We evaluated the effect of infrared thermography (IRT) on the clinical assessment of bacterial and viral pharyngitis and its impact on the predictive value of the McIsaac score algorithm for streptococcal pharyngitis in children. We also investigated if IRT could distinguish between bacterial and viral pharyngitis. The study included children aged 2-17 years presenting with sore throat and fever over 38°C from November 1, 2021, to April 30, 2022. Of the 76 assessed children, 16 were excluded due to missing data or technical issues, leaving 60 children (32 males, 28 females) divided into three groups: Group A with streptococcal pharyngitis (N = 30), viral pharyngitis (N = 16), and healthy controls (N = 14). McIsaac score and IRT imaging showed a 90% positive predictive value for streptococcal pharyngitis. While IRT alone could not distinguish between bacterial and viral infections, it significantly increased the predictive value when combined with the McIsaac score.
{"title":"Novel Diagnostic Approach for Acute Pharyngitis: Combining Machine Learning With Thermal Imaging.","authors":"Oshrit Hoffer, Moriya Cohen, Maya Gerstein, Vered Shkalim Zemer, Yael Reichenberg, Dima Bykhovsky, Moshe Hoshen, Herman Avner Cohen","doi":"10.1002/jbio.202400219","DOIUrl":"https://doi.org/10.1002/jbio.202400219","url":null,"abstract":"<p><p>We evaluated the effect of infrared thermography (IRT) on the clinical assessment of bacterial and viral pharyngitis and its impact on the predictive value of the McIsaac score algorithm for streptococcal pharyngitis in children. We also investigated if IRT could distinguish between bacterial and viral pharyngitis. The study included children aged 2-17 years presenting with sore throat and fever over 38°C from November 1, 2021, to April 30, 2022. Of the 76 assessed children, 16 were excluded due to missing data or technical issues, leaving 60 children (32 males, 28 females) divided into three groups: Group A with streptococcal pharyngitis (N = 30), viral pharyngitis (N = 16), and healthy controls (N = 14). McIsaac score and IRT imaging showed a 90% positive predictive value for streptococcal pharyngitis. While IRT alone could not distinguish between bacterial and viral infections, it significantly increased the predictive value when combined with the McIsaac score.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202400219"},"PeriodicalIF":0.0,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vladimir Vaks, Elena Domracheva, Maria Chernyaeva, Vladimir Anfertev, Andrey Ayzenshtadt, Kseniya Glushkova, Aleksandra Cherniaeva
The metabolomics-based approach to diagnostics and therapy monitoring is a fast-emerging trend in modern medicine. Terahertz nonstationary spectroscopy based on the induction and disintegration of freely decaying polarization in the gas mixture during the interaction of radiation with molecules at resonance frequencies is a high-sensitivity method for studying multicomponent gas mixtures, which is promising for identifying metabolites in the thermal decomposition products of biological samples. The paper presents the results of the application of high-resolution terahertz spectroscopy to the study of biological samples taken from patients with certain diseases (pathologically changed tissues of ear-nose-throat organs and similar pathologic tissues formed in other life support systems) to search for characteristic sets of metabolites characterizing the pathology. The world's first measurements of the spectra of pathologic samples of cysts, formed in different life support systems, were carried out, which made it possible to identify similar substances in tissues having the same pathology.
