Pub Date : 2023-01-01DOI: 10.3844/ajeassp.2023.1.11
I. Made, Ari Nrartha, I. M. Ginarsa, A. B. Muljono, Sultan, Ida Ayu, Sri Adnyani, M. Bilad, M. Abid
: Rooftop solar panels are a strategy for achieving Indonesia's renewable energy goals, but their non-linear characteristics make them difficult to control, especially in the face of extreme weather changes. An effective controller is needed to optimize the power output of solar panels. This study proposes a Maximum Power Point Tracking (MPPT) controller based on an Adaptive Neural network Fuzzy Inference System (ANFIS) to address this control problem. The capacity of the rooftop solar panels is 3,430-Watt peak (Wp) and they are connected to a 220-Volt (V) grid system. The system is designed, simulated
{"title":"Improvement of Rooftop Solar Panels Efficiency using Maximum Power Point Tracking Based on an Adaptive Neural Network Fuzzy Inference System","authors":"I. Made, Ari Nrartha, I. M. Ginarsa, A. B. Muljono, Sultan, Ida Ayu, Sri Adnyani, M. Bilad, M. Abid","doi":"10.3844/ajeassp.2023.1.11","DOIUrl":"https://doi.org/10.3844/ajeassp.2023.1.11","url":null,"abstract":": Rooftop solar panels are a strategy for achieving Indonesia's renewable energy goals, but their non-linear characteristics make them difficult to control, especially in the face of extreme weather changes. An effective controller is needed to optimize the power output of solar panels. This study proposes a Maximum Power Point Tracking (MPPT) controller based on an Adaptive Neural network Fuzzy Inference System (ANFIS) to address this control problem. The capacity of the rooftop solar panels is 3,430-Watt peak (Wp) and they are connected to a 220-Volt (V) grid system. The system is designed, simulated","PeriodicalId":7425,"journal":{"name":"American Journal of Engineering and Applied Sciences","volume":"35 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75118357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-01DOI: 10.3844/ajeassp.2022.302.314
Relly Victoria Virgil Petrescu
: The paper presents the study of the dynamics of a general DoF robot, highlighting some important new aspects in the dynamic design of a certain DoF robot. An improved method of positioning the robot in inverse kinematics is presented, then some new aspects in approaching the forces acting on a robot, but also regarding the determination of loads of the rotary actuators. Finally, a study is made of the dynamic functioning of the robot, with new and interesting aspects.
{"title":"The Study of the Dynamics of a Basic DoF Robot","authors":"Relly Victoria Virgil Petrescu","doi":"10.3844/ajeassp.2022.302.314","DOIUrl":"https://doi.org/10.3844/ajeassp.2022.302.314","url":null,"abstract":": The paper presents the study of the dynamics of a general DoF robot, highlighting some important new aspects in the dynamic design of a certain DoF robot. An improved method of positioning the robot in inverse kinematics is presented, then some new aspects in approaching the forces acting on a robot, but also regarding the determination of loads of the rotary actuators. Finally, a study is made of the dynamic functioning of the robot, with new and interesting aspects.","PeriodicalId":7425,"journal":{"name":"American Journal of Engineering and Applied Sciences","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74144589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-01DOI: 10.3844/ajeassp.2022.288.294
Lidong Wang, Randy Jones, T. Falls
: Intrusion detection is an important research topic in information systems and cyber security. Both a defender and an attacker detect and learn about each other during an intrusion process. The defender can expel the attacker as soon as the attacker is detected or wait and observe to know more about the attacker for the detection and prevention of other attacks in the future. An optimal decision is often required in this situation. Data analytics is conducted to achieve an optimal decision for the cyber security of an information system based on a Markov Decision Process (MDP) model in this study. The state of the information system is completely observable in the model. The model is validated using various algorithms that include policy iteration, value iteration, and Q-learning. Data analytics over a finite planning horizon and an infinite planning horizon is conducted, respectively. The expected total cost for each state is analyzed at various parameters of the transition probability and various parameters of the transition cost.
