首页 > 最新文献

Annual Review of Ecology, Evolution, and Systematics最新文献

英文 中文
Functional Roles of Parasitic Plants in a Warming World 寄生植物在全球变暖中的功能作用
IF 11.8 1区 生物学 Q1 ECOLOGY Pub Date : 2022-07-25 DOI: 10.1146/annurev-ecolsys-102320-115331
D. Watson, R. McLellan, F. Fontúrbel
We consider the mechanistic basis and functional significance of the pervasive influence of parasitic plants on productivity and diversity, synthesizing recent findings on their responses to drought, heat waves, and fire. Although parasites represent just 1% of all angiosperms, the ecophysiological traits associated with parasitism confer pronounced impacts on their hosts and disproportionate influence upon community structure, composition, and broader ecosystem function. New insights into the roles of their pollinators, seed dispersers, and litter-dependent detritivores have advanced our understanding of how parasitic plants modulate animal communities via their extended and complementary phenology. Direct and indirect impacts of climate change on parasitic plants and their ecological roles are already apparent. Trade-offs between maximizing efficiency at obtaining water from hosts and sensitivity to water stress underlie range shifts and host switching of parasitic plants and increased reliance on these plants by animal communities for food and shelter. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 53 is November 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
我们考虑了寄生植物对生产力和多样性的普遍影响的机制基础和功能意义,综合了它们对干旱、热浪和火灾的反应的最新发现。尽管寄生物仅占被子植物的1%,但寄生物的生理生态特性对寄主产生了显著的影响,并对群落结构、组成和更广泛的生态系统功能产生了不成比例的影响。对它们的传粉者、种子传播者和依赖凋落物的腐食动物的作用的新见解,提高了我们对寄生植物如何通过其扩展和互补的物候调节动物群落的理解。气候变化对寄生植物的直接和间接影响及其生态作用已经十分明显。最大限度地从宿主获取水分的效率与对水分胁迫的敏感性之间的权衡是寄生植物范围转移和宿主切换的基础,也是动物群落对这些植物的食物和住所依赖程度增加的基础。《生态、进化和分类学年度评论》第53卷的最终在线出版日期预计为2022年11月。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
{"title":"Functional Roles of Parasitic Plants in a Warming World","authors":"D. Watson, R. McLellan, F. Fontúrbel","doi":"10.1146/annurev-ecolsys-102320-115331","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-102320-115331","url":null,"abstract":"We consider the mechanistic basis and functional significance of the pervasive influence of parasitic plants on productivity and diversity, synthesizing recent findings on their responses to drought, heat waves, and fire. Although parasites represent just 1% of all angiosperms, the ecophysiological traits associated with parasitism confer pronounced impacts on their hosts and disproportionate influence upon community structure, composition, and broader ecosystem function. New insights into the roles of their pollinators, seed dispersers, and litter-dependent detritivores have advanced our understanding of how parasitic plants modulate animal communities via their extended and complementary phenology. Direct and indirect impacts of climate change on parasitic plants and their ecological roles are already apparent. Trade-offs between maximizing efficiency at obtaining water from hosts and sensitivity to water stress underlie range shifts and host switching of parasitic plants and increased reliance on these plants by animal communities for food and shelter. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 53 is November 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"1 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89785402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Complexity, Evolvability, and the Process of Adaptation 复杂性、可进化性和适应过程
IF 11.8 1区 生物学 Q1 ECOLOGY Pub Date : 2022-07-25 DOI: 10.1146/annurev-ecolsys-102320-090809
D. Houle, Daniela M. Rossoni
There is a widespread view that the process of adaptation in complex systems is made difficult due to an evolutionary cost of complexity that is reflected in lower evolvability. This line of reasoning suggests that organisms must have special properties to overcome this cost, such as integration, modularity, and robustness, and that the reduction in the rate of evolution and variational constraints could help explain why organisms might not respond to selection. Here, we discuss the issues that arise from this conviction and highlight an alternative view where complexity represents an opportunity by increasing the evolutionary potential of a population. We highlight the lack of evidence supporting the influence of complexity on evolvability. Empirical data on the patterns of contemporary selection are critical for understanding this relationship. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 53 is November 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
