Pub Date : 2024-04-01Epub Date: 2024-02-26DOI: 10.1177/00220345231224228
J Chen, T Sun, B Lin, B Wu, J Wu
Tooth development and regeneration are regulated through a complex signaling network. Previous studies have focused on the exploration of intracellular signaling regulatory networks, but the regulatory roles of extracellular networks have only been revealed recently. Proteoglycans, which are essential components of the extracellular matrix (ECM) and pivotal signaling molecules, are extensively involved in the process of odontogenesis. Proteoglycans are composed of core proteins and covalently attached glycosaminoglycan chains (GAGs). The core proteins exhibit spatiotemporal expression patterns during odontogenesis and are pivotal for dental tissue formation and periodontium development. Knockout of core protein genes Biglycan, Decorin, Perlecan, and Fibromodulin has been shown to result in structural defects in enamel and dentin mineralization. They are also closely involved in the development and homeostasis of periodontium by regulating signaling transduction. As the functional component of proteoglycans, GAGs are negatively charged unbranched polysaccharides that consist of repeating disaccharides with various sulfation groups; they provide binding sites for cytokines and growth factors in regulating various cellular processes. In mice, GAG deficiency in dental epithelium leads to the reinitiation of tooth germ development and the formation of supernumerary incisors. Furthermore, GAGs are critical for the differentiation of dental stem cells. Inhibition of GAGs assembly hinders the differentiation of ameloblasts and odontoblasts. In summary, core proteins and GAGs are expressed distinctly and exert different functions at various stages of odontogenesis. Given their unique contributions in odontogenesis, this review summarizes the roles of proteoglycans and GAGs throughout the process of odontogenesis to provide a comprehensive understanding of tooth development.
{"title":"The Essential Role of Proteoglycans and Glycosaminoglycans in Odontogenesis.","authors":"J Chen, T Sun, B Lin, B Wu, J Wu","doi":"10.1177/00220345231224228","DOIUrl":"10.1177/00220345231224228","url":null,"abstract":"<p><p>Tooth development and regeneration are regulated through a complex signaling network. Previous studies have focused on the exploration of intracellular signaling regulatory networks, but the regulatory roles of extracellular networks have only been revealed recently. Proteoglycans, which are essential components of the extracellular matrix (ECM) and pivotal signaling molecules, are extensively involved in the process of odontogenesis. Proteoglycans are composed of core proteins and covalently attached glycosaminoglycan chains (GAGs). The core proteins exhibit spatiotemporal expression patterns during odontogenesis and are pivotal for dental tissue formation and periodontium development. Knockout of core protein genes <i>Biglycan</i>, <i>Decorin</i>, <i>Perlecan</i>, and <i>Fibromodulin</i> has been shown to result in structural defects in enamel and dentin mineralization. They are also closely involved in the development and homeostasis of periodontium by regulating signaling transduction. As the functional component of proteoglycans, GAGs are negatively charged unbranched polysaccharides that consist of repeating disaccharides with various sulfation groups; they provide binding sites for cytokines and growth factors in regulating various cellular processes. In mice, GAG deficiency in dental epithelium leads to the reinitiation of tooth germ development and the formation of supernumerary incisors. Furthermore, GAGs are critical for the differentiation of dental stem cells. Inhibition of GAGs assembly hinders the differentiation of ameloblasts and odontoblasts. In summary, core proteins and GAGs are expressed distinctly and exert different functions at various stages of odontogenesis. Given their unique contributions in odontogenesis, this review summarizes the roles of proteoglycans and GAGs throughout the process of odontogenesis to provide a comprehensive understanding of tooth development.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139975061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-02-27DOI: 10.1177/00220345231225445
H Chai, J Russ, S Vardhaman, C H Lim, Y Zhang
The ever-increasing usage of ceramic materials in restorative dentistry necessitates a simple and effective method to evaluate flexural strength σF and fracture toughness KC. We propose a novel method to determine these quantities using a bilayer specimen composed of a brittle plate adhesively bonded onto a transparent polycarbonate substrate. When this bilayer structure is placed under spherical indentation, tunneling radial cracks initiate and propagate in the lower surface of the brittle layer. The failure analysis is based on previous theoretical relationships, which correlate σF with the indentation force P and layer thickness d, and KC with P and mean length of radial cracks. This work examines the accuracy and limitations of this approach using a wide range of contemporary dental ceramic materials. The effect of layer thickness, indenter radius, load level, and length and number of radial cracks are carefully examined. The accuracy of the predicted σF and KC is similar to those obtained with other concurrent test methods, such as biaxial flexure and 3-point bending (σF), and bending specimens with crack-initiation flaws (KC). The benefits of the present approach include treatment for small and thin plates, elimination of the need to introduce a precrack, and avoidance of dealing with local material nonlinearity effects for the KC measurements. Finally, the bilayer configuration resembles occlusal loading of a ceramic restoration (brittle layer) bonded to a posterior tooth (compliant substrate).
