Acacia mangium plantations account for more than 50 % of the exotic plantations in Vietnam. A new black butt symptom was discovered in 2012, followed by the wilting sign in Acacia seedlings in Tuyen Quang Province. Isolations recovered two Phytophthora species, the well-known Acacia pathogen P. cinnamomi, and an unknown species. The new species is described here as Phytophthora acaciivora sp. nov. Phylogenetically this species resides in clade 2d and is most closely related to P. frigida. Phytophthora acaciivora is a heterothallic species, oospores are aplerotic and antheridia are amphigynous. It produces predominantly elongated ovoid, semi papillate, persistent sporangia, no hyphal swellings and no chlamydospores. Optimum temperature for the growth is 25-30 °C and the maximum temperature is over 37.5 °C. Studies are underway to determine the impact of this new species on Acacia plantations in Vietnam.
Phylogenetic analyses of 115 newly collected Helvella specimens from Spain using three genetic markers [heat shock protein 90 (hsp), RNA polymerase II second largest subunit (rpb2) and the nuclear large subunit ribosomal DNA (LSU)] confirm the assignment of the Spanish collections to one Dissingia and 30 Helvella species. The analyses were supplemented with an additional sample of 65 Spanish and extralimital Helvella specimens from the fungaria of Oslo (O), Trondheim (TRH), Copenhagen (C), Uppsala (UPS), Stockholm (S) and Venice (MCVE). Nine species are described as new, i.e. Helvella fuscolacunosa, H. hispanica, H. iberica, H. inexpectata, H. neopallescens, H. phlebophoroides, H. poculiformis, H. retinervis, and H. terricola. We present photographs of a selection of fresh specimens and provide descriptions of all species of this diverse South European Mediterranean element of the genera in Europe.
The PhyloCode is used to classify taxa based on their relation to a most recent common ancestor as recovered from a phylogenetic analysis. We examined the first specimen of Cintractiella (Ustilaginomycotina) collected from Australia and determined its systematic relationship to other Fungi. Three ribosomal DNA loci were analysed both with and without constraint to a phylogenomic hypothesis of the Ustilaginomycotina. Cintractiella did not share a most recent common ancestor with other orders of smut fungi. We used the PhyloCode to define the Cintractiellales, a monogeneric order with four species of Cintractiella, including C. scirpodendri sp. nov. on Scirpodendron ghaeri. The Cintractiellales may have shared a most recent common ancestor with the Malasseziomycetes, but are otherwise unresolved at the rank of class.
Recently, the order Phaeomoniellales was established that includes fungi closely related to Phaeomoniella chlamydospora, a phytopathogen assumed to be the main causal agent of the two most destructive grapevine trunk diseases, Petri disease and esca. Other species of this order are reported as pathogens of other economically important crops, like olive, peach, apricot, cherry, plum, rambutan, lichee or langsat. However, they are rarely isolated and hence, little is known about their ecological traits and pathogenicity. During a 1-yr period of spore trapping in a German vineyard divided in minimally and intensively pruned grapevines, 23 fungal strains of the Phaeomoniellales were collected. Based on morphological and molecular (ITS, LSU and tub2) analyses the isolated strains were assigned to eight different species. Two species were identified as P. chlamydospora and Neophaeomoniella zymoides, respectively. The remaining six species displayed morphological and molecular differences to known species of the Phaeomoniellales and are newly described, namely Aequabiliella palatina, Minutiella simplex, Moristroma germanicum, Mo. palatinum, Neophaeomoniella constricta and N. ossiformis. A pathogenicity test conducted in the greenhouse revealed that except for P. chlamydospora, none of the species of the Phaeomoniellales isolated from spore traps is able to induce lesions in grapevine wood.