有一种广泛的观点认为,复杂系统的适应过程是困难的,因为复杂性的进化成本反映在较低的可进化性上。这条推理路线表明,生物必须具有特殊的属性来克服这种成本,例如整合、模块化和健壮性,并且进化速度的降低和变异约束可以帮助解释为什么生物可能对选择没有反应。在这里,我们讨论了由这一信念产生的问题,并强调了另一种观点,即复杂性通过增加种群的进化潜力代表了一种机会。我们强调缺乏证据支持复杂性对可进化性的影响。关于当代选择模式的经验数据对于理解这种关系至关重要。《生态、进化和分类学年度评论》第53卷的最终在线出版日期预计为2022年11月。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
{"title":"Complexity, Evolvability, and the Process of Adaptation","authors":"D. Houle, Daniela M. Rossoni","doi":"10.1146/annurev-ecolsys-102320-090809","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-102320-090809","url":null,"abstract":"There is a widespread view that the process of adaptation in complex systems is made difficult due to an evolutionary cost of complexity that is reflected in lower evolvability. This line of reasoning suggests that organisms must have special properties to overcome this cost, such as integration, modularity, and robustness, and that the reduction in the rate of evolution and variational constraints could help explain why organisms might not respond to selection. Here, we discuss the issues that arise from this conviction and highlight an alternative view where complexity represents an opportunity by increasing the evolutionary potential of a population. We highlight the lack of evidence supporting the influence of complexity on evolvability. Empirical data on the patterns of contemporary selection are critical for understanding this relationship. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 53 is November 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"37 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78551194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Epistasis and Adaptation on Fitness Landscapes 适应性景观的上位性与适应性
IF 11.8 1区 生物学 Q1 ECOLOGY Pub Date : 2022-04-28 DOI: 10.1146/annurev-ecolsys-102320-112153
Claudia Bank
Epistasis occurs when the effect of a mutation depends on its carrier's genetic background. Despite increasing evidence that epistasis for fitness is common, its role during evolution is contentious. Fitness landscapes, which are mappings of genotype or phenotype to fitness, capture the full extent and complexity of epistasis. Fitness landscape theory has shown how epistasis affects the course and the outcome of evolution. Moreover, by measuring the competitive fitness of sets of tens to thousands of connected genotypes, empirical fitness landscapes have shown that epistasis is frequent and depends on the fitness measure, the choice of mutations for the landscape, and the environment in which it was measured. In this article, I review fitness landscape theory and experiments and their implications for the role of epistasis in adaptation. I discuss theoretical expectations in the light of empirical fitness landscapes and highlight open challenges and future directions toward integrating theory and data and incorporating ecological factors. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 53 is November 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
上位性发生时,突变的影响取决于其携带者的遗传背景。尽管越来越多的证据表明适应上位是常见的,但它在进化中的作用是有争议的。适应度景观是基因型或表型到适应度的映射,捕捉了上位性的全部范围和复杂性。适应度景观理论揭示了上位性对进化过程和结果的影响。此外,通过测量成千上万个连接基因型的竞争适应度,经验适应度景观表明,上位性是频繁的,并且取决于适应度测量、景观突变的选择和测量环境。在本文中,我回顾了适应性景观理论和实验及其对上位在适应中的作用的启示。我讨论了在实证适应度景观的理论期望,并强调了开放的挑战和未来的方向,以整合理论和数据,并纳入生态因素。《生态、进化和分类学年度评论》第53卷的最终在线出版日期预计为2022年11月。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
{"title":"Epistasis and Adaptation on Fitness Landscapes","authors":"Claudia Bank","doi":"10.1146/annurev-ecolsys-102320-112153","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-102320-112153","url":null,"abstract":"Epistasis occurs when the effect of a mutation depends on its carrier's genetic background. Despite increasing evidence that epistasis for fitness is common, its role during evolution is contentious. Fitness landscapes, which are mappings of genotype or phenotype to fitness, capture the full extent and complexity of epistasis. Fitness landscape theory has shown how epistasis affects the course and the outcome of evolution. Moreover, by measuring the competitive fitness of sets of tens to thousands of connected genotypes, empirical fitness landscapes have shown that epistasis is frequent and depends on the fitness measure, the choice of mutations for the landscape, and the environment in which it was measured. In this article, I review fitness landscape theory and experiments and their implications for the role of epistasis in adaptation. I discuss theoretical expectations in the light of empirical fitness landscapes and highlight open challenges and future directions toward integrating theory and data and incorporating ecological factors. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 53 is November 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"24 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73047277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 27