随着陶瓷材料在牙科修复中的应用日益广泛,需要一种简单有效的方法来评估抗弯强度 σF 和断裂韧性 KC。我们提出了一种新颖的方法,利用由粘接在透明聚碳酸酯基底上的脆性板组成的双层试样来确定这些量。当这种双层结构被置于球形压痕下时,隧道径向裂纹在脆性层的下表面开始并扩展。失效分析基于之前的理论关系,即 σF 与压入力 P 和层厚度 d 相关,KC 与 P 和径向裂纹平均长度相关。这项研究使用了多种当代牙科陶瓷材料,检验了这种方法的准确性和局限性。仔细研究了层厚、压头半径、载荷水平以及径向裂纹长度和数量的影响。预测的 σF 和 KC 的准确性与其他同时进行的测试方法相似,如双轴弯曲和三点弯曲 (σF),以及带有裂纹引发缺陷的弯曲试样 (KC)。本方法的优点包括:可处理小而薄的板材,无需引入预裂纹,以及在 KC 测量中避免处理局部材料非线性效应。最后,双层结构类似于将陶瓷修复体(脆性层)粘结到后牙(顺应性基底)上的咬合加载。
{"title":"A Bilayer Method for Measuring Toughness and Strength of Dental Ceramics.","authors":"H Chai, J Russ, S Vardhaman, C H Lim, Y Zhang","doi":"10.1177/00220345231225445","DOIUrl":"10.1177/00220345231225445","url":null,"abstract":"<p><p>The ever-increasing usage of ceramic materials in restorative dentistry necessitates a simple and effective method to evaluate flexural strength σ<sub>F</sub> and fracture toughness <i>K</i><sub>C</sub>. We propose a novel method to determine these quantities using a bilayer specimen composed of a brittle plate adhesively bonded onto a transparent polycarbonate substrate. When this bilayer structure is placed under spherical indentation, tunneling radial cracks initiate and propagate in the lower surface of the brittle layer. The failure analysis is based on previous theoretical relationships, which correlate σ<sub>F</sub> with the indentation force <i>P</i> and layer thickness <i>d</i>, and <i>K</i><sub>C</sub> with <i>P</i> and mean length of radial cracks. This work examines the accuracy and limitations of this approach using a wide range of contemporary dental ceramic materials. The effect of layer thickness, indenter radius, load level, and length and number of radial cracks are carefully examined. The accuracy of the predicted σ<sub>F</sub> and <i>K</i><sub>C</sub> is similar to those obtained with other concurrent test methods, such as biaxial flexure and 3-point bending (σ<sub>F</sub>), and bending specimens with crack-initiation flaws (<i>K</i><sub>C</sub>). The benefits of the present approach include treatment for small and thin plates, elimination of the need to introduce a precrack, and avoidance of dealing with local material nonlinearity effects for the <i>K</i><sub>C</sub> measurements. Finally, the bilayer configuration resembles occlusal loading of a ceramic restoration (brittle layer) bonded to a posterior tooth (compliant substrate).</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10966932/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139975058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-02-27DOI: 10.1177/00220345231225413
J Liu, H Meng, Y Mao, L Zhong, W Pan, Q Chen
Tissue-specific mechanisms regulate neutrophil immunity at the oral barrier, which plays a key role in periodontitis. Although it has been proposed that fibroblasts emit a powerful neutrophil chemotactic signal, how this chemotactic signal is driven has not been clear. The objective of this study was to investigate the site-specific regulatory mechanisms by which fibroblasts drive powerful neutrophil chemotactic signals within the oral barrier, with particular emphasis on the role of the IL-36 family. The present study found that IL-36γ, agonist of IL-36R, could promote neutrophil chemotaxis via fibroblast. Single-cell RNA sequencing data disclosed that IL36G is primarily expressed in human and mouse gingival epithelial cells and mouse neutrophils. Notably, there was a substantial increase in IL-36γ levels during periodontitis. In vitro experiments demonstrated that IL-36γ specifically activates gingival fibroblasts, leading to chemotaxis of neutrophils. In vivo experiments revealed that IL-36Ra inhibited the infiltration of neutrophils and bone resorption, while IL-36γ promoted their progression in the ligature-induced periodontitis mouse model. In summary, these data elucidate the function of the site-enriched IL-36γ in regulating neutrophil immunity and bone resorption at the oral barrier. These findings provide new insights into the tissue-specific pathophysiology of periodontitis and offer a promising avenue for prevention and treatment through targeted intervention of the IL-36 family.
