Sergii Parchenko, Kevin Hofhuis, Agne Åberg Larsson, Vassilios Kapaklis, Valerio Scagnoli, Laura Jane Heyderman, Armin Kleibert
The relationship between magnetization and light has been the subject of intensive research for the past century. Herein, the impact of magnetization on light polarization is well understood. Conversely, the manipulation of magnetism with polarized light is being investigated to achieve all-optical control of magnetism, driven by potential technological implementation in spintronics. Remarkable discoveries, such as the single-pulse all-optical switching of magnetization in thin films and submicrometer structures, have been reported. However, the demonstration of local optical control of magnetism at the nanoscale has remained elusive. Herein, it is demonstrated that exciting gold nanodiscs with circularly polarized femtosecond laser pulses lead to ultrafast, local, and deterministic control of magnetization in an adjacent magnetic film. This control is achieved by exploiting the magnetic moment generated in plasmonic nanodiscs through the inverse Faraday effect. The results pave the way for light-driven control in nanoscale spintronic devices and provide important insights into the generation of magnetic fields in plasmonic nanostructures.
{"title":"Plasmon-Enhanced Optical Control of Magnetism at the Nanoscale via the Inverse Faraday Effect","authors":"Sergii Parchenko, Kevin Hofhuis, Agne Åberg Larsson, Vassilios Kapaklis, Valerio Scagnoli, Laura Jane Heyderman, Armin Kleibert","doi":"10.1002/adpr.202400083","DOIUrl":"https://doi.org/10.1002/adpr.202400083","url":null,"abstract":"<p>The relationship between magnetization and light has been the subject of intensive research for the past century. Herein, the impact of magnetization on light polarization is well understood. Conversely, the manipulation of magnetism with polarized light is being investigated to achieve all-optical control of magnetism, driven by potential technological implementation in spintronics. Remarkable discoveries, such as the single-pulse all-optical switching of magnetization in thin films and submicrometer structures, have been reported. However, the demonstration of local optical control of magnetism at the nanoscale has remained elusive. Herein, it is demonstrated that exciting gold nanodiscs with circularly polarized femtosecond laser pulses lead to ultrafast, local, and deterministic control of magnetization in an adjacent magnetic film. This control is achieved by exploiting the magnetic moment generated in plasmonic nanodiscs through the inverse Faraday effect. The results pave the way for light-driven control in nanoscale spintronic devices and provide important insights into the generation of magnetic fields in plasmonic nanostructures.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400083","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143116113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Viologens, with their unique redox-active properties, have garnered increasing attention in the development of electrochromic devices. This review focuses on key strategies in molecular design, synthesis methodologies, and tailored functionalities that have propelled the field forward from 2019 to the present. The convergence of these approaches has led to the construction of viologen-based electrochromic materials with enhanced performance, stability, and responsiveness. The review not only examines the current state of the field but also explores promising outlooks and opportunities, including tailored applications, environmental sustainability, and integration with emerging technologies. The synergy between molecular engineering and viologen-based electrochromic materials holds significant promise, shaping the future of dynamic, responsive materials in diverse technological domains. This review serves as a valuable resource for researchers, offering insights into recent breakthroughs and inspiring further advancements in this rapidly evolving field.
{"title":"Recent Advances in Molecular Engineering for Viologen-Based Electrochromic Materials: A Mini-Review","authors":"Bebin Ambrose, Murugan Krishnan, Kalaivanan Ramamurthy, Murugavel Kathiresan","doi":"10.1002/adpr.202400016","DOIUrl":"10.1002/adpr.202400016","url":null,"abstract":"<p>Viologens, with their unique redox-active properties, have garnered increasing attention in the development of electrochromic devices. This review focuses on key strategies in molecular design, synthesis methodologies, and tailored functionalities that have propelled the field forward from 2019 to the present. The convergence of these approaches has led to the construction of viologen-based electrochromic materials with enhanced performance, stability, and responsiveness. The review not only examines the current state of the field but also explores promising outlooks and opportunities, including tailored applications, environmental sustainability, and integration with emerging technologies. The synergy between molecular engineering and viologen-based electrochromic materials holds significant promise, shaping the future of dynamic, responsive materials in diverse technological domains. This review serves as a valuable resource for researchers, offering insights into recent breakthroughs and inspiring further advancements in this rapidly evolving field.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 10","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400016","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141352141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}