Evolvability: A Quantitative-Genetics Perspective 进化:一个数量遗传学的观点
IF 11.8 1区 生物学 Q1 ECOLOGY Pub Date : 2021-11-02 DOI: 10.1146/annurev-ecolsys-011121-021241
T. F. Hansen, C. Pélabon
The concept of evolvability emerged in the early 1990s and soon became fashionable as a label for different streams of research in evolutionary biology. In evolutionary quantitative genetics, evolvability is defined as the ability of a population to respond to directional selection. This differs from other fields by treating evolvability as a property of populations rather than organisms or lineages and in being focused on quantification and short-term prediction rather than on macroevolution. While the term evolvability is new to quantitative genetics, many of the associated ideas and research questions have been with the field from its inception as biometry. Recent research on evolvability is more than a relabeling of old questions, however. New operational measures of evolvability have opened possibilities for understanding adaptation to rapid environmental change, assessing genetic constraints, and linking micro- and macroevolution.
可进化性的概念出现在20世纪90年代初,并很快成为进化生物学不同研究流的时髦标签。在进化定量遗传学中,进化能力被定义为种群对方向选择作出反应的能力。这与其他领域的不同之处在于,它将可进化性视为群体的特性,而不是生物体或谱系的特性,它侧重于量化和短期预测,而不是宏观进化。虽然“可进化性”一词对定量遗传学来说是新的,但许多相关的想法和研究问题从生物计量学开始就与该领域有关。然而,最近关于可进化性的研究不仅仅是对老问题的重新贴标签。新的可进化性操作措施为理解对快速环境变化的适应、评估遗传约束以及将微观和宏观进化联系起来提供了可能性。
{"title":"Evolvability: A Quantitative-Genetics Perspective","authors":"T. F. Hansen, C. Pélabon","doi":"10.1146/annurev-ecolsys-011121-021241","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-011121-021241","url":null,"abstract":"The concept of evolvability emerged in the early 1990s and soon became fashionable as a label for different streams of research in evolutionary biology. In evolutionary quantitative genetics, evolvability is defined as the ability of a population to respond to directional selection. This differs from other fields by treating evolvability as a property of populations rather than organisms or lineages and in being focused on quantification and short-term prediction rather than on macroevolution. While the term evolvability is new to quantitative genetics, many of the associated ideas and research questions have been with the field from its inception as biometry. Recent research on evolvability is more than a relabeling of old questions, however. New operational measures of evolvability have opened possibilities for understanding adaptation to rapid environmental change, assessing genetic constraints, and linking micro- and macroevolution.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"57 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77641328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 27
A Dual Role for Behavior in Evolution and Shaping Organismal Selective Environments 行为在进化和形成生物选择环境中的双重作用
IF 11.8 1区 生物学 Q1 ECOLOGY Pub Date : 2021-11-02 DOI: 10.1146/annurev-ecolsys-012921-052523
W. Wcislo
The hypothesis that evolved behaviors play a determining role in facilitating and impeding the evolution of other traits has been discussed for more than 100 years with little consensus beyond an agreement that the ideas are theoretically plausible in accord with the Modern Synthesis. Many recent reviews of the genomic, epigenetic, and developmental mechanisms underpinning major behavioral transitions show how facultative expression of novel behaviors can lead to the evolution of obligate behaviors and structures that enhance behavioral function. Phylogenetic and genomic studies indicate that behavioral traits are generally evolutionarily more labile than other traits and that they help shape selective environments on the latter traits. Adaptive decision-making to encounter resources and avoid stress sources requires specific sensory inputs, which behaviorally shape selective environments by determining those features of the external world that are biologically relevant. These recent findings support the hypothesis of a dual role for behavior in evolution and are consistent with current evolutionary theory.