{"title":"IL-36 Regulates Neutrophil Chemotaxis and Bone Loss at the Oral Barrier.","authors":"J Liu, H Meng, Y Mao, L Zhong, W Pan, Q Chen","doi":"10.1177/00220345231225413","DOIUrl":"10.1177/00220345231225413","url":null,"abstract":"<p><p>Tissue-specific mechanisms regulate neutrophil immunity at the oral barrier, which plays a key role in periodontitis. Although it has been proposed that fibroblasts emit a powerful neutrophil chemotactic signal, how this chemotactic signal is driven has not been clear. The objective of this study was to investigate the site-specific regulatory mechanisms by which fibroblasts drive powerful neutrophil chemotactic signals within the oral barrier, with particular emphasis on the role of the IL-36 family. The present study found that IL-36γ, agonist of IL-36R, could promote neutrophil chemotaxis via fibroblast. Single-cell RNA sequencing data disclosed that <i>IL36G</i> is primarily expressed in human and mouse gingival epithelial cells and mouse neutrophils. Notably, there was a substantial increase in IL-36γ levels during periodontitis. In vitro experiments demonstrated that IL-36γ specifically activates gingival fibroblasts, leading to chemotaxis of neutrophils. In vivo experiments revealed that IL-36Ra inhibited the infiltration of neutrophils and bone resorption, while IL-36γ promoted their progression in the ligature-induced periodontitis mouse model. In summary, these data elucidate the function of the site-enriched IL-36γ in regulating neutrophil immunity and bone resorption at the oral barrier. These findings provide new insights into the tissue-specific pathophysiology of periodontitis and offer a promising avenue for prevention and treatment through targeted intervention of the IL-36 family.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139984848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-02-27DOI: 10.1177/00220345241226649
Y Han, J Xu, H Chopra, Z Zhang, N Dubey, W L Dissanayaka, J E Nör, M C Bottino
The quest for finding a suitable scaffold system that supports cell survival and function and, ultimately, the regeneration of the pulp-dentin complex remains challenging. Herein, we hypothesized that dental pulp stem cells (DPSCs) encapsulated in a collagen-based hydrogel with varying stiffness would regenerate functional dental pulp and dentin when concentrically injected into the tooth slices. Collagen hydrogels with concentrations of 3 mg/mL (Col3) and 10 mg/mL (Col10) were prepared, and their stiffness and microstructure were assessed using a rheometer and scanning electron microscopy, respectively. DPSCs were then encapsulated in the hydrogels, and their viability and differentiation capacity toward endothelial and odontogenic lineages were evaluated using live/dead assay and quantitative real-time polymerase chain reaction. For in vivo experiments, DPSC-encapsulated collagen hydrogels with different stiffness, with or without growth factors, were injected into pulp chambers of dentin tooth slices and implanted subcutaneously in severe combined immunodeficient (SCID) mice. Specifically, vascular endothelial growth factor (VEGF [50 ng/mL]) was loaded into Col3 and bone morphogenetic protein (BMP2 [50 ng/mL]) into Col10. Pulp-dentin regeneration was evaluated by histological and immunofluorescence staining. Data were analyzed using 1-way or 2-way analysis of variance accordingly (α = 0.05). Rheology and microscopy data revealed that Col10 had a stiffness of 8,142 Pa with a more condensed and less porous structure, whereas Col3 had a stiffness of 735 Pa with a loose microstructure. Furthermore, both Col3 and Col10 supported DPSCs' survival. Quantitative polymerase chain reaction showed Col3 promoted significantly higher von Willebrand factor (VWF) and CD31 expression after 7 and 14 d under endothelial differentiation conditions (P < 0.05), whereas Col10 enhanced the expression of dentin sialophosphoprotein (DSPP), alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and collagen 1 (Col1) after 7, 14, and 21 d of odontogenic differentiation (P < 0.05). Hematoxylin and eosin and immunofluorescence (CD31 and vWF) staining revealed Col10+Col3+DPSCs+GFs enhanced pulp-dentin tissue regeneration. In conclusion, the collagen-based concentric construct modified by growth factors guided the specific lineage differentiation of DPSCs and promoted pulp-dentin tissue regeneration in vivo.
{"title":"Injectable Tissue-Specific Hydrogel System for Pulp-Dentin Regeneration.","authors":"Y Han, J Xu, H Chopra, Z Zhang, N Dubey, W L Dissanayaka, J E Nör, M C Bottino","doi":"10.1177/00220345241226649","DOIUrl":"10.1177/00220345241226649","url":null,"abstract":"<p><p>The quest for finding a suitable scaffold system that supports cell survival and function and, ultimately, the regeneration of the pulp-dentin complex remains challenging. Herein, we hypothesized that dental pulp stem cells (DPSCs) encapsulated in a collagen-based hydrogel with varying stiffness would regenerate functional dental pulp and dentin when concentrically injected into the tooth slices. Collagen hydrogels with concentrations of 3 mg/mL (Col3) and 10 mg/mL (Col10) were prepared, and their stiffness and microstructure were assessed using a rheometer and scanning electron microscopy, respectively. DPSCs were then encapsulated in the hydrogels, and their viability and differentiation capacity toward endothelial and odontogenic lineages were evaluated using live/dead assay and quantitative real-time polymerase chain reaction. For in vivo experiments, DPSC-encapsulated collagen hydrogels with different stiffness, with or without growth factors, were injected into pulp chambers of dentin tooth slices and implanted subcutaneously in severe combined immunodeficient (SCID) mice. Specifically, vascular endothelial growth factor (VEGF [50 ng/mL]) was loaded into Col3 and bone morphogenetic protein (BMP2 [50 ng/mL]) into Col10. Pulp-dentin regeneration was evaluated by histological and immunofluorescence staining. Data were analyzed using 1-way or 2-way analysis of variance accordingly (α = 0.05). Rheology and microscopy data revealed that Col10 had a stiffness of 8,142 Pa with a more condensed and less porous structure, whereas Col3 had a stiffness of 735 Pa with a loose microstructure. Furthermore, both Col3 and Col10 supported DPSCs' survival. Quantitative polymerase chain reaction showed Col3 promoted significantly higher von Willebrand factor (VWF) and CD31 expression after 7 and 14 d under endothelial differentiation conditions (<i>P</i> < 0.05), whereas Col10 enhanced the expression of dentin sialophosphoprotein (DSPP), alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and collagen 1 (Col1) after 7, 14, and 21 d of odontogenic differentiation (<i>P</i> < 0.05). Hematoxylin and eosin and immunofluorescence (CD31 and vWF) staining revealed Col10+Col3+DPSCs+GFs enhanced pulp-dentin tissue regeneration. In conclusion, the collagen-based concentric construct modified by growth factors guided the specific lineage differentiation of DPSCs and promoted pulp-dentin tissue regeneration in vivo.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457960/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139975060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-02-12DOI: 10.1177/00220345231222871
N Atyeo, J O Maldonado, B M Warner, J A Chiorini
The oral cavity is an epidemiologically relevant route of viral transmission due to the shedding of viruses in saliva. With advancements in salivary diagnostics, an increasing number of viruses have been detected. However, the anatomic source of virus in saliva is still largely unknown. Some viruses have a well-established tropism for the salivary glands (SGs), and recent studies have emphasized the importance of the glands as potential reservoirs for infectious viruses. Viral infections of the SGs have been linked to acute and chronic SG pathology and may be associated with SG dysfunction, with phenotypes similar to those seen in SjÖgren's disease (SjD), an autoimmune condition that affects the salivary and lacrimal glands. Understanding the breadth of viruses that infect the SG and the conserved or distinct host responses to these infections may provide insights into the pathogenesis of virus-mediated SG diseases. There is a need for further research to fully understand the molecular mechanisms by which viruses enter and replicate in the glands, their physiologic impact on SG function, and whether the SGs can serve as a long-term reservoir for infectious viral particles. The purpose of this review is to highlight a group of viruses that infect the salivary gland: hepatitis C virus, hepatitis D virus, severe acute respiratory syndrome coronavirus 2, enteric viruses, human T-cell leukemia virus type I, human immunodeficiency virus, human cytomegalovirus, and BK polyomavirus. We focus on the effects of viral infection on salivary gland (SG) inflammation, function, and its association with SjD.
