Pub Date : 2024-08-02DOI: 10.1146/annurev-ecolsys-102722-012749
Luke J. Potgieter, Daijiang Li, Benjamin Baiser, Ingolf Kühn, Myla F.J. Aronson, Marta Carboni, Laura Celesti-Grapow, Ana Carolina L. de Matos, Zdeňka Lososová, Flavia A. Montaño-Centellas, Petr Pyšek, David M. Richardson, Toby P.N. Tsang, Rafael D. Zenni, Marc W. Cadotte
The globalization of trade and increased human mobility have facilitated the introduction and spread of nonnative species, posing significant threats to biodiversity and human well-being. As centers of global trade and human populations, cities are foci for the introduction, establishment, and spread of nonnative species. We present a global synthesis of urban characteristics that drive biological invasions within and across cities, focusing on four axes: (a) connectivity, (b) physical properties, (c) culture and socioeconomics, and (d) biogeography and climate. Urban characteristics such as increased connectivity within and among cities, city size and age, and wealth emerged as important drivers of nonnative species diversity and spread, while the relative importance of biogeographic and climate drivers varied considerably. Elaborating how these characteristics shape biological invasions in cities is crucial for designing and implementing strategies to mitigate the impacts of invasions on ecological systems and human well-being.
{"title":"Cities Shape the Diversity and Spread of Nonnative Species","authors":"Luke J. Potgieter, Daijiang Li, Benjamin Baiser, Ingolf Kühn, Myla F.J. Aronson, Marta Carboni, Laura Celesti-Grapow, Ana Carolina L. de Matos, Zdeňka Lososová, Flavia A. Montaño-Centellas, Petr Pyšek, David M. Richardson, Toby P.N. Tsang, Rafael D. Zenni, Marc W. Cadotte","doi":"10.1146/annurev-ecolsys-102722-012749","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-102722-012749","url":null,"abstract":"The globalization of trade and increased human mobility have facilitated the introduction and spread of nonnative species, posing significant threats to biodiversity and human well-being. As centers of global trade and human populations, cities are foci for the introduction, establishment, and spread of nonnative species. We present a global synthesis of urban characteristics that drive biological invasions within and across cities, focusing on four axes: (<jats:italic>a</jats:italic>) connectivity, (<jats:italic>b</jats:italic>) physical properties, (<jats:italic>c</jats:italic>) culture and socioeconomics, and (<jats:italic>d</jats:italic>) biogeography and climate. Urban characteristics such as increased connectivity within and among cities, city size and age, and wealth emerged as important drivers of nonnative species diversity and spread, while the relative importance of biogeographic and climate drivers varied considerably. Elaborating how these characteristics shape biological invasions in cities is crucial for designing and implementing strategies to mitigate the impacts of invasions on ecological systems and human well-being.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":null,"pages":null},"PeriodicalIF":11.8,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1146/annurev-ecolsys-110421-102327
Baptiste J. Wijas, Steven D. Allison, Amy T. Austin, William K. Cornwell, J. Hans C. Cornelissen, Paul Eggleton, Shawn Fraver, Mark K.J. Ooi, Jeff R. Powell, Christopher W. Woodall, Amy E. Zanne
Deadwood represents a significant carbon pool and unique biodiversity reservoir in forests and savannas but has been largely overlooked until recently. Storage and release of carbon from deadwood is controlled by interacting decomposition drivers including biotic consumers (animals and microbes) and abiotic factors (water, fire, sunlight, and freeze–thaw). Although previous research has focused mainly on forests, we synthesize deadwood studies across diverse ecosystems with woody vegetation. As changing climates and land-use practices alter the landscape, we expect accelerating but variable rates of inputs and outputs from deadwood pools. Currently, Earth system models implicitly represent only microbial consumers as drivers of wood decomposition; we show that many other factors influence deadwood pools. Forest management practices increasingly recognize deadwood as an important contributor to forest dynamics, biodiversity, and carbon budgets. Together, emerging knowledge from modeling and management suggests a growing need for additional research on deadwood contributions to carbon storage and greenhouse gas emissions.