进化的行为在促进和阻碍其他特征的进化中起决定性作用的假设已经讨论了100多年,除了同意这些观点在理论上是合理的,与现代综合理论一致之外,几乎没有达成共识。最近许多关于支持主要行为转变的基因组、表观遗传学和发育机制的综述表明,新行为的兼性表达如何导致增强行为功能的专性行为和结构的进化。系统发育和基因组研究表明,行为特征在进化上通常比其他特征更不稳定,它们有助于形成后一种特征的选择环境。应对资源和避免压力源的适应性决策需要特定的感官输入,这些感官输入通过确定与生物相关的外部世界的那些特征,在行为上塑造了选择性环境。这些最近的发现支持了行为在进化中扮演双重角色的假设,并与当前的进化理论相一致。
{"title":"A Dual Role for Behavior in Evolution and Shaping Organismal Selective Environments","authors":"W. Wcislo","doi":"10.1146/annurev-ecolsys-012921-052523","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-012921-052523","url":null,"abstract":"The hypothesis that evolved behaviors play a determining role in facilitating and impeding the evolution of other traits has been discussed for more than 100 years with little consensus beyond an agreement that the ideas are theoretically plausible in accord with the Modern Synthesis. Many recent reviews of the genomic, epigenetic, and developmental mechanisms underpinning major behavioral transitions show how facultative expression of novel behaviors can lead to the evolution of obligate behaviors and structures that enhance behavioral function. Phylogenetic and genomic studies indicate that behavioral traits are generally evolutionarily more labile than other traits and that they help shape selective environments on the latter traits. Adaptive decision-making to encounter resources and avoid stress sources requires specific sensory inputs, which behaviorally shape selective environments by determining those features of the external world that are biologically relevant. These recent findings support the hypothesis of a dual role for behavior in evolution and are consistent with current evolutionary theory.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"3 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72904268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Effects of Selection at Linked Sites on Patterns of Genetic Variability. 连锁位点选择对遗传变异模式的影响。
IF 11.8 1区 生物学 Q1 ECOLOGY Pub Date : 2021-11-01 DOI: 10.1146/annurev-ecolsys-010621-044528
Brian Charlesworth, Jeffrey D Jensen

Patterns of variation and evolution at a given site in a genome can be strongly influenced by the effects of selection at genetically linked sites. In particular, the recombination rates of genomic regions correlate with their amount of within-population genetic variability, the degree to which the frequency distributions of DNA sequence variants differ from their neutral expectations, and the levels of adaptation of their functional components. We review the major population genetic processes that are thought to lead to these patterns, focusing on their effects on patterns of variability: selective sweeps, background selection, associative overdominance, and Hill-Robertson interference among deleterious mutations. We emphasize the difficulties in distinguishing among the footprints of these processes and disentangling them from the effects of purely demographic factors such as population size changes. We also discuss how interactions between selective and demographic processes can significantly affect patterns of variability within genomes.