由于病毒会在唾液中脱落,因此口腔是一个与流行病学相关的病毒传播途径。随着唾液诊断技术的进步,越来越多的病毒被检测出来。然而,唾液中病毒的解剖学来源在很大程度上仍然是未知的。有些病毒对唾液腺(SG)有明显的滋养作用,最近的研究强调了唾液腺作为潜在的传染性病毒库的重要性。唾液腺的病毒感染与唾液腺的急性和慢性病变有关,并可能与唾液腺功能障碍有关,其表型与影响唾液腺和泪腺的自身免疫性疾病--斯约格伦病(SjÖgren's disease,SjD)相似。了解感染唾液腺的病毒的种类以及宿主对这些感染的反应是一致的还是不同的,有助于深入了解病毒介导的唾液腺疾病的发病机制。我们需要进一步研究,以充分了解病毒进入睑板腺并在睑板腺中复制的分子机制、病毒对睑板腺功能的生理影响以及睑板腺是否可作为传染性病毒颗粒的长期储存库。本综述的目的是重点介绍感染唾液腺的一组病毒:丙型肝炎病毒、丁型肝炎病毒、严重急性呼吸系统综合征冠状病毒 2、肠道病毒、人类 T 细胞白血病病毒 I 型、人类免疫缺陷病毒、人类巨细胞病毒和 BK 多瘤病毒。我们重点研究病毒感染对唾液腺(SG)炎症、功能的影响及其与 SjD 的关联。
{"title":"Salivary Glands and Viral Pathogenesis.","authors":"N Atyeo, J O Maldonado, B M Warner, J A Chiorini","doi":"10.1177/00220345231222871","DOIUrl":"10.1177/00220345231222871","url":null,"abstract":"<p><p>The oral cavity is an epidemiologically relevant route of viral transmission due to the shedding of viruses in saliva. With advancements in salivary diagnostics, an increasing number of viruses have been detected. However, the anatomic source of virus in saliva is still largely unknown. Some viruses have a well-established tropism for the salivary glands (SGs), and recent studies have emphasized the importance of the glands as potential reservoirs for infectious viruses. Viral infections of the SGs have been linked to acute and chronic SG pathology and may be associated with SG dysfunction, with phenotypes similar to those seen in SjÖgren's disease (SjD), an autoimmune condition that affects the salivary and lacrimal glands. Understanding the breadth of viruses that infect the SG and the conserved or distinct host responses to these infections may provide insights into the pathogenesis of virus-mediated SG diseases. There is a need for further research to fully understand the molecular mechanisms by which viruses enter and replicate in the glands, their physiologic impact on SG function, and whether the SGs can serve as a long-term reservoir for infectious viral particles. The purpose of this review is to highlight a group of viruses that infect the salivary gland: hepatitis C virus, hepatitis D virus, severe acute respiratory syndrome coronavirus 2, enteric viruses, human T-cell leukemia virus type I, human immunodeficiency virus, human cytomegalovirus, and BK polyomavirus. We focus on the effects of viral infection on salivary gland (SG) inflammation, function, and its association with SjD.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10985391/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139725483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.1177/00220345231219987
A L Altrieth, J Kenney, D A Nelson, E G Suarez, V Gellatly, S Gabunia, M Larsen
Vascular endothelial cells have important tissue-specific functions in fibrosis and regeneration. In the salivary gland, endothelial cells are required for proper development, but their roles within adult glands are largely unknown. To identify ligand-receptor interactions between endothelial cells and other cell types that may be important during fibrosis and regeneration, we used a reversible ductal ligation injury. To induce injury, a clip was applied to the primary ducts for 14 d, and to induce a regenerative response, the clip was subsequently removed for 5 d. To identify endothelial cell-produced factors, we used single-cell RNA sequencing of stromal-enriched cells from adult female submandibular and sublingual salivary glands. Transcriptional profiles of homeostatic salivary gland endothelial cells were compared to endothelial cells of other organs. Salivary gland endothelial cells expressed many unique genes and displayed the highest overlap in gene expression with other fenestrated endothelial cells from the colon, small intestine, and kidney. Comparison of the 14-d ligated, mock-ligated, and 5-d deligated stromal-enriched transcripts and lineage tracing revealed that endothelial cells retain their identity following ligation and recovery from injury. CellChat and NATMI were used to predict changes in ligand-receptor interactions from endothelial cells to other cells in response to ligation and deligation. CellChat and NATMI predicted that after ligation, interactions with fibroblasts, epithelial cells, and glial cells were increased, and following deligation, interactions with pericyte, glia, fibroblasts, and immune cells were increased. Some of the highest-ranked interactions predicted in ligated compared to mock endothelial cells were between glial cells via Col4a2-Cd93 and Jag2-Notch1, as well as epithelial cells via Pecam1-Cd38, while in deligated compared to ligated endothelial cells, the top interactions were between fibroblasts via Ntf3-Ntrk2, glial cells via Hspg2-Itgb1, and pericytes via Jam2-F11r. Understanding salivary gland endothelial cell signaling will inform future endothelial cell-based regenerative therapies.