{"title":"Data Analytics for the Cyber Security of an Information System Based on a Markov Decision Process Model","authors":"Lidong Wang, Randy Jones, T. Falls","doi":"10.3844/ajeassp.2022.288.294","DOIUrl":"https://doi.org/10.3844/ajeassp.2022.288.294","url":null,"abstract":": Intrusion detection is an important research topic in information systems and cyber security. Both a defender and an attacker detect and learn about each other during an intrusion process. The defender can expel the attacker as soon as the attacker is detected or wait and observe to know more about the attacker for the detection and prevention of other attacks in the future. An optimal decision is often required in this situation. Data analytics is conducted to achieve an optimal decision for the cyber security of an information system based on a Markov Decision Process (MDP) model in this study. The state of the information system is completely observable in the model. The model is validated using various algorithms that include policy iteration, value iteration, and Q-learning. Data analytics over a finite planning horizon and an infinite planning horizon is conducted, respectively. The expected total cost for each state is analyzed at various parameters of the transition probability and various parameters of the transition cost.","PeriodicalId":7425,"journal":{"name":"American Journal of Engineering and Applied Sciences","volume":"134 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77887953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-01DOI: 10.3844/ajeassp.2022.331.343
Samah Mohamed Sayed, H. Aslan, Ayman M. Hassan
{"title":"A Secure Unicast/Multicast Authentication and Key Distribution Protocols for Smart Grid","authors":"Samah Mohamed Sayed, H. Aslan, Ayman M. Hassan","doi":"10.3844/ajeassp.2022.331.343","DOIUrl":"https://doi.org/10.3844/ajeassp.2022.331.343","url":null,"abstract":"","PeriodicalId":7425,"journal":{"name":"American Journal of Engineering and Applied Sciences","volume":"39 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90278790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-01DOI: 10.3844/ajeassp.2022.264.273
M. El-Adawy, Alhassan H. Farid, Mohamed Ahmed Hassan, M. Abady, Donia Medhat, Habiba Abdullatif, Omar Hassan, Salaheldin Mohamed Thabet
{"title":"Low Reynolds Number Wing Design for Unmanned Aerial Vehicle: A Case Study","authors":"M. El-Adawy, Alhassan H. Farid, Mohamed Ahmed Hassan, M. Abady, Donia Medhat, Habiba Abdullatif, Omar Hassan, Salaheldin Mohamed Thabet","doi":"10.3844/ajeassp.2022.264.273","DOIUrl":"https://doi.org/10.3844/ajeassp.2022.264.273","url":null,"abstract":"","PeriodicalId":7425,"journal":{"name":"American Journal of Engineering and Applied Sciences","volume":"85 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83902572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-01DOI: 10.3844/ajeassp.2022.294.301
Andrés Gabriel García, Juan Andr'es Roteta Lannes
: In this study, the problem of finding an optimal controller for nonlinear systems with one input and a reference tracking signal is approached. With the problem's formulation, any desired signal can be tracked instantly with a closed-loop controller without the need for integral terms. Presentation lies at the heart of optimal control. This study, however, does not consider the integral term, allowing tracking and stability to occur naturally. It has a broad scope with a wide range of applications, namely when dealing with affine nonlinear systems, which provide geometric control unification with asymptotic stability in some cases. A common scenario that comes from optimal control involves the minimization of integral cost functionals. Issues like asymptotic stability or even tracking to the desired reference signal have always been the main limitations. In this study, the main theorem allows the solution of optimal control problems with no-integral terms, in other words tracking problems with input/state constraints, providing closed-loop controllers. A DC motor with a pendulum in upright position is an example of an application for which singular optimal control is tested in this study. The results confirm both asymptotic stability and optimal tracking with an accuracy of 95%. The main contributions of this study include an optimal closed-loop controller with no mixed initial/final conditions, input/state constraints, asymptotic stability guarantee, a strong connection with geometric tools and finally the possibility to generalize to systems with multiple inputs. As a conclusion, general nonlinear control systems can be included in the optimal control methodology presented in this study including input/state constraints. Due to the lack of integral terms, the problem can be solved in closed form by using an optimal closed-loop controller .