基因组中某一特定位点的变异和进化模式可能受到遗传关联位点的选择效应的强烈影响。特别是,基因组区域的重组率与其种群内遗传变异性的数量、DNA序列变异的频率分布与其中性预期的差异程度以及其功能成分的适应水平相关。我们回顾了被认为导致这些模式的主要群体遗传过程,重点关注它们对变异性模式的影响:选择性扫描、背景选择、关联显性和有害突变之间的Hill-Robertson干扰。我们强调在区分这些进程的足迹并将它们与诸如人口规模变化等纯粹人口因素的影响分开方面的困难。我们还讨论了选择和人口过程之间的相互作用如何显著影响基因组内的变异模式。
{"title":"Effects of Selection at Linked Sites on Patterns of Genetic Variability.","authors":"Brian Charlesworth,&nbsp;Jeffrey D Jensen","doi":"10.1146/annurev-ecolsys-010621-044528","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-010621-044528","url":null,"abstract":"<p><p>Patterns of variation and evolution at a given site in a genome can be strongly influenced by the effects of selection at genetically linked sites. In particular, the recombination rates of genomic regions correlate with their amount of within-population genetic variability, the degree to which the frequency distributions of DNA sequence variants differ from their neutral expectations, and the levels of adaptation of their functional components. We review the major population genetic processes that are thought to lead to these patterns, focusing on their effects on patterns of variability: selective sweeps, background selection, associative overdominance, and Hill-Robertson interference among deleterious mutations. We emphasize the difficulties in distinguishing among the footprints of these processes and disentangling them from the effects of purely demographic factors such as population size changes. We also discuss how interactions between selective and demographic processes can significantly affect patterns of variability within genomes.</p>","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"52 ","pages":"177-197"},"PeriodicalIF":11.8,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120885/pdf/nihms-1843094.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9392038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 47
Cascading Impacts of Seed Disperser Loss on Plant Communities and Ecosystems 种子传播者损失对植物群落和生态系统的级联影响
IF 11.8 1区 生物学 Q1 ECOLOGY Pub Date : 2021-09-08 DOI: 10.1146/annurev-ecolsys-012221-111742
Haldre S. Rogers, Isabel Donoso, A. Traveset, Evan C. Fricke
Seed dispersal is key to the persistence and spread of plant populations. Because the majority of plant species rely on animals to disperse their seeds, global change drivers that directly affect animals can cause cascading impacts on plant communities. In this review, we synthesize studies assessing how disperser loss alters plant populations, community patterns, multitrophic interactions, and ecosystem functioning. We argue that the magnitude of risk to plants from disperser loss is shaped by the combination of a plant species’ inherent dependence on seed dispersers and the severity of the hazards faced by their dispersers. Because the factors determining a plant species’ risk of decline due to disperser loss can be related to traits of the plants and dispersers, our framework enables a trait-based understanding of change in plant community composition and ecosystem functioning. We discuss how interactions among plants, among dispersers, and across other trophic levels also mediate plant community responses, and we identify areas for future research to understand and mitigate the consequences of disperser loss on plants globally. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 52 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
种子传播是植物种群持续和传播的关键。由于大多数植物物种依赖动物传播种子,直接影响动物的全球变化驱动因素可能对植物群落造成级联影响。在这篇综述中,我们综合了研究如何评估分散物损失改变植物种群,群落模式,多营养相互作用和生态系统功能。我们认为,分散剂损失对植物的风险程度是由植物物种对种子分散剂的内在依赖和它们所面临的危害的严重程度共同决定的。由于决定植物物种因分散剂丧失而衰退风险的因素可能与植物和分散剂的性状有关,因此我们的框架可以基于性状来理解植物群落组成和生态系统功能的变化。我们讨论了植物之间、散布者之间和其他营养水平之间的相互作用如何介导植物群落的反应,并确定了未来研究的领域,以了解和减轻全球植物散布者损失的后果。预计《生态、进化和分类学年度评论》第52卷的最终在线出版日期为2021年11月。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
{"title":"Cascading Impacts of Seed Disperser Loss on Plant Communities and Ecosystems","authors":"Haldre S. Rogers, Isabel Donoso, A. Traveset, Evan C. Fricke","doi":"10.1146/annurev-ecolsys-012221-111742","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-012221-111742","url":null,"abstract":"Seed dispersal is key to the persistence and spread of plant populations. Because the majority of plant species rely on animals to disperse their seeds, global change drivers that directly affect animals can cause cascading impacts on plant communities. In this review, we synthesize studies assessing how disperser loss alters plant populations, community patterns, multitrophic interactions, and ecosystem functioning. We argue that the magnitude of risk to plants from disperser loss is shaped by the combination of a plant species’ inherent dependence on seed dispersers and the severity of the hazards faced by their dispersers. Because the factors determining a plant species’ risk of decline due to disperser loss can be related to traits of the plants and dispersers, our framework enables a trait-based understanding of change in plant community composition and ecosystem functioning. We discuss how interactions among plants, among dispersers, and across other trophic levels also mediate plant community responses, and we identify areas for future research to understand and mitigate the consequences of disperser loss on plants globally. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 52 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"1 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80459723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 47
Causes and Consequences of Apparent Timescaling Across All Estimated Evolutionary Rates 在所有估计的进化速率中明显时间尺度的原因和后果
IF 11.8 1区 生物学 Q1 ECOLOGY Pub Date : 2021-09-08 DOI: 10.1146/annurev-ecolsys-011921-023644
L. Harmon, Matthew W. Pennell, L. F. Henao-Diaz, J. Rolland, Breanna Sipley, J. Uyeda
Evolutionary rates play a central role in connecting micro- and macroevolution. All evolutionary rate estimates, including rates of molecular evolution, trait evolution, and lineage diversification, share a similar scaling pattern with time: The highest rates are those measured over the shortest time interval. This creates a disconnect between micro- and macroevolution, although the pattern is the opposite of what some might expect: Patterns of change over short timescales predict that evolution has tremendous potential to create variation and that potential is barely tapped by macroevolution. In this review, we discuss this shared scaling pattern across evolutionary rates. We break down possible explanations for scaling into two categories, estimation error and model misspecification, and discuss how both apply to each type of rate. We also discuss the consequences of this ubiquitous pattern, which can lead to unexpected results when comparing rates over different timescales. Finally, after addressing purely statistical concerns, we explore a few possibilities for a shared unifying explanation across the three types of rates that results from a failure to fully understand and account for how biological processes scale over time. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 52 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
进化速率在连接微观和宏观进化中起着核心作用。所有的进化速率估计,包括分子进化速率、性状进化速率和谱系多样化速率,都与时间有相似的比例模式:在最短的时间间隔内测量的速率最高。这造成了微观和宏观进化之间的脱节,尽管这种模式与一些人可能期望的相反:在短时间尺度上的变化模式预示着进化具有创造变异的巨大潜力,而这种潜力几乎没有被宏观进化所利用。在这篇综述中,我们讨论了跨进化速率的共享缩放模式。我们将缩放的可能解释分为两类,估计错误和模型错误说明,并讨论如何将两者应用于每种类型的速率。我们还讨论了这种无处不在的模式的后果,当比较不同时间尺度上的比率时,它可能导致意想不到的结果。最后,在解决了纯粹的统计问题之后,我们探讨了三种类型的速率共享统一解释的几种可能性,这些速率是由于未能充分理解和解释生物过程如何随时间扩展而产生的。预计《生态、进化和分类学年度评论》第52卷的最终在线出版日期为2021年11月。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
{"title":"Causes and Consequences of Apparent Timescaling Across All Estimated Evolutionary Rates","authors":"L. Harmon, Matthew W. Pennell, L. F. Henao-Diaz, J. Rolland, Breanna Sipley, J. Uyeda","doi":"10.1146/annurev-ecolsys-011921-023644","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-011921-023644","url":null,"abstract":"Evolutionary rates play a central role in connecting micro- and macroevolution. All evolutionary rate estimates, including rates of molecular evolution, trait evolution, and lineage diversification, share a similar scaling pattern with time: The highest rates are those measured over the shortest time interval. This creates a disconnect between micro- and macroevolution, although the pattern is the opposite of what some might expect: Patterns of change over short timescales predict that evolution has tremendous potential to create variation and that potential is barely tapped by macroevolution. In this review, we discuss this shared scaling pattern across evolutionary rates. We break down possible explanations for scaling into two categories, estimation error and model misspecification, and discuss how both apply to each type of rate. We also discuss the consequences of this ubiquitous pattern, which can lead to unexpected results when comparing rates over different timescales. Finally, after addressing purely statistical concerns, we explore a few possibilities for a shared unifying explanation across the three types of rates that results from a failure to fully understand and account for how biological processes scale over time. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 52 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"92 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80974716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
What Have We Learned from the First 500 Avian Genomes? 我们从前500个鸟类基因组中学到了什么?
