流动现象会影响粉末床的均匀性。由于粉末床的三维性质和打印后部件烧结的标准要求,很难对颗粒分布和堆积密度进行直接实验观察。然而,使用 Micro-X 射线-计算机断层扫描可以对通过粘合剂喷射制造的部件进行高分辨率成像,并对整个粉末床的粒度分布和堆积密度进行量化。本研究分析了层内颗粒尺寸偏析和堆积密度等效应的周期性。研究结果表明,在粘合剂喷射打印的样品中,每层内的颗粒都会发生尺寸偏析,从而导致每层内的密度发生周期性变化。颗粒尺寸分布在粉末床的长度方向上发生变化,较小颗粒的体积分数在靠近粉末床前部的位置增加,而较大颗粒的体积分数在靠近粉末床后部的位置增加。从显微 X 射线-计算机断层扫描表征方法中获得的启示有助于加深对增材制造中粉末铺展过程的理解,为可能的零件优化铺平道路。
{"title":"Micro-X-ray-CT for analysis of particle size segregation during powder spreading in Binder Jet Printing","authors":"Julia G. Behnsen ,&nbsp;Joseph W. Roberts ,&nbsp;Oliver J. Rogan ,&nbsp;James M. McArdle ,&nbsp;Kate Black","doi":"10.1016/j.addlet.2024.100266","DOIUrl":"10.1016/j.addlet.2024.100266","url":null,"abstract":"<div><div>The uniformity of the powder bed in Binder Jet Printing can impact the final properties of additively manufactured components. Granular flow phenomena, such as particle size segregation can influence the uniformity of the powder bed. Due to the 3D nature of the powder bed and the standard requirement for sintering parts following printing, direct experimental observation of the particle distribution and packing density can be difficult. The use of Micro-X-ray-CT however, enables the high-resolution imaging of components manufactured by binder jetting and allows quantification of particle size distribution and packing density throughout the powder bed. This study analyses the periodicity of effects such as in-layer particles size segregation and packing density. The results presented here show that particles segregate by size within each layer of the binder jet printed sample, which resulted in a periodic density change within each layer. The particle size distribution changes over the length of the power-bed, with the volume fraction of smaller particles increased near the front of the powder bed, and the volume fraction of larger particles increased near the back. The insights gained from the Micro-X-ray-CT characterisation approach allow for an enhanced understanding of the powder spreading process in additive manufacturing, paving the way forward for possible part optimisation.</div></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"12 ","pages":"Article 100266"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143181278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calibration and compensation of 5-axis 3D-printers for printed electronics 校准和补偿用于印刷电子产品的 5 轴 3D 打印机
IF 4.2 Q2 ENGINEERING, MANUFACTURING Pub Date : 2025-02-01 DOI: 10.1016/j.addlet.2024.100265
Daniel Ahlers, Tom Schmolzi, German Junca, Jianwei Zhang, Florens Wasserfall
5-axis 3D printing presents a promising approach to overcome the limitations of traditional 3-axis methods, particularly in the domain of printed electronics where conformal conductive connections are printed onto the surface of freeform objects. However, this additional freedom comes with a demand for high positioning accuracy, as the rotary movements amplify small axis deviations through the lever effect. This paper presents an approach for an automatically self-calibrating low-cost 5-axis printing system using a built-in 3D touch probe. The calibration data is used to generate a precise kinematic printer model in the Unified Robot Description Format (URDF). Our inverse kinematic solver uses this model in our pathplanning software to generate fully compensated G-code trajectories, maintaining the correct position without needing an expensive high-precision motion system. First results are presented as evaluation which were printed on our low-cost 5-axis system with 3D-printed rotary axes, demonstrating the capability to reliably print circuits on imprecise hardware. The calibration process can be executed quickly and automatically every time the printer is restarted. This approach makes multi-axis 3D printing more accessible and increases potential uses, leading to more precise and cost-effective manufacturing solutions.
五轴三维打印技术为克服传统三轴方法的局限性提供了一种前景广阔的方法,尤其是在将保形导电连接打印到自由形态物体表面的打印电子领域。然而,这种额外的自由度对高定位精度提出了要求,因为旋转运动会通过杠杆效应放大小的轴偏差。本文介绍了一种利用内置 3D 触摸探头自动自校准低成本 5 轴打印系统的方法。校准数据用于在统一机器人描述格式(URDF)中生成精确的运动学打印机模型。我们的逆运动学求解器在路径规划软件中使用该模型生成完全补偿的 G 代码轨迹,无需昂贵的高精度运动系统即可保持正确的位置。首批评估结果在我们的低成本五轴系统上打印出来,并带有三维打印的旋转轴,证明了在不精确的硬件上可靠打印电路的能力。每次重新启动打印机时,校准过程都能快速自动执行。这种方法使多轴三维打印更容易获得,并增加了潜在用途,从而带来了更精确、更具成本效益的制造解决方案。
{"title":"Calibration and compensation of 5-axis 3D-printers for printed electronics","authors":"Daniel Ahlers,&nbsp;Tom Schmolzi,&nbsp;German Junca,&nbsp;Jianwei Zhang,&nbsp;Florens Wasserfall","doi":"10.1016/j.addlet.2024.100265","DOIUrl":"10.1016/j.addlet.2024.100265","url":null,"abstract":"<div><div>5-axis 3D printing presents a promising approach to overcome the limitations of traditional 3-axis methods, particularly in the domain of printed electronics where conformal conductive connections are printed onto the surface of freeform objects. However, this additional freedom comes with a demand for high positioning accuracy, as the rotary movements amplify small axis deviations through the lever effect. This paper presents an approach for an automatically self-calibrating low-cost 5-axis printing system using a built-in 3D touch probe. The calibration data is used to generate a precise kinematic printer model in the Unified Robot Description Format (URDF). Our inverse kinematic solver uses this model in our pathplanning software to generate fully compensated G-code trajectories, maintaining the correct position without needing an expensive high-precision motion system. First results are presented as evaluation which were printed on our low-cost 5-axis system with 3D-printed rotary axes, demonstrating the capability to reliably print circuits on imprecise hardware. The calibration process can be executed quickly and automatically every time the printer is restarted. This approach makes multi-axis 3D printing more accessible and increases potential uses, leading to more precise and cost-effective manufacturing solutions.</div></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"12 ","pages":"Article 100265"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143181280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Additive manufacturing letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1