{"title":"Universal Singular Optimal Control: Affine Systems","authors":"Andrés Gabriel García, Juan Andr'es Roteta Lannes","doi":"10.3844/ajeassp.2022.294.301","DOIUrl":"https://doi.org/10.3844/ajeassp.2022.294.301","url":null,"abstract":": In this study, the problem of finding an optimal controller for nonlinear systems with one input and a reference tracking signal is approached. With the problem's formulation, any desired signal can be tracked instantly with a closed-loop controller without the need for integral terms. Presentation lies at the heart of optimal control. This study, however, does not consider the integral term, allowing tracking and stability to occur naturally. It has a broad scope with a wide range of applications, namely when dealing with affine nonlinear systems, which provide geometric control unification with asymptotic stability in some cases. A common scenario that comes from optimal control involves the minimization of integral cost functionals. Issues like asymptotic stability or even tracking to the desired reference signal have always been the main limitations. In this study, the main theorem allows the solution of optimal control problems with no-integral terms, in other words tracking problems with input/state constraints, providing closed-loop controllers. A DC motor with a pendulum in upright position is an example of an application for which singular optimal control is tested in this study. The results confirm both asymptotic stability and optimal tracking with an accuracy of 95%. The main contributions of this study include an optimal closed-loop controller with no mixed initial/final conditions, input/state constraints, asymptotic stability guarantee, a strong connection with geometric tools and finally the possibility to generalize to systems with multiple inputs. As a conclusion, general nonlinear control systems can be included in the optimal control methodology presented in this study including input/state constraints. Due to the lack of integral terms, the problem can be solved in closed form by using an optimal closed-loop controller .","PeriodicalId":7425,"journal":{"name":"American Journal of Engineering and Applied Sciences","volume":"51 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86154098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-01DOI: 10.3844/ajeassp.2022.255.263
Antreas Kantaros
: In the last decade, additive manufacturing techniques, commonly known under the term "3d printing" have seen constantly increasing use in various scientific fields. The nature of these fabrication techniques that operate under a layer-by-layer material deposition principle features several de facto advantages, compared to traditional manufacturing techniques. These advantages range from the precise attribution of pre-designed complex shapes to the use of a variety of materials as raw materials in the process. However, its major strong point is the ability to fabricate custom shapes with interconnected lattices, and porous interiors that traditional manufacturing techniques cannot properly attribute. This potential is being largely exploited in the biomedical field in sectors like bio-printing, where such structures are being used for direct implantation into the human body. To meet the strict requirements that such procedures dictate, the fabricated items need to be made out of biomaterials exhibiting properties like biocompatibility, bioresorbability, biodegradability, and appropriate mechanical properties. This review aims not only to list the most important biomaterials used in these techniques but also to bring up their pros and cons in meeting the aforementioned characteristics that are vital in their use.
{"title":"Bio-Inspired Materials: Exhibited Characteristics and Integration Degree in Bio-Printing Operations","authors":"Antreas Kantaros","doi":"10.3844/ajeassp.2022.255.263","DOIUrl":"https://doi.org/10.3844/ajeassp.2022.255.263","url":null,"abstract":": In the last decade, additive manufacturing techniques, commonly known under the term \"3d printing\" have seen constantly increasing use in various scientific fields. The nature of these fabrication techniques that operate under a layer-by-layer material deposition principle features several de facto advantages, compared to traditional manufacturing techniques. These advantages range from the precise attribution of pre-designed complex shapes to the use of a variety of materials as raw materials in the process. However, its major strong point is the ability to fabricate custom shapes with interconnected lattices, and porous interiors that traditional manufacturing techniques cannot properly attribute. This potential is being largely exploited in the biomedical field in sectors like bio-printing, where such structures are being used for direct implantation into the human body. To meet the strict requirements that such procedures dictate, the fabricated items need to be made out of biomaterials exhibiting properties like biocompatibility, bioresorbability, biodegradability, and appropriate mechanical properties. This review aims not only to list the most important biomaterials used in these techniques but also to bring up their pros and cons in meeting the aforementioned characteristics that are vital in their use.","PeriodicalId":7425,"journal":{"name":"American Journal of Engineering and Applied Sciences","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72777471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-01DOI: 10.3844/ajeassp.2022.239.254
R. Petrescu
: The paper presents a new method for determining the dynamic parameters of a Cebâşev conveyor mechanism, solvable in two steps. In the first step, the classic method of preserving the kinetic energy of the entire mechanism is used to determine the rotating mass of the Cebâşev mechanism denoted by J*, this being the dynamic rotating mass of the entire mechanism reduced to the driving element 1 (of the crank type; classical rotating mass is called the mechanical or mass moment of inertia). In the second step (with the help of a new method), the dynamic angular speed of the Cebâşev mechanism's crank is directly determined, by using the mechanism's kinetic energy conservation a second time. This eliminates the need to use a more laborious classical method in the second step, such as differential Newton, Lagrange of type 1, Laplace transform, or Fourier, a finite difference method.