IF 11.8 1区 生物学 Q1 ECOLOGY Pub Date : 2021-09-08 DOI: 10.1146/annurev-ecolsys-012121-085928
Gustavo A. Bravo, C. J. Schmitt, S. Edwards
The increased capacity of DNA sequencing has significantly advanced our understanding of the phylogeny of birds and the proximate and ultimate mechanisms molding their genomic diversity. In less than a decade, the number of available avian reference genomes has increased to over 500—approximately 5% of bird diversity—placing birds in a privileged position to advance the fields of phylogenomics and comparative, functional, and population genomics. Whole-genome sequence data, as well as indels and rare genomic changes, are further resolving the avian tree of life. The accumulation of bird genomes, increasingly with long-read sequence data, greatly improves the resolution of genomic features such as germline-restricted chromosomes and the W chromosome, and is facilitating the comparative integration of genotypes and phenotypes. Community-based initiatives such as the Bird 10,000 Genomes Project and Vertebrate Genome Project are playing a fundamental role in amplifying and coalescing a vibrant international program in avian comparative genomics. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 52 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
DNA测序能力的提高极大地促进了我们对鸟类系统发育及其基因组多样性形成的近因和最终机制的理解。在不到十年的时间里,鸟类参考基因组的数量已经增加到500多个,约占鸟类多样性的5%,这使得鸟类在系统基因组学、比较基因组学、功能基因组学和种群基因组学领域处于有利地位。全基因组序列数据,以及索引和罕见的基因组变化,正在进一步解决鸟类生命树的问题。鸟类基因组的积累,以及越来越多的长读序列数据,极大地提高了生殖系限制性染色体和W染色体等基因组特征的分辨率,并促进了基因型和表型的比较整合。以社区为基础的计划,如鸟类10,000基因组计划和脊椎动物基因组计划,在扩大和整合一个充满活力的国际鸟类比较基因组学计划方面发挥着重要作用。预计《生态、进化和分类学年度评论》第52卷的最终在线出版日期为2021年11月。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
{"title":"What Have We Learned from the First 500 Avian Genomes?","authors":"Gustavo A. Bravo, C. J. Schmitt, S. Edwards","doi":"10.1146/annurev-ecolsys-012121-085928","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-012121-085928","url":null,"abstract":"The increased capacity of DNA sequencing has significantly advanced our understanding of the phylogeny of birds and the proximate and ultimate mechanisms molding their genomic diversity. In less than a decade, the number of available avian reference genomes has increased to over 500—approximately 5% of bird diversity—placing birds in a privileged position to advance the fields of phylogenomics and comparative, functional, and population genomics. Whole-genome sequence data, as well as indels and rare genomic changes, are further resolving the avian tree of life. The accumulation of bird genomes, increasingly with long-read sequence data, greatly improves the resolution of genomic features such as germline-restricted chromosomes and the W chromosome, and is facilitating the comparative integration of genotypes and phenotypes. Community-based initiatives such as the Bird 10,000 Genomes Project and Vertebrate Genome Project are playing a fundamental role in amplifying and coalescing a vibrant international program in avian comparative genomics. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 52 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"84 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77448490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 28
Evolution of Thermal Sensitivity in Changing and Variable Climates 变化和变气候条件下热敏性的演化
IF 11.8 1区 生物学 Q1 ECOLOGY Pub Date : 2021-09-03 DOI: 10.1146/annurev-ecolsys-011521-102856
Lauren B. Buckley, J. Kingsolver