{"title":"High-Resolution Terahertz Spectroscopy for Medical Diagnostics.","authors":"Vladimir Vaks, Elena Domracheva, Maria Chernyaeva, Vladimir Anfertev, Andrey Ayzenshtadt, Kseniya Glushkova, Aleksandra Cherniaeva","doi":"10.1002/jbio.202400316","DOIUrl":"https://doi.org/10.1002/jbio.202400316","url":null,"abstract":"<p><p>The metabolomics-based approach to diagnostics and therapy monitoring is a fast-emerging trend in modern medicine. Terahertz nonstationary spectroscopy based on the induction and disintegration of freely decaying polarization in the gas mixture during the interaction of radiation with molecules at resonance frequencies is a high-sensitivity method for studying multicomponent gas mixtures, which is promising for identifying metabolites in the thermal decomposition products of biological samples. The paper presents the results of the application of high-resolution terahertz spectroscopy to the study of biological samples taken from patients with certain diseases (pathologically changed tissues of ear-nose-throat organs and similar pathologic tissues formed in other life support systems) to search for characteristic sets of metabolites characterizing the pathology. The world's first measurements of the spectra of pathologic samples of cysts, formed in different life support systems, were carried out, which made it possible to identify similar substances in tissues having the same pathology.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202400316"},"PeriodicalIF":0.0,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junwoo Suh, Yehe Liu, Jordan Smith, Michiko Watanabe, Andrew M Rollins, Michael W Jenkins
We report a single-step optical clearing method that is compatible with RNA fluorescence in situ hybridization (FISH) imaging. We previously demonstrated microscopy imaging with immunohistochemistry and genetic reporters using a technique called lipid-preserving refractive index matching for prolonged imaging depth (LIMPID). Our protocol reliably produces high-resolution three-dimensional (3D) images with minimal aberrations using high magnification objectives, captures large field-of-view images of whole-mount tissues, and supports co-labeling with antibody and FISH probes. We also custom-designed FISH probes for quail embryos, demonstrating the ease of fabricating probes for use with less common animal models. Furthermore, we show high-quality 3D images using a conventional fluorescence microscope, without using more advanced depth sectioning instruments such as confocal or light-sheet microscopy. For broader adoption, we simplified and optimized 3D-LIMPID-FISH to minimize the barrier to entry, and we provide a detailed protocol to aid users with navigating the thick and thin of 3D microscopy.
我们报告了一种与 RNA 荧光原位杂交 (FISH) 成像兼容的单步光学清除方法。此前,我们利用一种名为 "延长成像深度的脂质保留折射率匹配(LIMPID)"的技术,展示了免疫组化和基因报告的显微成像。我们的方案能利用高倍率物镜可靠地生成畸变最小的高分辨率三维(3D)图像,捕捉全装片组织的大视场图像,并支持抗体和 FISH 探针的联合标记。我们还为鹌鹑胚胎定制了 FISH 探针,展示了在不常见的动物模型中制作探针的简易性。此外,我们还使用传统荧光显微镜展示了高质量的三维图像,而无需使用共聚焦或光片显微镜等更先进的深度切片仪器。为了扩大应用范围,我们对 3D-LIMPID-FISH 进行了简化和优化,最大程度降低了入门门槛,并提供了详细的操作规程,帮助用户轻松驾驭三维显微镜。
{"title":"A Simple and Fast Optical Clearing Method for Whole-Mount Fluorescence In Situ Hybridization (FISH) Imaging.","authors":"Junwoo Suh, Yehe Liu, Jordan Smith, Michiko Watanabe, Andrew M Rollins, Michael W Jenkins","doi":"10.1002/jbio.202400258","DOIUrl":"10.1002/jbio.202400258","url":null,"abstract":"<p><p>We report a single-step optical clearing method that is compatible with RNA fluorescence in situ hybridization (FISH) imaging. We previously demonstrated microscopy imaging with immunohistochemistry and genetic reporters using a technique called lipid-preserving refractive index matching for prolonged imaging depth (LIMPID). Our protocol reliably produces high-resolution three-dimensional (3D) images with minimal aberrations using high magnification objectives, captures large field-of-view images of whole-mount tissues, and supports co-labeling with antibody and FISH probes. We also custom-designed FISH probes for quail embryos, demonstrating the ease of fabricating probes for use with less common animal models. Furthermore, we show high-quality 3D images using a conventional fluorescence microscope, without using more advanced depth sectioning instruments such as confocal or light-sheet microscopy. For broader adoption, we simplified and optimized 3D-LIMPID-FISH to minimize the barrier to entry, and we provide a detailed protocol to aid users with navigating the thick and thin of 3D microscopy.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202400258"},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142402504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Artashes V Karmenyan, Alexander S Krivokharchenko, Micahella N Sarmiento, Eviyona L Barus, Elena V Perevedentseva, Chia-Liang Cheng
The development of assisted reproductive technologies increases the likelihood of nanoparticles' (NPs) direct contact with gametes and embryos in in vitro conditions. Analyzing the influence of nanomaterials on the early mammalian embryo becomes increasingly relevant. This work is devoted to the effect of graphene oxide (GO) NPs on the in vitro development of mammalian embryos. Mouse 2-cell embryos were preincubated with GO NPs. The interaction of GO with the Zona Pellucida (ZP) of the embryo was investigated using fluorescence lifetime imaging with two-photon excitation (2p-FLIM). During embryo development, the NPs penetration into ZP (blastocyst stage) and perivitelline space (blastocyst hatching stage) was observed. Despite this, GO did not affect the embryo's ability to develop till late and hatching blastocysts. The mechanism of the NPs getting into the perivitelline space and the consequences of NP-embryo direct contact are discussed. The 2p-FLIM efficiency for studying NP interaction with mammalian embryos is evaluated.
