Pub Date : 2023-09-09DOI: 10.1016/j.esci.2023.100183
Charlie A.F. Nason, Yang Xu
With the growing concern around the sustainability and supply of lithium, the need for alternative rechargeable energy storage technologies has become ever more pressing. Sodium-, potassium-, magnesium-, and zinc-ion batteries are fast becoming viable alternatives but are held back by capacity, rate and stability problems that have not developed comparably to lithium-ion batteries. To overcome these shortcomings and reduce the reliance on lithium, electrode materials used for these post-lithium batteries must be improved. Pre-intercalation of foreign species into the lattice of promising electrode materials can enhance their electrochemical performance in comparison to the un-pre-intercalated counterparts, closing the performance gap with lithium-ion batteries. This review article covers the common methods of pre-intercalating foreign species into electrode materials, the resulting structural effects and the improvements that are observed in the materials' electrochemical performance for post-lithium batteries. Timely and impactful work reported previously are summarised as examples of these improvements, demonstrating the value and ever-growing importance of pre-intercalation in today's battery landscape.
{"title":"Pre-intercalation: A valuable approach for the improvement of post-lithium battery materials","authors":"Charlie A.F. Nason, Yang Xu","doi":"10.1016/j.esci.2023.100183","DOIUrl":"10.1016/j.esci.2023.100183","url":null,"abstract":"<div><p>With the growing concern around the sustainability and supply of lithium, the need for alternative rechargeable energy storage technologies has become ever more pressing. Sodium-, potassium-, magnesium-, and zinc-ion batteries are fast becoming viable alternatives but are held back by capacity, rate and stability problems that have not developed comparably to lithium-ion batteries. To overcome these shortcomings and reduce the reliance on lithium, electrode materials used for these post-lithium batteries must be improved. Pre-intercalation of foreign species into the lattice of promising electrode materials can enhance their electrochemical performance in comparison to the un-pre-intercalated counterparts, closing the performance gap with lithium-ion batteries. This review article covers the common methods of pre-intercalating foreign species into electrode materials, the resulting structural effects and the improvements that are observed in the materials' electrochemical performance for post-lithium batteries. Timely and impactful work reported previously are summarised as examples of these improvements, demonstrating the value and ever-growing importance of pre-intercalation in today's battery landscape.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 2","pages":"Article 100183"},"PeriodicalIF":0.0,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001234/pdfft?md5=f1dcb21a4ba1440947064ad02f302e19&pid=1-s2.0-S2667141723001234-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135249134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.esci.2023.100179
Changpeng Lv , Chunfu Lin , Xiu Song Zhao
Present-day Li+ storage materials generally suffer from sluggish low-temperature electrochemical kinetics and poor high-temperature cycling stability. Herein, based on a Ca2+ substituted Mg2Nb34O87 anode material, we demonstrate that decreasing the ionic packing factor is a two-fold strategy to enhance the low-temperature electrochemical kinetics and high-temperature cyclic stability. The resulting Mg1.5Ca0.5Nb34O87 shows the smallest ionic packing factor among Wadsley–Roth niobate materials. Compared with Mg2Nb34O87, Mg1.5Ca0.5Nb34O87 delivers a 1.6 times faster Li+ diffusivity at −20 °C, leading to 56% larger reversible capacity and 1.5 times higher rate capability. Furthermore, Mg1.5Ca0.5Nb34O87 exhibits an 11% smaller maximum unit-cell volume expansion upon lithiation at 60 °C, resulting in better cyclic stability; at 10C after 500 cycles, it has a 7.1% higher capacity retention, and its reversible capacity at 10C is 57% larger. Therefore, Mg1.5Ca0.5Nb34O87 is an all-climate anode material capable of working at harsh temperatures, even when its particle sizes are in the order of micrometers.