Evolutionary adaptation to temperature and climate depends on both the extent to which organisms experience spatial and temporal environmental variation (exposure) and how responsive they are to the environmental variation (sensitivity). Theoretical models and experiments suggesting substantial potential for thermal adaptation have largely omitted realistic environmental variation. Environmental variation can drive fluctuations in selection that slow adaptive evolution. We review how carefully filtering environmental conditions based on how organisms experience their environment and further considering organismal sensitivity can improve predictions of thermal adaptation. We contrast taxa differing in exposure and sensitivity. Plasticity can increase the rate of evolutionary adaptation in taxa exposed to pronounced environmental variation. However, forms of plasticity that severely limit exposure, such as behavioral thermoregulation and phenological shifts, can hinder thermal adaptation. Despite examples of rapid thermal adaptation, experimental studies often reveal evolutionary constraints. Further investigating these constraints and issues of timescale and thermal history are needed to predict evolutionary adaptation and, consequently, population persistence in changing and variable environments. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 52 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
对温度和气候的进化适应既取决于生物体经历空间和时间环境变化的程度(暴露),也取决于它们对环境变化的反应程度(敏感性)。理论模型和实验表明,热适应的巨大潜力在很大程度上忽略了现实的环境变化。环境变化会导致选择的波动,从而减缓适应性进化。我们回顾了如何根据生物体如何体验其环境并进一步考虑生物体敏感性来仔细过滤环境条件可以改善热适应的预测。我们对比不同的分类群在暴露和敏感性。可塑性可以提高暴露于明显环境变化的分类群的进化适应速度。然而,严重限制暴露的可塑性形式,如行为体温调节和物候变化,可能会阻碍热适应。尽管有快速热适应的例子,实验研究经常揭示进化限制。需要进一步研究这些限制和时间尺度和热历史问题,以预测进化适应,从而预测种群在变化和可变环境中的持久性。预计《生态、进化和分类学年度评论》第52卷的最终在线出版日期为2021年11月。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
{"title":"Evolution of Thermal Sensitivity in Changing and Variable Climates","authors":"Lauren B. Buckley, J. Kingsolver","doi":"10.1146/annurev-ecolsys-011521-102856","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-011521-102856","url":null,"abstract":"Evolutionary adaptation to temperature and climate depends on both the extent to which organisms experience spatial and temporal environmental variation (exposure) and how responsive they are to the environmental variation (sensitivity). Theoretical models and experiments suggesting substantial potential for thermal adaptation have largely omitted realistic environmental variation. Environmental variation can drive fluctuations in selection that slow adaptive evolution. We review how carefully filtering environmental conditions based on how organisms experience their environment and further considering organismal sensitivity can improve predictions of thermal adaptation. We contrast taxa differing in exposure and sensitivity. Plasticity can increase the rate of evolutionary adaptation in taxa exposed to pronounced environmental variation. However, forms of plasticity that severely limit exposure, such as behavioral thermoregulation and phenological shifts, can hinder thermal adaptation. Despite examples of rapid thermal adaptation, experimental studies often reveal evolutionary constraints. Further investigating these constraints and issues of timescale and thermal history are needed to predict evolutionary adaptation and, consequently, population persistence in changing and variable environments. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 52 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"44 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83044510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
期刊
Annual Review of Ecology, Evolution, and Systematics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1