{"title":"Impact of Graphene Oxide Nanoparticles on In Vitro Development of a Mouse Preimplantation Embryo and Interaction With the Zona Pellucida.","authors":"Artashes V Karmenyan, Alexander S Krivokharchenko, Micahella N Sarmiento, Eviyona L Barus, Elena V Perevedentseva, Chia-Liang Cheng","doi":"10.1002/jbio.202400268","DOIUrl":"https://doi.org/10.1002/jbio.202400268","url":null,"abstract":"<p><p>The development of assisted reproductive technologies increases the likelihood of nanoparticles' (NPs) direct contact with gametes and embryos in in vitro conditions. Analyzing the influence of nanomaterials on the early mammalian embryo becomes increasingly relevant. This work is devoted to the effect of graphene oxide (GO) NPs on the in vitro development of mammalian embryos. Mouse 2-cell embryos were preincubated with GO NPs. The interaction of GO with the Zona Pellucida (ZP) of the embryo was investigated using fluorescence lifetime imaging with two-photon excitation (2p-FLIM). During embryo development, the NPs penetration into ZP (blastocyst stage) and perivitelline space (blastocyst hatching stage) was observed. Despite this, GO did not affect the embryo's ability to develop till late and hatching blastocysts. The mechanism of the NPs getting into the perivitelline space and the consequences of NP-embryo direct contact are discussed. The 2p-FLIM efficiency for studying NP interaction with mammalian embryos is evaluated.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202400268"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142335236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anastasia Guryleva, Alexander Machikhin, Ekaterina Orlova, Evgeniya Kulikova, Michail Volkov, Gaiane Gabrielian, Ludmila Smirnova, Marina Sekacheva, Olga Olisova, Ekaterina Rudenko, Olga Lobanova, Vera Smolyannikova, Tatiana Demura
Noninvasive, rapid, and robust diagnostic techniques for clinical screening of tumors located in arbitrary areas of the human body are in demand. To address this challenge, we analyzed the feasibility of photoplethysmography-based angiography for assessing vascular structures within malignant and benign tumors. The proposed hardware and software were approved in a clinical study involving 30 patients with tumors located in the legs, torso, arms, and head. High-contrast and detailed vessel maps within both benign and malignant tumors were obtained. We demonstrated that capillary maps are consistent and can be interpreted using well-established dermoscopic criteria for vascular morphology. Vessel mapping provides valuable details, which may not be available in dermoscopic images and can aid in determining whether a tumor is benign or malignant. We believe that the proposed approach may become a valuable tool in the preliminary cancer diagnosis and is suitable for large-scale screening.
{"title":"Photoplethysmography-Based Angiography of Skin Tumors in Arbitrary Areas of Human Body.","authors":"Anastasia Guryleva, Alexander Machikhin, Ekaterina Orlova, Evgeniya Kulikova, Michail Volkov, Gaiane Gabrielian, Ludmila Smirnova, Marina Sekacheva, Olga Olisova, Ekaterina Rudenko, Olga Lobanova, Vera Smolyannikova, Tatiana Demura","doi":"10.1002/jbio.202400242","DOIUrl":"https://doi.org/10.1002/jbio.202400242","url":null,"abstract":"<p><p>Noninvasive, rapid, and robust diagnostic techniques for clinical screening of tumors located in arbitrary areas of the human body are in demand. To address this challenge, we analyzed the feasibility of photoplethysmography-based angiography for assessing vascular structures within malignant and benign tumors. The proposed hardware and software were approved in a clinical study involving 30 patients with tumors located in the legs, torso, arms, and head. High-contrast and detailed vessel maps within both benign and malignant tumors were obtained. We demonstrated that capillary maps are consistent and can be interpreted using well-established dermoscopic criteria for vascular morphology. Vessel mapping provides valuable details, which may not be available in dermoscopic images and can aid in determining whether a tumor is benign or malignant. We believe that the proposed approach may become a valuable tool in the preliminary cancer diagnosis and is suitable for large-scale screening.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202400242"},"PeriodicalIF":0.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142335238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ola Shteinberg, Sergey Agdarov, Yafim Beiderman, Yoram S Bonneh, Inbal Ziv, Zeev Zalevsky
Here we propose a not pupil-dependent microsaccades tracking technique and a novel detection method. We present a proof of concept for detecting microsaccades using a non-contact laser-based photonic system recording and processing the temporal changes of speckle patterns scattered from an eye sclera. The data, simultaneously recorded by the speckle-based tracker (SBT) and the video-based eye tracker (Eyelink), was analyzed by the frequently used detection method of Engbert and Kliegl (E&K) and by advanced machine learning detection (MLD) techniques. We detected 93% of microsaccades in the SBT data out of microsaccades detected in the Eyelink data with the E&K method. By utilizing MLD, a precision of 86% was achieved. The findings of our study demonstrate a potential improvement in measuring tiny eye movements, such as microsaccades, using speckle-based eye tracking and, thus, an alternative to video-based eye tracking for detecting microsaccades.