{"title":"Single-Cell Transcriptomic Analysis of Salivary Gland Endothelial Cells.","authors":"A L Altrieth, J Kenney, D A Nelson, E G Suarez, V Gellatly, S Gabunia, M Larsen","doi":"10.1177/00220345231219987","DOIUrl":"10.1177/00220345231219987","url":null,"abstract":"<p><p>Vascular endothelial cells have important tissue-specific functions in fibrosis and regeneration. In the salivary gland, endothelial cells are required for proper development, but their roles within adult glands are largely unknown. To identify ligand-receptor interactions between endothelial cells and other cell types that may be important during fibrosis and regeneration, we used a reversible ductal ligation injury. To induce injury, a clip was applied to the primary ducts for 14 d, and to induce a regenerative response, the clip was subsequently removed for 5 d. To identify endothelial cell-produced factors, we used single-cell RNA sequencing of stromal-enriched cells from adult female submandibular and sublingual salivary glands. Transcriptional profiles of homeostatic salivary gland endothelial cells were compared to endothelial cells of other organs. Salivary gland endothelial cells expressed many unique genes and displayed the highest overlap in gene expression with other fenestrated endothelial cells from the colon, small intestine, and kidney. Comparison of the 14-d ligated, mock-ligated, and 5-d deligated stromal-enriched transcripts and lineage tracing revealed that endothelial cells retain their identity following ligation and recovery from injury. CellChat and NATMI were used to predict changes in ligand-receptor interactions from endothelial cells to other cells in response to ligation and deligation. CellChat and NATMI predicted that after ligation, interactions with fibroblasts, epithelial cells, and glial cells were increased, and following deligation, interactions with pericyte, glia, fibroblasts, and immune cells were increased. Some of the highest-ranked interactions predicted in ligated compared to mock endothelial cells were between glial cells via <i>Col4a2-Cd93</i> and <i>Jag2-Notch1</i>, as well as epithelial cells via <i>Pecam1-Cd38</i>, while in deligated compared to ligated endothelial cells, the top interactions were between fibroblasts via <i>Ntf3-Ntrk2</i>, glial cells via <i>Hspg2-Itgb1</i>, and pericytes via <i>Jam2-F11r</i>. Understanding salivary gland endothelial cell signaling will inform future endothelial cell-based regenerative therapies.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10985389/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139975062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-01-07DOI: 10.1177/00220345231216660
N Zayed, H Munjaković, M K Aktan, K Simoens, K Bernaerts, N Boon, A Braem, F Pamuk, M Saghi, W Van Holm, A Fidler, R Gašperšič, W Teughels
Preventing the development and recurrence of periodontal diseases often includes antimicrobial mouthrinses to control the growth of the periodontal pathogens. Most antimicrobials are nonselective, targeting the symbiotic oral species as well as the dysbiosis-inducing ones. This affects the overall microbial composition and metabolic activity and consequently the host-microbe interactions, which can be detrimental (associated with inflammation) or beneficial (health-associated). Consequently, guiding the antimicrobial effect for modulating the microbial composition to a health-associated one should be considered. For such an approach, this study investigated electrolyzed saline as a novel rinse. Electrolyzed saline was prepared from sterile saline using a portable electrolysis device. Multispecies oral homeostatic and dysbiotic biofilms were grown on hydroxyapatite discs and rinsed daily with electrolyzed saline (EOS). Corresponding positive (NaOCl) and negative (phosphate-buffered saline) controls were included. After 3 rinses, biofilms were analyzed with viability quantitative polymerase chain reaction and scanning electron microscopy. Supernatants of rinsed biofilms were used for metabolic activity analysis (high-performance liquid chromatography) through measuring organic acid content. In addition, human oral keratinocytes (HOKs) were exposed to EOS to test biocompatibility (cytotoxicity and inflammation induction) and also to rinsed biofilms to assess their immunogenicity after rinsing. Rinsing the dysbiotic biofilms with EOS could reduce the counts of the pathobionts (>3 log10 Geq/mm2 reduction) and avert biofilm dysbiosis (≤1% pathobiont abundance), leading to the dominance of commensal species (≥99%), which altered both biofilm metabolism and interleukin 8 (IL-8) induction in HOKs. EOS had no harmful effects on homeostatic biofilms. The scanning electron micrographs confirmed the same. In addition, tested concentrations of EOS did not have any cytotoxic effects and did not induce IL-8 production in HOKs. EOS showed promising results for diverting dysbiosis in in vitro rinsed biofilms and controlling key periopathogens, with no toxic effects on commensal species or human cells. This novel rinsing should be considered for clinical applications.