{"title":"Enhancing low-temperature electrochemical kinetics and high-temperature cycling stability by decreasing ionic packing factor","authors":"Changpeng Lv , Chunfu Lin , Xiu Song Zhao","doi":"10.1016/j.esci.2023.100179","DOIUrl":"10.1016/j.esci.2023.100179","url":null,"abstract":"<div><p>Present-day Li<sup>+</sup> storage materials generally suffer from sluggish low-temperature electrochemical kinetics and poor high-temperature cycling stability. Herein, based on a Ca<sup>2+</sup> substituted Mg<sub>2</sub>Nb<sub>34</sub>O<sub>87</sub> anode material, we demonstrate that decreasing the ionic packing factor is a two-fold strategy to enhance the low-temperature electrochemical kinetics and high-temperature cyclic stability. The resulting Mg<sub>1.5</sub>Ca<sub>0.5</sub>Nb<sub>34</sub>O<sub>87</sub> shows the smallest ionic packing factor among Wadsley–Roth niobate materials. Compared with Mg<sub>2</sub>Nb<sub>34</sub>O<sub>87</sub>, Mg<sub>1.5</sub>Ca<sub>0.5</sub>Nb<sub>34</sub>O<sub>87</sub> delivers a 1.6 times faster Li<sup>+</sup> diffusivity at −20 °C, leading to 56% larger reversible capacity and 1.5 times higher rate capability. Furthermore, Mg<sub>1.5</sub>Ca<sub>0.5</sub>Nb<sub>34</sub>O<sub>87</sub> exhibits an 11% smaller maximum unit-cell volume expansion upon lithiation at 60 °C, resulting in better cyclic stability; at 10C after 500 cycles, it has a 7.1% higher capacity retention, and its reversible capacity at 10C is 57% larger. Therefore, Mg<sub>1.5</sub>Ca<sub>0.5</sub>Nb<sub>34</sub>O<sub>87</sub> is an all-climate anode material capable of working at harsh temperatures, even when its particle sizes are in the order of micrometers.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"3 6","pages":"Article 100179"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001192/pdfft?md5=1739595186c80c88525cbafbaec4d2a2&pid=1-s2.0-S2667141723001192-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78262691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-30DOI: 10.1016/j.esci.2023.100178
Jiaxin Chen , Wentao Xu
Optoelectronic artificial synapses (OEASs) are essential for realizing artificial neural networks (ANNs) in next-generation information processing that has high transmission speed, high bandwidth, and low power consumption. Two-dimensional (2D) materials endowed with strong light-matter interactions and atomically thin dangling-bond-free surfaces are candidates for achieving versatile optoelectronics. Developing 2D OEASs for future neuromorphic applications is significant to break the bottleneck of von Neumann architecture and achieve future artificial intelligence systems. This review primarily focuses on recent developments in advanced 2D OEASs, discussing their working mechanism as well as potential applications. Common materials, device structures, and their synthesis and construction methods are also summarized. Finally, the prospects for future 2D OEASs from the perspectives of materials, performance, and applications are briefly described.
{"title":"2D-materials-based optoelectronic synapses for neuromorphic applications","authors":"Jiaxin Chen , Wentao Xu","doi":"10.1016/j.esci.2023.100178","DOIUrl":"10.1016/j.esci.2023.100178","url":null,"abstract":"<div><p>Optoelectronic artificial synapses (OEASs) are essential for realizing artificial neural networks (ANNs) in next-generation information processing that has high transmission speed, high bandwidth, and low power consumption. Two-dimensional (2D) materials endowed with strong light-matter interactions and atomically thin dangling-bond-free surfaces are candidates for achieving versatile optoelectronics. Developing 2D OEASs for future neuromorphic applications is significant to break the bottleneck of von Neumann architecture and achieve future artificial intelligence systems. This review primarily focuses on recent developments in advanced 2D OEASs, discussing their working mechanism as well as potential applications. Common materials, device structures, and their synthesis and construction methods are also summarized. Finally, the prospects for future 2D OEASs from the perspectives of materials, performance, and applications are briefly described.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"3 6","pages":"Article 100178"},"PeriodicalIF":0.0,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001180/pdfft?md5=0675183c600b573a10f39920670541ea&pid=1-s2.0-S2667141723001180-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72516154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-23DOI: 10.1016/j.esci.2023.100177
Zhonggang Liu , Xi Liu , Bingchun Wang , Xinying Wang , Dongzhen Lu , Dijun Shen , Zhefei Sun , Yongchang Liu , Wenli Zhang , Qiaobao Zhang , Yunyong Li
Ultra-thick, dense alloy-type anodes are promising for achieving large areal and volumetric performance in potassium-ion batteries (PIBs), but severe volume expansion as well as sluggish ion and electron diffusion kinetics heavily impede their widespread application. Herein, we design highly dense (3.1 g cm−3) Ti3C2Tx MXene and graphene dual-encapsulated nano-Sb monolith architectures (HD-Sb@Ti3C2Tx-G) with high-conductivity elastic networks (1560 S m−1) and compact dually encapsulated structures, which exhibit a large volumetric capacity of 1780.2 mAh cm−3 (gravimetric capacity: 565.0 mAh g−1), a long-term stable lifespan of 500 cycles with 82% retention, and a large areal capacity of 8.6 mAh cm−2 (loading: 31 mg cm−2) in PIBs. Using ex-situ SEM, in-situ TEM, kinetic investigations, and theoretical calculations, we reveal that the excellent areal and volumetric performance mechanism stems from the three dimensional (3D) high-conductivity elastic networks and the dual-encapsulated Sb architecture of Ti3C2Tx and graphene; these effectively mitigate against volume expansion and the pulverization of Sb, offering good electrolyte penetration and rapid ionic/electronic transmission. Ti3C2Tx also decreases the K+ diffusion energy barrier, and the ultra-thick compact electrode ensures volumetric and areal performance. These findings provide a feasible strategy for fabricating ultra-thick, dense alloy-type electrodes to achieve high areal and volumetric capacity energy storage via highly-dense, dual-encapsulated architectures with conductive elastic networks.