{"title":"Microsaccades Tracking by Secondary Speckle Pattern Analysis.","authors":"Ola Shteinberg, Sergey Agdarov, Yafim Beiderman, Yoram S Bonneh, Inbal Ziv, Zeev Zalevsky","doi":"10.1002/jbio.202400184","DOIUrl":"https://doi.org/10.1002/jbio.202400184","url":null,"abstract":"<p><p>Here we propose a not pupil-dependent microsaccades tracking technique and a novel detection method. We present a proof of concept for detecting microsaccades using a non-contact laser-based photonic system recording and processing the temporal changes of speckle patterns scattered from an eye sclera. The data, simultaneously recorded by the speckle-based tracker (SBT) and the video-based eye tracker (Eyelink), was analyzed by the frequently used detection method of Engbert and Kliegl (E&K) and by advanced machine learning detection (MLD) techniques. We detected 93% of microsaccades in the SBT data out of microsaccades detected in the Eyelink data with the E&K method. By utilizing MLD, a precision of 86% was achieved. The findings of our study demonstrate a potential improvement in measuring tiny eye movements, such as microsaccades, using speckle-based eye tracking and, thus, an alternative to video-based eye tracking for detecting microsaccades.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202400184"},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142157055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Optical properties determine how light interacts with biological tissues. The current methods for measuring these optical properties are influenced by both deep and superficial skin layers. Polarization-based methods have been proposed in order to determine the influence of deep layer scattering. Polarized light allows for the separation of ballistic photons from diffuse ones, enhancing image contrast and resolution while providing additional tissue information. The Q-sensing technique captures co-polarized and cross-polarized signals, making it possible to isolate the superficial scattering. However, the random structure of tissues leads to rapid depolarization of the polarized light. Detecting where the light becomes depolarized aids in sensing abnormalities within the tissues. Hence, this research focuses on identifying where depolarization occurs within the tissue. Tissue-mimicking phantoms, simulating the optical properties of biological tissues, are created to measure depolarization at various thicknesses. Experimental findings are validated with a Monte Carlo simulation, modeling polarized light behavior through the polydisperse tissue (as the tissue scatterers are heterogeneous in size). Additionally, the research demonstrates how polarized light can extract the optical properties of the medium.