预防牙周疾病的发生和复发通常包括使用抗菌漱口水来控制牙周病原体的生长。大多数抗菌剂都是非选择性的,既针对口腔共生菌种,也针对引起菌群失调的菌种。这会影响整体微生物组成和代谢活动,进而影响宿主与微生物之间的相互作用,这种相互作用可能是有害的(与炎症有关),也可能是有益的(与健康有关)。因此,应考虑引导抗菌效果,将微生物组成调整为有益健康。为此,本研究将电解生理盐水作为一种新型冲洗剂进行了研究。电解生理盐水是使用便携式电解装置从无菌生理盐水中制备出来的。在羟基磷灰石圆片上培养多菌种口腔同源生物膜和菌群失调生物膜,每天用电解生理盐水(EOS)冲洗。同时还包括相应的阳性(NaOCl)和阴性(磷酸盐缓冲盐水)对照组。冲洗 3 次后,用活力定量聚合酶链反应和扫描电子显微镜分析生物膜。冲洗后的生物膜上清液用于代谢活性分析(高效液相色谱法),测量有机酸含量。此外,还将人类口腔角质细胞(HOKs)暴露于 EOS,以测试其生物相容性(细胞毒性和炎症诱导),并将其暴露于冲洗后的生物膜,以评估其冲洗后的免疫原性。用 EOS 冲洗菌群失调的生物膜可减少病原菌的数量(减少量大于 3 log10 Geq/mm2),并避免生物膜菌群失调(病原菌丰度≤1%),从而使共生菌占优势(≥99%),这改变了 HOK 的生物膜代谢和白细胞介素 8(IL-8)诱导。EOS 对同源生物膜没有有害影响。扫描电子显微照也证实了这一点。此外,测试浓度的 EOS 没有任何细胞毒性作用,也不会诱导 HOK 产生 IL-8。EOS 在转移体外冲洗生物膜中的菌群失调和控制主要围病原体方面显示出良好的效果,而且对共生物种或人类细胞无毒性影响。应考虑将这种新型冲洗方法应用于临床。
{"title":"Electrolyzed Saline Targets Biofilm Periodontal Pathogens In Vitro.","authors":"N Zayed, H Munjaković, M K Aktan, K Simoens, K Bernaerts, N Boon, A Braem, F Pamuk, M Saghi, W Van Holm, A Fidler, R Gašperšič, W Teughels","doi":"10.1177/00220345231216660","DOIUrl":"10.1177/00220345231216660","url":null,"abstract":"<p><p>Preventing the development and recurrence of periodontal diseases often includes antimicrobial mouthrinses to control the growth of the periodontal pathogens. Most antimicrobials are nonselective, targeting the symbiotic oral species as well as the dysbiosis-inducing ones. This affects the overall microbial composition and metabolic activity and consequently the host-microbe interactions, which can be detrimental (associated with inflammation) or beneficial (health-associated). Consequently, guiding the antimicrobial effect for modulating the microbial composition to a health-associated one should be considered. For such an approach, this study investigated electrolyzed saline as a novel rinse. Electrolyzed saline was prepared from sterile saline using a portable electrolysis device. Multispecies oral homeostatic and dysbiotic biofilms were grown on hydroxyapatite discs and rinsed daily with electrolyzed saline (EOS). Corresponding positive (NaOCl) and negative (phosphate-buffered saline) controls were included. After 3 rinses, biofilms were analyzed with viability quantitative polymerase chain reaction and scanning electron microscopy. Supernatants of rinsed biofilms were used for metabolic activity analysis (high-performance liquid chromatography) through measuring organic acid content. In addition, human oral keratinocytes (HOKs) were exposed to EOS to test biocompatibility (cytotoxicity and inflammation induction) and also to rinsed biofilms to assess their immunogenicity after rinsing. Rinsing the dysbiotic biofilms with EOS could reduce the counts of the pathobionts (>3 log<sub>10</sub> Geq/mm<sup>2</sup> reduction) and avert biofilm dysbiosis (≤1% pathobiont abundance), leading to the dominance of commensal species (≥99%), which altered both biofilm metabolism and interleukin 8 (IL-8) induction in HOKs. EOS had no harmful effects on homeostatic biofilms. The scanning electron micrographs confirmed the same. In addition, tested concentrations of EOS did not have any cytotoxic effects and did not induce IL-8 production in HOKs. EOS showed promising results for diverting dysbiosis in in vitro rinsed biofilms and controlling key periopathogens, with no toxic effects on commensal species or human cells. This novel rinsing should be considered for clinical applications.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139379043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-02-12DOI: 10.1177/00220345231222181
K Pandi, S Angabo, H Makkawi, H Benyamini, S Elgavish, G Nussbaum
Porphyromonas gingivalis is a Gram-negative anaerobic bacterium strongly associated with periodontal disease. Toll-like receptor 2 (TLR2) is indispensable for the host response to P. gingivalis, but P. gingivalis escapes from immune clearance via TLR2-dependent activation of phosphoinositide-3-kinase (PI3K). To probe the TLR2-dependent escape pathway of P. gingivalis, we analyzed the TLR2 interactome induced following P. gingivalis infection or activation by a synthetic lipopeptide TLR2/1 agonist on human macrophages overexpressing TLR2. Interacting proteins were stabilized by cross-linking and then immunoprecipitated and analyzed by mass spectrometry. In total, 792 proteins were recovered and network analysis enabled mapping of the TLR2 interactome at baseline and in response to infection. The P. gingivalis infection-induced TLR2 interactome included the poly (ADP-ribose) polymerase family member mono-ADP-ribosyltransferase protein 9 (PARP9) and additional members of the PARP9 complex (DTX3L and NMI). PARP9 and its complex members are highly upregulated in macrophages exposed to P. gingivalis or to the synthetic TLR2/1 ligand Pam3Cys-Ser-(Lys)4 (PAM). Consistent with its known role in virally induced interferon production, PARP9 knockdown blocked type I interferon (IFN-I) production in response to P. gingivalis and reduced inflammatory cytokine production. We found that P. gingivalis drives signal transducer and activation of transcription (STAT) 1 (S727) phosphorylation through TLR2-PARP9, explaining PARP9's role in the induction of IFN-I downstream of TLR2. Furthermore, PARP9 knockdown reduced PI3K activation by P. gingivalis, leading to improved macrophage bactericidal activity. In summary, PARP9 is a novel TLR2 interacting partner that enables IFN-I induction and P. gingivalis immune escape in macrophages downstream of TLR2 sensing.