{"title":"The Study of the Dynamics of a Cebâşev Manipulator","authors":"R. Petrescu","doi":"10.3844/ajeassp.2022.239.254","DOIUrl":"https://doi.org/10.3844/ajeassp.2022.239.254","url":null,"abstract":": The paper presents a new method for determining the dynamic parameters of a Cebâşev conveyor mechanism, solvable in two steps. In the first step, the classic method of preserving the kinetic energy of the entire mechanism is used to determine the rotating mass of the Cebâşev mechanism denoted by J*, this being the dynamic rotating mass of the entire mechanism reduced to the driving element 1 (of the crank type; classical rotating mass is called the mechanical or mass moment of inertia). In the second step (with the help of a new method), the dynamic angular speed of the Cebâşev mechanism's crank is directly determined, by using the mechanism's kinetic energy conservation a second time. This eliminates the need to use a more laborious classical method in the second step, such as differential Newton, Lagrange of type 1, Laplace transform, or Fourier, a finite difference method.","PeriodicalId":7425,"journal":{"name":"American Journal of Engineering and Applied Sciences","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88624556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-01DOI: 10.3844/ajeassp.2022.274.287
M. Muktadir, Sun Yi, S. Hamoush, Selorm Garfo, Sai Charan Dekkata, Xingguang Li, Amanuel Abrdo Tereda, Richard McKee, Kamar Brown, Normal Klawah
{"title":"Uncrewed Ground Vehicles (UGVs) and Nature-Inspired Designed Robot DIGIT and SPOT: A Review","authors":"M. Muktadir, Sun Yi, S. Hamoush, Selorm Garfo, Sai Charan Dekkata, Xingguang Li, Amanuel Abrdo Tereda, Richard McKee, Kamar Brown, Normal Klawah","doi":"10.3844/ajeassp.2022.274.287","DOIUrl":"https://doi.org/10.3844/ajeassp.2022.274.287","url":null,"abstract":"","PeriodicalId":7425,"journal":{"name":"American Journal of Engineering and Applied Sciences","volume":"118 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87964246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-01DOI: 10.3844/ajeassp.2022.197.208
S. Lahouar, L. Romdhane
: In this study, we address the problem of singularities of a hybrid serial-cable driven planar robot. Based on an analytical kinetostatic analysis three types of singularities are determined, i.e., serial, parallel, and combined singularities. In addition, cable tensions should be positive, otherwise, the robot will be uncontrollable. The serial singularity corresponds to positions where the serial port of the robot is fully extended or fully folded. The parallel singularity corresponds to aligned cables and combined singularities correspond to both cases. Cable tensions distribution, within the workspace, is determined, which allowed the identification of regions where the cable tensions exceed an allowable value. The influence of physical parameters on the workspace of the robot and its singular configurations is also studied. An example of a gait rehabilitation system using this type of robot is shown. Based on the kinetostatic analysis, multi-objective optimization of the dexterity and the cable tensions is performed, which yielded solutions represented by a Pareto front. The results have been extended to the case of 3 degrees of freedom hybrid robot.
{"title":"Singularity Analysis of a Hybrid Serial-Cable Driven Planar Robot","authors":"S. Lahouar, L. Romdhane","doi":"10.3844/ajeassp.2022.197.208","DOIUrl":"https://doi.org/10.3844/ajeassp.2022.197.208","url":null,"abstract":": In this study, we address the problem of singularities of a hybrid serial-cable driven planar robot. Based on an analytical kinetostatic analysis three types of singularities are determined, i.e., serial, parallel, and combined singularities. In addition, cable tensions should be positive, otherwise, the robot will be uncontrollable. The serial singularity corresponds to positions where the serial port of the robot is fully extended or fully folded. The parallel singularity corresponds to aligned cables and combined singularities correspond to both cases. Cable tensions distribution, within the workspace, is determined, which allowed the identification of regions where the cable tensions exceed an allowable value. The influence of physical parameters on the workspace of the robot and its singular configurations is also studied. An example of a gait rehabilitation system using this type of robot is shown. Based on the kinetostatic analysis, multi-objective optimization of the dexterity and the cable tensions is performed, which yielded solutions represented by a Pareto front. The results have been extended to the case of 3 degrees of freedom hybrid robot.","PeriodicalId":7425,"journal":{"name":"American Journal of Engineering and Applied Sciences","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87914069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}