超厚、致密合金型阳极有望在钾离子电池(PIBs)中实现大面积和大体积性能,但严重的体积膨胀以及缓慢的离子和电子扩散动力学严重阻碍了它们的广泛应用。在此,我们设计了高密度(3.1 g cm−3)Ti3C2Tx MXene和石墨烯双封装纳米sb单体结构(HD-Sb@Ti3C2Tx-G),具有高导电性弹性网络(1560 S m−1)和紧凑的双封装结构,其PIBs具有1780.2 mAh cm−3的大容量(重力容量:565.0 mAh g−1),500次循环的长期稳定寿命和82%的保留率,以及8.6 mAh cm−2的大面积容量(负载:31 mg cm−2)。通过非原位扫描电镜、原位透射电镜、动力学研究和理论计算,我们发现优异的面积和体积性能机制源于三维(3D)高导电性弹性网络和Ti3C2Tx和石墨烯的双封装Sb结构;这些有效地减轻了体积膨胀和Sb的粉碎,提供了良好的电解质渗透和快速的离子/电子传输。Ti3C2Tx还降低了K+扩散能垒,超厚致密电极保证了体积和面积性能。这些发现为制造超厚、致密合金型电极提供了一种可行的策略,通过具有导电弹性网络的高密度双封装架构实现高面积和体积容量的储能。
{"title":"Ultra-thick, dense dual-encapsulated Sb anode architecture with conductively elastic networks promises potassium-ion batteries with high areal and volumetric capacities","authors":"Zhonggang Liu , Xi Liu , Bingchun Wang , Xinying Wang , Dongzhen Lu , Dijun Shen , Zhefei Sun , Yongchang Liu , Wenli Zhang , Qiaobao Zhang , Yunyong Li","doi":"10.1016/j.esci.2023.100177","DOIUrl":"10.1016/j.esci.2023.100177","url":null,"abstract":"<div><p>Ultra-thick, dense alloy-type anodes are promising for achieving large areal and volumetric performance in potassium-ion batteries (PIBs), but severe volume expansion as well as sluggish ion and electron diffusion kinetics heavily impede their widespread application. Herein, we design highly dense (3.1 g cm<sup>−3</sup>) Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene and graphene dual-encapsulated nano-Sb monolith architectures (HD-Sb@Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-G) with high-conductivity elastic networks (1560 S m<sup>−1</sup>) and compact dually encapsulated structures, which exhibit a large volumetric capacity of 1780.2 mAh cm<sup>−3</sup> (gravimetric capacity: 565.0 mAh g<sup>−1</sup>), a long-term stable lifespan of 500 cycles with 82% retention, and a large areal capacity of 8.6 mAh cm<sup>−2</sup> (loading: 31 mg cm<sup>−2</sup>) in PIBs. Using <em>ex-situ</em> SEM, <em>in-situ</em> TEM, kinetic investigations, and theoretical calculations, we reveal that the excellent areal and volumetric performance mechanism stems from the three dimensional (3D) high-conductivity elastic networks and the dual-encapsulated Sb architecture of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> and graphene; these effectively mitigate against volume expansion and the pulverization of Sb, offering good electrolyte penetration and rapid ionic/electronic transmission. Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> also decreases the K<sup>+</sup> diffusion energy barrier, and the ultra-thick compact electrode ensures volumetric and areal performance. These findings provide a feasible strategy for fabricating ultra-thick, dense alloy-type electrodes to achieve high areal and volumetric capacity energy storage <em>via</em> highly-dense, dual-encapsulated architectures with conductive elastic networks.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"3 6","pages":"Article 100177"},"PeriodicalIF":0.0,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001179/pdfft?md5=ee19e7c8d9b5ef9234a6fa991ae12d4c&pid=1-s2.0-S2667141723001179-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81283154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-07DOI: 10.1016/j.esci.2023.100175
Aikai Yang , Kai Yao , Mareen Schaller , Enkhtsetseg Dashjav , Hang Li , Shuo Zhao , Qiu Zhang , Martin Etter , Xingchen Shen , Huimin Song , Qiongqiong Lu , Ruijie Ye , Igor Moudrakovski , Quanquan Pang , Sylvio Indris , Xingchao Wang , Qianli Ma , Frank Tietz , Jun Chen , Olivier Guillon