{"title":"<i>P. gingivalis</i>-Induced TLR2 Interactome Analysis Reveals Association with PARP9.","authors":"K Pandi, S Angabo, H Makkawi, H Benyamini, S Elgavish, G Nussbaum","doi":"10.1177/00220345231222181","DOIUrl":"10.1177/00220345231222181","url":null,"abstract":"<p><p><i>Porphyromonas gingivalis</i> is a Gram-negative anaerobic bacterium strongly associated with periodontal disease. Toll-like receptor 2 (TLR2) is indispensable for the host response to <i>P. gingivalis</i>, but <i>P. gingivalis</i> escapes from immune clearance via TLR2-dependent activation of phosphoinositide-3-kinase (PI3K). To probe the TLR2-dependent escape pathway of <i>P. gingivalis</i>, we analyzed the TLR2 interactome induced following <i>P. gingivalis</i> infection or activation by a synthetic lipopeptide TLR2/1 agonist on human macrophages overexpressing TLR2. Interacting proteins were stabilized by cross-linking and then immunoprecipitated and analyzed by mass spectrometry. In total, 792 proteins were recovered and network analysis enabled mapping of the TLR2 interactome at baseline and in response to infection. The <i>P. gingivalis</i> infection-induced TLR2 interactome included the poly (ADP-ribose) polymerase family member mono-ADP-ribosyltransferase protein 9 (PARP9) and additional members of the PARP9 complex (DTX3L and NMI). PARP9 and its complex members are highly upregulated in macrophages exposed to <i>P. gingivalis</i> or to the synthetic TLR2/1 ligand Pam<sub>3</sub>Cys-Ser-(Lys)<sub>4</sub> (PAM). Consistent with its known role in virally induced interferon production, PARP9 knockdown blocked type I interferon (IFN-I) production in response to <i>P. gingivalis</i> and reduced inflammatory cytokine production. We found that <i>P. gingivalis</i> drives signal transducer and activation of transcription (STAT) 1 (S727) phosphorylation through TLR2-PARP9, explaining PARP9's role in the induction of IFN-I downstream of TLR2. Furthermore, PARP9 knockdown reduced PI3K activation by <i>P. gingivalis</i>, leading to improved macrophage bactericidal activity. In summary, PARP9 is a novel TLR2 interacting partner that enables IFN-I induction and <i>P. gingivalis</i> immune escape in macrophages downstream of TLR2 sensing.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139725480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-01-29DOI: 10.1177/00220345231220915
Y Deng, Q Li, K K H Svoboda, L A Opperman, L B Ruest, X Liu
Periodontal mesenchymal stem cells (MSCs) play a crucial role in maintaining periodontium homeostasis and in tissue repair. However, little is known about how periodontal MSCs in vivo respond under periodontal disease conditions, posing a challenge for periodontium tissue regeneration. In this study, Gli1 was used as a periodontal MSC marker and combined with a Gli1-cre ERT2 mouse model for lineage tracing to investigate periodontal MSC fate in an induced periodontitis model. Our findings show significant changes in the number and contribution of Gli1+ MSCs within the inflamed periodontium. The number of Gli1+ MSCs that contributed to periodontal ligament homeostasis decreased in the periodontitis-induced teeth. While the proliferation of Gli1+ MSCs had no significant difference between the periodontitis and the control groups, more Gli1+ MSCs underwent apoptosis in diseased teeth. In addition, the number of Gli1+ MSCs for osteogenic differentiation decreased during the progression of periodontitis. Following tooth extraction, the contribution of Gli1+ MSCs to the tooth socket repair was significantly reduced in the periodontitis-induced teeth. Collectively, these findings indicate that the function of Gli1+ MSCs in periodontitis was compromised, including reduced contribution to periodontium homeostasis and impaired injury response.