光学特性决定了光与生物组织的相互作用。目前测量这些光学特性的方法受到皮肤深层和表层的影响。为了确定深层散射的影响,人们提出了基于偏振的方法。偏振光可将弹道光子从漫射光子中分离出来,提高图像对比度和分辨率,同时提供更多组织信息。Q-sensing 技术可捕获共偏振 I ∥ $ left({I}_{parallel}right) $$ 和交叉偏振 I ⊥ $ left({I}_{perp}right) $$ 信号,从而有可能分离表层散射。然而,组织的随机结构会导致偏振光迅速去极化。检测偏振光去极化的位置有助于感知组织内的异常。因此,这项研究的重点是确定组织内发生去极化的位置。研究人员制作了模拟生物组织光学特性的组织模型,以测量不同厚度组织的去极化情况。实验结果通过蒙特卡洛模拟进行了验证,模拟了偏振光穿过多分散组织的行为(因为组织散射体的大小是不均匀的)。此外,研究还展示了偏振光如何提取介质的光学特性。
{"title":"Extracting Superficial Scattering by Q-Sensing Technique.","authors":"Alon Tzroya, Hamootal Duadi, Dror Fixler","doi":"10.1002/jbio.202400262","DOIUrl":"https://doi.org/10.1002/jbio.202400262","url":null,"abstract":"<p><p>Optical properties determine how light interacts with biological tissues. The current methods for measuring these optical properties are influenced by both deep and superficial skin layers. Polarization-based methods have been proposed in order to determine the influence of deep layer scattering. Polarized light allows for the separation of ballistic photons from diffuse ones, enhancing image contrast and resolution while providing additional tissue information. The Q-sensing technique captures co-polarized <math> <semantics> <mrow> <mfenced><msub><mi>I</mi> <mo>∥</mo></msub> </mfenced> </mrow> <annotation>$$ left({I}_{parallel}right) $$</annotation></semantics> </math> and cross-polarized <math> <semantics> <mrow> <mfenced><msub><mi>I</mi> <mo>⊥</mo></msub> </mfenced> </mrow> <annotation>$$ left({I}_{perp}right) $$</annotation></semantics> </math> signals, making it possible to isolate the superficial scattering. However, the random structure of tissues leads to rapid depolarization of the polarized light. Detecting where the light becomes depolarized aids in sensing abnormalities within the tissues. Hence, this research focuses on identifying where depolarization occurs within the tissue. Tissue-mimicking phantoms, simulating the optical properties of biological tissues, are created to measure depolarization at various thicknesses. Experimental findings are validated with a Monte Carlo simulation, modeling polarized light behavior through the polydisperse tissue (as the tissue scatterers are heterogeneous in size). Additionally, the research demonstrates how polarized light can extract the optical properties of the medium.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202400262"},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142143508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhiying Xie, Yaping Shi, Agathe Marmin, Ruikang K Wang
Optical coherence tomography (OCT) is a noninvasive 3D imaging technique that offers significant advantages over traditional microscopy and biopsy in measuring epidermal thickness (ET) when assessing skin conditions. However, OCT imagining is often required to be in a contact mode for mitigating the issues of subject movement and uneven skin topology. It is not known whether the contact would affect the ability of ET measurements. In this study, we investigate the relationship between the contact pressure applied and the ET measurements. We observed progressive deformation in the epidermis with the increase of compression forces, where a notable decrease of up to 13% in ET measurement and 70% decrease in capillary vessels was noted when imaging was in contact mode. We also observed 8.1% less deformation properties in scar tissue than in nearby healthy tissue. Our study underscored the importance of controlled pressure in contact imaging mode, which is often neglected.
光学相干断层扫描(OCT)是一种无创三维成像技术,与传统的显微镜和活组织检查相比,它在评估皮肤状况时测量表皮厚度(ET)方面具有显著优势。不过,OCT 成像通常需要在接触模式下进行,以减少受试者移动和皮肤拓扑不均匀的问题。目前还不清楚接触模式是否会影响 ET 测量的能力。在本研究中,我们研究了接触压力与 ET 测量之间的关系。我们观察到表皮随着压力的增加而逐渐变形,在接触模式下成像时,ET 测量值明显下降达 13%,毛细血管下降 70%。我们还观察到疤痕组织的变形特性比附近的健康组织低 8.1%。我们的研究强调了在接触成像模式下控制压力的重要性,而这一点往往被忽视。
{"title":"Investigation of the Effect of Compression Pressure in Contact OCT Imaging on the Measurement of Epidermis Thickness.","authors":"Zhiying Xie, Yaping Shi, Agathe Marmin, Ruikang K Wang","doi":"10.1002/jbio.202400289","DOIUrl":"https://doi.org/10.1002/jbio.202400289","url":null,"abstract":"<p><p>Optical coherence tomography (OCT) is a noninvasive 3D imaging technique that offers significant advantages over traditional microscopy and biopsy in measuring epidermal thickness (ET) when assessing skin conditions. However, OCT imagining is often required to be in a contact mode for mitigating the issues of subject movement and uneven skin topology. It is not known whether the contact would affect the ability of ET measurements. In this study, we investigate the relationship between the contact pressure applied and the ET measurements. We observed progressive deformation in the epidermis with the increase of compression forces, where a notable decrease of up to 13% in ET measurement and 70% decrease in capillary vessels was noted when imaging was in contact mode. We also observed 8.1% less deformation properties in scar tissue than in nearby healthy tissue. Our study underscored the importance of controlled pressure in contact imaging mode, which is often neglected.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202400289"},"PeriodicalIF":0.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yana Davidov, Rafael Y Brzezinski, Monica-Inda Kaufmann, Mariya Likhter, Tammy Hod, Orit Pappo, Yair Zimmer, Zehava Ovadia-Blechman, Neta Rabin, Adi Barlev, Orli Berman, Ziv Ben Ari, Oshrit Hoffer
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is one of the most prevalent chronic liver diseases worldwide. Thermal imaging combined with advanced image-processing and machine learning analysis accurately classified disease status in a study on mice; this study aimed to develop this tool for humans. This prospective study included 46 patients who underwent liver biopsy. Liver thermal imaging was performed on the same day as liver biopsy. We developed an image-processing algorithm that measured the relative spatial thermal variation across the skin covering the liver. The texture parameters obtained from the thermal images were input into the machine learning algorithm. Patients were diagnosed with MASLD and stratified according to nonalcoholic fatty liver disease activity score (NAS) and fibrosis stage using the METAVIR score. Twenty-one of 46 patients were diagnosed with MASLD. Using thermal imaging followed by processing, detection accuracy for patients with NAS >4 was 0.72.