{"title":"The Role of Deadwood in the Carbon Cycle: Implications for Models, Forest Management, and Future Climates","authors":"Baptiste J. Wijas, Steven D. Allison, Amy T. Austin, William K. Cornwell, J. Hans C. Cornelissen, Paul Eggleton, Shawn Fraver, Mark K.J. Ooi, Jeff R. Powell, Christopher W. Woodall, Amy E. Zanne","doi":"10.1146/annurev-ecolsys-110421-102327","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-110421-102327","url":null,"abstract":"Deadwood represents a significant carbon pool and unique biodiversity reservoir in forests and savannas but has been largely overlooked until recently. Storage and release of carbon from deadwood is controlled by interacting decomposition drivers including biotic consumers (animals and microbes) and abiotic factors (water, fire, sunlight, and freeze–thaw). Although previous research has focused mainly on forests, we synthesize deadwood studies across diverse ecosystems with woody vegetation. As changing climates and land-use practices alter the landscape, we expect accelerating but variable rates of inputs and outputs from deadwood pools. Currently, Earth system models implicitly represent only microbial consumers as drivers of wood decomposition; we show that many other factors influence deadwood pools. Forest management practices increasingly recognize deadwood as an important contributor to forest dynamics, biodiversity, and carbon budgets. Together, emerging knowledge from modeling and management suggests a growing need for additional research on deadwood contributions to carbon storage and greenhouse gas emissions.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":null,"pages":null},"PeriodicalIF":11.8,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141882001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1146/annurev-ecolsys-102622-030749
Reena Debray, Jenny Tung, Elizabeth A. Archie
Animals with close social relationships often have similar microbiomes. These socially structured microbiomes can arise through multiple mechanisms that are often difficult to disentangle, including transmission between social partners or via socially structured, shared environments. Here, we review evidence for socially structured microbiomes and propose methods to differentiate the mechanisms that give rise to them. We discuss the evolutionary implications of these mechanisms for both hosts and their microbiomes, including the possibility that social transmission selects for host-specialized microbiomes. We conclude by identifying outstanding questions related to social microbiomes and their implications for social evolution. We identify new or underutilized approaches like longitudinal study designs, strain-sharing analysis, and culture-based characterization to address these outstanding questions.
{"title":"Ecology and Evolution of the Social Microbiome","authors":"Reena Debray, Jenny Tung, Elizabeth A. Archie","doi":"10.1146/annurev-ecolsys-102622-030749","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-102622-030749","url":null,"abstract":"Animals with close social relationships often have similar microbiomes. These socially structured microbiomes can arise through multiple mechanisms that are often difficult to disentangle, including transmission between social partners or via socially structured, shared environments. Here, we review evidence for socially structured microbiomes and propose methods to differentiate the mechanisms that give rise to them. We discuss the evolutionary implications of these mechanisms for both hosts and their microbiomes, including the possibility that social transmission selects for host-specialized microbiomes. We conclude by identifying outstanding questions related to social microbiomes and their implications for social evolution. We identify new or underutilized approaches like longitudinal study designs, strain-sharing analysis, and culture-based characterization to address these outstanding questions.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":null,"pages":null},"PeriodicalIF":11.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-29DOI: 10.1146/annurev-ecolsys-102622-031210
Marcelo A. Aizen, Agostina Torres
Successful invasive species commonly depend on the establishment of mutualistic interactions with native and nonnative biota. In turn, invasive species can affect native mutualisms and community stability. Here, we examine different forms of mutualist acquisition by invasive species and the causes and consequences of mutualism abandonment for invasion processes. Additionally, we delve into the quantitative and qualitative effects of invaders on native biota via mutualism disruption that can occur through direct and diverse indirect pathways. These effects of invasive species on native biota via mutualistic interactions can often be a consequence of the invaders’ abundance, which should be considered a prime predictor when evaluating the impact of invasive species on native mutualisms and community stability. We propose that the ecological as well as the evolutionary consequences of mutualism disruption and switches caused by invasive species can play crucial roles in determining future biodiversity.