{"title":"Gli1<sup>+</sup> Periodontal Mesenchymal Stem Cells in Periodontitis.","authors":"Y Deng, Q Li, K K H Svoboda, L A Opperman, L B Ruest, X Liu","doi":"10.1177/00220345231220915","DOIUrl":"10.1177/00220345231220915","url":null,"abstract":"<p><p>Periodontal mesenchymal stem cells (MSCs) play a crucial role in maintaining periodontium homeostasis and in tissue repair. However, little is known about how periodontal MSCs in vivo respond under periodontal disease conditions, posing a challenge for periodontium tissue regeneration. In this study, Gli1 was used as a periodontal MSC marker and combined with a Gli1-cre ERT2 mouse model for lineage tracing to investigate periodontal MSC fate in an induced periodontitis model. Our findings show significant changes in the number and contribution of Gli1<sup>+</sup> MSCs within the inflamed periodontium. The number of Gli1<sup>+</sup> MSCs that contributed to periodontal ligament homeostasis decreased in the periodontitis-induced teeth. While the proliferation of Gli1<sup>+</sup> MSCs had no significant difference between the periodontitis and the control groups, more Gli1<sup>+</sup> MSCs underwent apoptosis in diseased teeth. In addition, the number of Gli1<sup>+</sup> MSCs for osteogenic differentiation decreased during the progression of periodontitis. Following tooth extraction, the contribution of Gli1<sup>+</sup> MSCs to the tooth socket repair was significantly reduced in the periodontitis-induced teeth. Collectively, these findings indicate that the function of Gli1<sup>+</sup> MSCs in periodontitis was compromised, including reduced contribution to periodontium homeostasis and impaired injury response.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139572352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-01-10DOI: 10.1177/00220345231221712
S L Fu, Y Y Qian, A N Dai, H Y Li, X H Jin, W T He, S Kang, P H Ding
Periodontitis (PD) is the primary cause of tooth loss in adults. Porphyromonas gingivalis (P.g), a keystone pathogen, has been identified as a crucial contributor to this process. Pyroptosis activation in PD is acknowledged, with accumulating evidence underscoring the crucial role of Caspase-11 (described as Caspase-4/5 in humans)-mediated noncanonical pyroptosis. However, the mechanism behind its impact on PD remains unclear. In this study, we delved into the interplay between the Caspase-11-mediated noncanonical pyroptosis, subgingival microbiota alteration, and macrophage polarization. Clinical samples from PD patients revealed heightened expression of Caspase-4, gasdermin-D, and their active fragments, pointing to the activation of the noncanonical pyroptosis. Single-cell sequencing analysis linked Caspase-4 with gingival macrophages, emphasizing their involvement in PD. In vitro cell experiments confirmed that P.g-induced pyroptosis was activated in macrophages, with Casp11 deficiency attenuating these effects. In an experimental PD mouse model, Casp11 deficiency led to an alteration in subgingival microbiota composition and reduced alveolar bone resorption. Casp11-/- mice cohousing with wild-type mice confirmed the alteration of the subgingival microbiota and aggravated the alveolar bone resorption. Notably, Casp11 deficiency led to decreased M1-polarized macrophages, corresponding with reduced alveolar bone resorption, uncovering a connection between subgingival microbiota alteration, macrophage M1 polarization, and alveolar bone resorption. Taken together, we showed that Caspase-11 fulfilled a crucial role in the noncanonical pyroptosis in PD, potentially influencing the subgingival microbiota and linking to M1 polarization, which was associated with alveolar bone resorption. These findings underscored the pivotal role of the Caspase-11-mediated noncanonical pyroptosis in PD pathogenesis and may provide critical insights into potential therapeutic avenues for mitigating PD.
{"title":"<i>Casp11</i> Deficiency Alters Subgingival Microbiota and Attenuates Periodontitis.","authors":"S L Fu, Y Y Qian, A N Dai, H Y Li, X H Jin, W T He, S Kang, P H Ding","doi":"10.1177/00220345231221712","DOIUrl":"10.1177/00220345231221712","url":null,"abstract":"<p><p>Periodontitis (PD) is the primary cause of tooth loss in adults. <i>Porphyromonas gingivalis</i> (<i>P.g</i>), a keystone pathogen, has been identified as a crucial contributor to this process. Pyroptosis activation in PD is acknowledged, with accumulating evidence underscoring the crucial role of Caspase-11 (described as Caspase-4/5 in humans)-mediated noncanonical pyroptosis. However, the mechanism behind its impact on PD remains unclear. In this study, we delved into the interplay between the Caspase-11-mediated noncanonical pyroptosis, subgingival microbiota alteration, and macrophage polarization. Clinical samples from PD patients revealed heightened expression of Caspase-4, gasdermin-D, and their active fragments, pointing to the activation of the noncanonical pyroptosis. Single-cell sequencing analysis linked Caspase-4 with gingival macrophages, emphasizing their involvement in PD. In vitro cell experiments confirmed that <i>P.g</i>-induced pyroptosis was activated in macrophages, with <i>Casp11</i> deficiency attenuating these effects. In an experimental PD mouse model, <i>Casp11</i> deficiency led to an alteration in subgingival microbiota composition and reduced alveolar bone resorption. <i>Casp11</i><sup><i>-/-</i></sup> mice cohousing with wild-type mice confirmed the alteration of the subgingival microbiota and aggravated the alveolar bone resorption. Notably, <i>Casp11</i> deficiency led to decreased M1-polarized macrophages, corresponding with reduced alveolar bone resorption, uncovering a connection between subgingival microbiota alteration, macrophage M1 polarization, and alveolar bone resorption. Taken together, we showed that Caspase-11 fulfilled a crucial role in the noncanonical pyroptosis in PD, potentially influencing the subgingival microbiota and linking to M1 polarization, which was associated with alveolar bone resorption. These findings underscored the pivotal role of the Caspase-11-mediated noncanonical pyroptosis in PD pathogenesis and may provide critical insights into potential therapeutic avenues for mitigating PD.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139405726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}