{"title":"Incorporating artificial intelligence in portable infrared thermal imaging for the diagnosis and staging of nonalcoholic fatty liver disease.","authors":"Yana Davidov, Rafael Y Brzezinski, Monica-Inda Kaufmann, Mariya Likhter, Tammy Hod, Orit Pappo, Yair Zimmer, Zehava Ovadia-Blechman, Neta Rabin, Adi Barlev, Orli Berman, Ziv Ben Ari, Oshrit Hoffer","doi":"10.1002/jbio.202400189","DOIUrl":"https://doi.org/10.1002/jbio.202400189","url":null,"abstract":"<p><p>Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is one of the most prevalent chronic liver diseases worldwide. Thermal imaging combined with advanced image-processing and machine learning analysis accurately classified disease status in a study on mice; this study aimed to develop this tool for humans. This prospective study included 46 patients who underwent liver biopsy. Liver thermal imaging was performed on the same day as liver biopsy. We developed an image-processing algorithm that measured the relative spatial thermal variation across the skin covering the liver. The texture parameters obtained from the thermal images were input into the machine learning algorithm. Patients were diagnosed with MASLD and stratified according to nonalcoholic fatty liver disease activity score (NAS) and fibrosis stage using the METAVIR score. Twenty-one of 46 patients were diagnosed with MASLD. Using thermal imaging followed by processing, detection accuracy for patients with NAS >4 was 0.72.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202400189"},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141899249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Optical palpation is an emerging elastography technique that generates two-dimensional images of mechanical stress at the tissue surface, with clinical applications such as intraoperative cancer detection and scar assessment. It has been implemented using various imaging systems, however, an analysis of how deformation of the sample and layer influences image formation has not been performed. Here, an analysis framework is presented, which assesses performance independently of the imaging system used. Optical palpation of varying samples and layers is simulated using finite element analysis and validated with experiments on silicone phantoms, providing a characterization of detectability, feature resolution, and contrast ratio. Using our framework, we demonstrate that computational optical palpation, which incorporates realistic assumptions of layer deformation, improves the feature resolution up to a factor of four. This framework can guide the development of optical palpation and aid in the selection of appropriate imaging system and layer properties for a given application.
{"title":"Analysis of image formation in optical palpation.","authors":"R Jones, Q Fang, B F Kennedy","doi":"10.1002/jbio.202400180","DOIUrl":"https://doi.org/10.1002/jbio.202400180","url":null,"abstract":"<p><p>Optical palpation is an emerging elastography technique that generates two-dimensional images of mechanical stress at the tissue surface, with clinical applications such as intraoperative cancer detection and scar assessment. It has been implemented using various imaging systems, however, an analysis of how deformation of the sample and layer influences image formation has not been performed. Here, an analysis framework is presented, which assesses performance independently of the imaging system used. Optical palpation of varying samples and layers is simulated using finite element analysis and validated with experiments on silicone phantoms, providing a characterization of detectability, feature resolution, and contrast ratio. Using our framework, we demonstrate that computational optical palpation, which incorporates realistic assumptions of layer deformation, improves the feature resolution up to a factor of four. This framework can guide the development of optical palpation and aid in the selection of appropriate imaging system and layer properties for a given application.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202400180"},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141857487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}