Developing cost-effective and reliable solid-state sodium batteries with superior performance is crucial for stationary energy storage. A key component in facilitating their application is a solid-state electrolyte with high conductivity and stability. Herein, we employed aliovalent cation substitution to enhance ionic conductivity while preserving the crystal structure. Optimized substitution of Y3+ with Zr4+ in Na5YSi4O12 introduced Na+ ion vacancies, resulting in high bulk and total conductivities of up to 6.5 and 3.3 mS cm−1, respectively, at room temperature with the composition Na4.92Y0.92Zr0.08Si4O12 (NYZS). NYZS shows exceptional electrochemical stability (up to 10 V vs. Na+/Na), favorable interfacial compatibility with Na, and an excellent critical current density of 2.4 mA cm−2. The enhanced conductivity of Na+ ions in NYZS was elucidated using solid-state nuclear magnetic resonance techniques and theoretical simulations, revealing two migration routes facilitated by the synergistic effect of increased Na+ ion vacancies and improved chemical environment due to Zr4+ substitution. NYZS extends the list of suitable solid-state electrolytes and enables the facile synthesis of stable, low-cost Na+ ion silicate electrolytes.
开发经济、可靠、性能优越的固态钠电池是固定式储能的关键。促进其应用的关键因素是具有高导电性和稳定性的固态电解质。在这里,我们采用共价阳离子取代来提高离子电导率,同时保持晶体结构。在Na5YSi4O12中,通过优化Zr4+取代Y3+,引入Na+离子空位,在室温下获得了高的体积和总电导率,分别高达6.5和3.3 mS cm−1,组成为Na4.92Y0.92Zr0.08Si4O12 (NYZS)。NYZS具有优异的电化学稳定性(高达10 V vs. Na+/Na),与Na具有良好的界面相容性,临界电流密度为2.4 mA cm−2。利用固态核磁共振技术和理论模拟分析了Na+离子在NYZS中的电导率增强,揭示了Zr4+取代导致Na+离子空位增加和化学环境改善的协同作用促进了两条迁移途径。NYZS扩展了合适的固态电解质的列表,并能够轻松合成稳定,低成本的Na+离子硅酸盐电解质。
{"title":"Enhanced room-temperature Na+ ionic conductivity in Na4.92Y0.92Zr0.08Si4O12","authors":"Aikai Yang , Kai Yao , Mareen Schaller , Enkhtsetseg Dashjav , Hang Li , Shuo Zhao , Qiu Zhang , Martin Etter , Xingchen Shen , Huimin Song , Qiongqiong Lu , Ruijie Ye , Igor Moudrakovski , Quanquan Pang , Sylvio Indris , Xingchao Wang , Qianli Ma , Frank Tietz , Jun Chen , Olivier Guillon","doi":"10.1016/j.esci.2023.100175","DOIUrl":"10.1016/j.esci.2023.100175","url":null,"abstract":"<div><p>Developing cost-effective and reliable solid-state sodium batteries with superior performance is crucial for stationary energy storage. A key component in facilitating their application is a solid-state electrolyte with high conductivity and stability. Herein, we employed aliovalent cation substitution to enhance ionic conductivity while preserving the crystal structure. Optimized substitution of Y<sup>3+</sup> with Zr<sup>4+</sup> in Na<sub>5</sub>YSi<sub>4</sub>O<sub>12</sub> introduced Na<sup>+</sup> ion vacancies, resulting in high bulk and total conductivities of up to 6.5 and 3.3 mS cm<sup>−1</sup>, respectively, at room temperature with the composition Na<sub>4.92</sub>Y<sub>0.92</sub>Zr<sub>0.08</sub>Si<sub>4</sub>O<sub>12</sub> (NYZS). NYZS shows exceptional electrochemical stability (up to 10 V <em>vs</em>. Na<sup>+</sup>/Na), favorable interfacial compatibility with Na, and an excellent critical current density of 2.4 mA cm<sup>−2</sup>. The enhanced conductivity of Na<sup>+</sup> ions in NYZS was elucidated using solid-state nuclear magnetic resonance techniques and theoretical simulations, revealing two migration routes facilitated by the synergistic effect of increased Na<sup>+</sup> ion vacancies and improved chemical environment due to Zr<sup>4+</sup> substitution. NYZS extends the list of suitable solid-state electrolytes and enables the facile synthesis of stable, low-cost Na<sup>+</sup> ion silicate electrolytes.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"3 6","pages":"Article 100175"},"PeriodicalIF":0.0,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001131/pdfft?md5=cb33c7375e12888a74d10f0c49cb1fa4&pid=1-s2.0-S2667141723001131-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78894932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-05DOI: 10.1016/j.esci.2023.100173
Xin Wu , Yao Dai , Nian Wu Li , Xiao Chun Chen , Le Yu