{"title":"The Invasion Ecology of Mutualism","authors":"Marcelo A. Aizen, Agostina Torres","doi":"10.1146/annurev-ecolsys-102622-031210","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-102622-031210","url":null,"abstract":"Successful invasive species commonly depend on the establishment of mutualistic interactions with native and nonnative biota. In turn, invasive species can affect native mutualisms and community stability. Here, we examine different forms of mutualist acquisition by invasive species and the causes and consequences of mutualism abandonment for invasion processes. Additionally, we delve into the quantitative and qualitative effects of invaders on native biota via mutualism disruption that can occur through direct and diverse indirect pathways. These effects of invasive species on native biota via mutualistic interactions can often be a consequence of the invaders’ abundance, which should be considered a prime predictor when evaluating the impact of invasive species on native mutualisms and community stability. We propose that the ecological as well as the evolutionary consequences of mutualism disruption and switches caused by invasive species can play crucial roles in determining future biodiversity.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":null,"pages":null},"PeriodicalIF":11.8,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141863689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1146/annurev-ecolsys-102722-021904
Nico Blüthgen, Michael Staab
Ecological networks of species interactions are popular and provide powerful analytical tools for understanding variation in community structure and ecosystem functioning. However, network analyses and commonly used metrics such as nestedness and connectance have also attracted criticism. One major concern is that observed patterns are misinterpreted as niche properties such as specialization, whereas they may instead merely reflect variation in sampling, abundance, and/or diversity. As a result, studies potentially draw flawed conclusions about ecological function, stability, or coextinction risks. We highlight potential biases in analyzing and interpreting species-interaction networks and review the solutions available to overcome them, among which we particularly recommend the use of null models that account for species abundances. We show why considering variation across species and networks is important for understanding species interactions and their consequences. Network analyses can advance knowledge on the principles of species interactions but only when judiciously applied.
{"title":"A Critical Evaluation of Network Approaches for Studying Species Interactions","authors":"Nico Blüthgen, Michael Staab","doi":"10.1146/annurev-ecolsys-102722-021904","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-102722-021904","url":null,"abstract":"Ecological networks of species interactions are popular and provide powerful analytical tools for understanding variation in community structure and ecosystem functioning. However, network analyses and commonly used metrics such as nestedness and connectance have also attracted criticism. One major concern is that observed patterns are misinterpreted as niche properties such as specialization, whereas they may instead merely reflect variation in sampling, abundance, and/or diversity. As a result, studies potentially draw flawed conclusions about ecological function, stability, or coextinction risks. We highlight potential biases in analyzing and interpreting species-interaction networks and review the solutions available to overcome them, among which we particularly recommend the use of null models that account for species abundances. We show why considering variation across species and networks is important for understanding species interactions and their consequences. Network analyses can advance knowledge on the principles of species interactions but only when judiciously applied.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":null,"pages":null},"PeriodicalIF":11.8,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141785659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-17DOI: 10.1146/annurev-ecolsys-102722-013135
Bethany A. Bradley, Evelyn M. Beaury, Belinda Gallardo, Inés Ibáñez, Catherine Jarnevich, Toni Lyn Morelli, Helen R. Sofaer, Cascade J.B. Sorte, Montserrat Vilà
There is broad concern that the range shifts of global flora and fauna will not keep up with climate change, increasing the likelihood of population declines and extinctions. Many populations of nonnative species already have advantages over native species, including widespread human-aided dispersal and release from natural enemies. But do nonnative species also have an advantage with climate change? Here, we review observed and potential range shifts for native and nonnative species globally. We show that nonnative species are expanding their ranges 100 times faster than native species, reflecting both traits that enable rapid spread and ongoing human-mediated introduction. We further show that nonnative species have large potential ranges and range expansions with climate change, likely due to a combination of widespread introduction and broader climatic tolerances. With faster spread rates and larger potential to persist or expand, nonnative populations have a decided advantage in a changing climate.