Resinicolous fungi constitute a heterogeneous assemblage of fungi that live on fresh and solidified plant resins. The genus Sarea includes, according to current knowledge, two species, S. resinae and S. difformis. In contrast to other resinicolous discomycetes, which are placed in genera also including non-resinicolous species, Sarea species only ever fruit on resin. The taxonomic classification of Sarea has proven to be difficult and currently the genus, provisionally and based only on morphological features, has been assigned to the Trapeliales (Lecanoromycetes). In contrast, molecular studies have noted a possible affinity to the Leotiomycetes. Here we review the taxonomic placement of Sarea using sequence data from seven phylogenetically informative DNA regions including ribosomal (ITS, nucSSU, mtSSU, nucLSU) and protein-coding (rpb1, rpb2, mcm7) regions. We combined available and new sequence data with sequences from major Pezizomycotina classes, especially Lecanoromycetes and Leotiomycetes, and assembled three different taxon samplings in order to place the genus Sarea within the Pezizomycotina. Based on our data, none of the applied phylogenetic approaches (Bayesian Inference, Maximum Likelihood and Maximum Parsimony) supported the placement of Sarea in the Trapeliales or any other order in the Lecanoromycetes. A placement of Sarea within the Leotiomycetes is similarly unsupported. Based on our data, Sarea forms an isolated and highly supported phylogenetic lineage within the "Leotiomyceta". From the results of our multilocus phylogenetic analyses we propose here a new class, order, and family, Sareomycetes, Sareales and Sareaceae in the Ascomycota to accommodate the genus Sarea. The genetic variability within the newly proposed class suggests that it is a larger group that requires further infrageneric classification.
Ceratocystis accommodates many important pathogens of agricultural crops and woody plants. Ceratocystis fimbriata, the type species of the genus is based on a type that is unsuitable for a precise application and interpretation of the species. This is because no culture or DNA data exist for the type specimen. The aim of this study was to select a reference specimen that can serve to stabilize the name of this important fungus. We selected a strain, CBS 114723, isolated from sweet potato in North Carolina, USA, in 1998 for this purpose. The strain was selected based on the availability of a living culture in a public depository. A draft genome sequence is also available for this strain. Its morphological characteristics were studied and compared with the existing and unsuitable type specimen as well as with the original descriptions of C. fimbriata. The selected strain fits the existing concept of the species fully and we have consequently designated it as an epitype to serve as a reference specimen for C. fimbriata.
Understanding diversity in the genus Xerocomellus in western North America has been obscured by morphological variability, widespread use of species epithets typified by specimens from Europe and eastern North America, misunderstood phylogenetic relationships, and species complexes. We collected extensively and used genetic and morphological data to establish the occurrence of ten Xerocomellus species in western North America. We generated ITS sequences from five type collections and from vouchered representative collections to clarify our understanding of existing species concepts. We describe three new species (Xerocomellus atropurpureus, X. diffractus, and X. salicicola) and propose two new combinations (X. amylosporus and X. mendocinensis), transfer Boletus coccyginus to Hortiboletus, and provide a dichotomous key to species of Xerocomellus in western North America.
To resolve the polyphyletic nature of Solenopeziaceae as it was originally circumscribed, we establish a new family Tricladiaceae for those genera originally placed in Solenopeziaceae that have aquatic hyphomycete-like asexual morphs and/or a sexual morph with glabrous apothecia. These include Cudoniella, Geniculospora, Graddonia, Halenospora, Mycofalcella, Spirosphaera, and Tricladium. Solenopeziaceae is confined to the genera Lasiobelonium, Solenopezia, Trichopeziza, and Trichopezizella, all of which have a sexual morph having apothecia with smooth-walled hairs. This taxonomy is supported by a multi-gene analysis using up to 15 genes, with a few of the taxa placed on the basis of a separate ITS phylogeny. Tricladiaceae forms a monophyletic clade with a basal sister relationship to Pleuroascaceae plus Helotiaceae; Solenopeziaceae forms a monophyletic clade with a basal sister relationship to Lachnaceae.
Tuber luomae, a new truffle species known only from the Pacific Northwest, USA, is distinguished by spiny, non-reticulate spores and a two-layered peridium - the outermost layer (pellis) consists of inflated, globose to subpolygonal cells and the inner (subpellis) of narrow hyphae. ITS sequence analyses show that it has phylogenetic affinity to other Tuber species in the Rufum clade. The only other members of the Rufum clade with a strongly developed peridiopellis of large, inflated cells are the southern European T. malacodermum and T. pustulatum and the northern Mexican T. theleascum. We find it interesting that this peridial structure that is uncommon in the Rufum clade has been found in geographically disjunct species.