{"title":"Observed and Potential Range Shifts of Native and Nonnative Species with Climate Change","authors":"Bethany A. Bradley, Evelyn M. Beaury, Belinda Gallardo, Inés Ibáñez, Catherine Jarnevich, Toni Lyn Morelli, Helen R. Sofaer, Cascade J.B. Sorte, Montserrat Vilà","doi":"10.1146/annurev-ecolsys-102722-013135","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-102722-013135","url":null,"abstract":"There is broad concern that the range shifts of global flora and fauna will not keep up with climate change, increasing the likelihood of population declines and extinctions. Many populations of nonnative species already have advantages over native species, including widespread human-aided dispersal and release from natural enemies. But do nonnative species also have an advantage with climate change? Here, we review observed and potential range shifts for native and nonnative species globally. We show that nonnative species are expanding their ranges 100 times faster than native species, reflecting both traits that enable rapid spread and ongoing human-mediated introduction. We further show that nonnative species have large potential ranges and range expansions with climate change, likely due to a combination of widespread introduction and broader climatic tolerances. With faster spread rates and larger potential to persist or expand, nonnative populations have a decided advantage in a changing climate.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":null,"pages":null},"PeriodicalIF":11.8,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-17DOI: 10.1146/annurev-ecolsys-102722-020508
Hélène Morlon, Jérémy Andréoletti, Joëlle Barido-Sottani, Sophia Lambert, Benoît Perez-Lamarque, Ignacio Quintero, Viktor Senderov, Pierre Veron
Species diversification—the balance between speciation and extinction—is fundamental to our understanding of how species richness varies in space and time and throughout the Tree of Life. Phylogenetic approaches provide insights into species diversification by enabling support for alternative diversification scenarios to be compared and speciation and extinction rates to be estimated. Here, we review the current toolkit available for conducting such analyses. We first highlight how modeling efforts over the past decade have fostered a notable transition from overly simplistic evolutionary scenarios to a more nuanced understanding of how and why diversification rates vary through time and across lineages. Using the latitudinal diversity gradient as a case study, we then illustrate the impact that modeling choices can have on the results obtained. Finally, we review recent progress in two areas that are still lagging behind: phylogenetic insights into microbial diversification and the speciation process.
{"title":"Phylogenetic Insights into Diversification","authors":"Hélène Morlon, Jérémy Andréoletti, Joëlle Barido-Sottani, Sophia Lambert, Benoît Perez-Lamarque, Ignacio Quintero, Viktor Senderov, Pierre Veron","doi":"10.1146/annurev-ecolsys-102722-020508","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-102722-020508","url":null,"abstract":"Species diversification—the balance between speciation and extinction—is fundamental to our understanding of how species richness varies in space and time and throughout the Tree of Life. Phylogenetic approaches provide insights into species diversification by enabling support for alternative diversification scenarios to be compared and speciation and extinction rates to be estimated. Here, we review the current toolkit available for conducting such analyses. We first highlight how modeling efforts over the past decade have fostered a notable transition from overly simplistic evolutionary scenarios to a more nuanced understanding of how and why diversification rates vary through time and across lineages. Using the latitudinal diversity gradient as a case study, we then illustrate the impact that modeling choices can have on the results obtained. Finally, we review recent progress in two areas that are still lagging behind: phylogenetic insights into microbial diversification and the speciation process.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":null,"pages":null},"PeriodicalIF":11.8,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-02DOI: 10.1146/annurev-ecolsys-022323-083451
Jianzhi Zhang
Pleiotropy refers to the phenomenon of one gene or one mutation affecting multiple phenotypic traits. While the concept of pleiotropy is as old as Mendelian genetics, functional genomics has finally allowed the first glimpses of the extent of pleiotropy for a large fraction of genes in a genome. After describing conceptual and operational difficulties in quantifying pleiotropy and the pros and cons of various methods for measuring pleiotropy, I review empirical data on pleiotropy, which generally show an L-shaped distribution of the degree of pleiotropy (i.e., the number of traits affected), with most genes having low pleiotropy. I then review the current understanding of the molecular basis of pleiotropy. In the rest of the review, I discuss evolutionary consequences of pleiotropy, focusing on advances in topics including the cost of complexity, regulatory versus coding evolution, environmental pleiotropy and adaptation, evolution of ageing and other seemingly harmful traits, and evolutionary resolution of pleiotropy.
{"title":"Patterns and Evolutionary Consequences of Pleiotropy","authors":"Jianzhi Zhang","doi":"10.1146/annurev-ecolsys-022323-083451","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-022323-083451","url":null,"abstract":"Pleiotropy refers to the phenomenon of one gene or one mutation affecting multiple phenotypic traits. While the concept of pleiotropy is as old as Mendelian genetics, functional genomics has finally allowed the first glimpses of the extent of pleiotropy for a large fraction of genes in a genome. After describing conceptual and operational difficulties in quantifying pleiotropy and the pros and cons of various methods for measuring pleiotropy, I review empirical data on pleiotropy, which generally show an L-shaped distribution of the degree of pleiotropy (i.e., the number of traits affected), with most genes having low pleiotropy. I then review the current understanding of the molecular basis of pleiotropy. In the rest of the review, I discuss evolutionary consequences of pleiotropy, focusing on advances in topics including the cost of complexity, regulatory versus coding evolution, environmental pleiotropy and adaptation, evolution of ageing and other seemingly harmful traits, and evolutionary resolution of pleiotropy.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135933023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01Epub Date: 2023-08-04DOI: 10.1146/annurev-ecolsys-102221-050519
Eva Ringler, Bibiana Rojas, Jennifer L Stynoski, Lisa M Schulte
Parenting is considered a key evolutionary innovation that contributed to the diversification and expansion of vertebrates. However, we know little about how such diversity evolved. Amphibians are an ideal group in which to identify the ecological factors that have facilitated or constrained the evolution of different forms of parental care. Among, but also within, the three amphibian orders-Anura, Caudata, and Gymnophiona-there is a high level of variation in habitat use, fertilization mode, mating systems, and parental sex roles. Recent work using broad phylogenetic, experimental, and physiological approaches has helped to uncover the factors that have selected for the evolution of care and transitions between different forms of parenting. Here, we highlight the exceptional diversity of amphibian parental care, emphasize the unique opportunities this group offers for addressing key questions about the evolution of parenting, and give insights into promising novel directions of research.
{"title":"What Amphibians Can Teach Us About the Evolution of Parental Care.","authors":"Eva Ringler, Bibiana Rojas, Jennifer L Stynoski, Lisa M Schulte","doi":"10.1146/annurev-ecolsys-102221-050519","DOIUrl":"10.1146/annurev-ecolsys-102221-050519","url":null,"abstract":"<p><p>Parenting is considered a key evolutionary innovation that contributed to the diversification and expansion of vertebrates. However, we know little about how such diversity evolved. Amphibians are an ideal group in which to identify the ecological factors that have facilitated or constrained the evolution of different forms of parental care. Among, but also within, the three amphibian orders-Anura, Caudata, and Gymnophiona-there is a high level of variation in habitat use, fertilization mode, mating systems, and parental sex roles. Recent work using broad phylogenetic, experimental, and physiological approaches has helped to uncover the factors that have selected for the evolution of care and transitions between different forms of parenting. Here, we highlight the exceptional diversity of amphibian parental care, emphasize the unique opportunities this group offers for addressing key questions about the evolution of parenting, and give insights into promising novel directions of research.</p>","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":null,"pages":null},"PeriodicalIF":11.2,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616154/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81281803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-29DOI: 10.1146/annurev-ecolsys-102220-025458
J. Goldbogen, N. Pyenson, P. Madsen
Whales are an extraordinary study group for questions about ecology and evolution because their combinations of extreme body sizes and unique foraging strategies are unparalleled among animals. From a terrestrial ancestry, whales evolved specialized oceanic foraging mechanisms that characterize the two main groups of living cetaceans: echolocation by toothed whales and bulk filter feeding by baleen whales. In toothed whales, lineage-specific increases in body size, enhanced diving capacity, and echolocation enable them to hunt the most abundant prey on the planet: deep-sea fish and cephalopods. Even greater body size increases, along with filter feeding and fasting capacity, permit large baleen whales to migrate long distances and exploit epipelagic patches of schooling prey, such as krill or fish, which are highly abundant but ephemeral. For both groups, prey abundance and distribution limits foraging performance, yielding divergent energetic niches that have shaped their convergent evolution to gigantism. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 54 is November 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
{"title":"How Whales Dive, Feast, and Fast: The Ecophysiological Drivers and Limits of Foraging in the Evolution of Cetaceans","authors":"J. Goldbogen, N. Pyenson, P. Madsen","doi":"10.1146/annurev-ecolsys-102220-025458","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-102220-025458","url":null,"abstract":"Whales are an extraordinary study group for questions about ecology and evolution because their combinations of extreme body sizes and unique foraging strategies are unparalleled among animals. From a terrestrial ancestry, whales evolved specialized oceanic foraging mechanisms that characterize the two main groups of living cetaceans: echolocation by toothed whales and bulk filter feeding by baleen whales. In toothed whales, lineage-specific increases in body size, enhanced diving capacity, and echolocation enable them to hunt the most abundant prey on the planet: deep-sea fish and cephalopods. Even greater body size increases, along with filter feeding and fasting capacity, permit large baleen whales to migrate long distances and exploit epipelagic patches of schooling prey, such as krill or fish, which are highly abundant but ephemeral. For both groups, prey abundance and distribution limits foraging performance, yielding divergent energetic niches that have shaped their convergent evolution to gigantism. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 54 is November 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":null,"pages":null},"PeriodicalIF":11.8,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73380879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}