Nonaqueous Li metal batteries (LMBs) and aqueous Zn metal batteries (ZMBs) are promising next-generation secondary batteries owing to their high energy density. Selecting an appropriate electrolyte is critical for addressing the safety issues nonaqueous and aqueous metal batteries can encounter. Ionic liquids (ILs) have been widely used in secondary metal batteries because they are non-flammable, present good thermal stability, and have wide electrochemical windows. This review highlights the research progress on IL-based electrolytes for stable Li/Zn metal anodes. We focus particularly on these electrolytes' electrochemistry and functionalities at the electrolyte/anode interface for inhibiting dendrite growth, preventing side reactions, and enhancing electrochemical performance. It is expected that this review will shed some light on the development of ILs for next-generation metal batteries.
{"title":"Recent progress in ionic liquid-based electrolytes for nonaqueous and aqueous metal batteries","authors":"Xin Wu , Yao Dai , Nian Wu Li , Xiao Chun Chen , Le Yu","doi":"10.1016/j.esci.2023.100173","DOIUrl":"10.1016/j.esci.2023.100173","url":null,"abstract":"<div><p>Nonaqueous Li metal batteries (LMBs) and aqueous Zn metal batteries (ZMBs) are promising next-generation secondary batteries owing to their high energy density. Selecting an appropriate electrolyte is critical for addressing the safety issues nonaqueous and aqueous metal batteries can encounter. Ionic liquids (ILs) have been widely used in secondary metal batteries because they are non-flammable, present good thermal stability, and have wide electrochemical windows. This review highlights the research progress on IL-based electrolytes for stable Li/Zn metal anodes. We focus particularly on these electrolytes' electrochemistry and functionalities at the electrolyte/anode interface for inhibiting dendrite growth, preventing side reactions, and enhancing electrochemical performance. It is expected that this review will shed some light on the development of ILs for next-generation metal batteries.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 2","pages":"Article 100173"},"PeriodicalIF":0.0,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001118/pdfft?md5=e87a67afcebb7843c9213ad1a73a8fb2&pid=1-s2.0-S2667141723001118-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73562751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-05DOI: 10.1016/j.esci.2023.100170
Yang Yang , Wuhai Yang , Huijun Yang , Haoshen Zhou
Alongside the pursuit of high energy density and long service life, the urgent demand for low-temperature performance remains a long-standing challenge for a wide range of Li-ion battery applications, such as electric vehicles, portable electronics, large-scale grid systems, and special space/seabed/military purposes. Current Li-ion batteries suffer a major loss of capacity and power and fail to operate normally when the temperature decreases to −20 °C. This deterioration is mainly attributed to poor Li-ion transport in a bulk carbonated ester electrolyte and its derived solid–electrolyte interphase (SEI). In this mini-review discussing the limiting factors in the Li-ion diffusion process, we propose three basic requirements when formulating electrolytes for low-temperature Li-ion batteries: low melting point, poor Li+ affinity, and a favorable SEI. Then, we briefly review emerging progress, including liquefied gas electrolytes, weakly solvating electrolytes, and localized high-concentration electrolytes. The proposed novel electrolytes effectively improve the reaction kinetics via accelerating Li-ion diffusion in the bulk electrolyte and interphase. The final part of the paper addresses future challenges and offers perspectives on electrolyte designs for low-temperature Li-ion batteries.
{"title":"Electrolyte design principles for low-temperature lithium-ion batteries","authors":"Yang Yang , Wuhai Yang , Huijun Yang , Haoshen Zhou","doi":"10.1016/j.esci.2023.100170","DOIUrl":"10.1016/j.esci.2023.100170","url":null,"abstract":"<div><p>Alongside the pursuit of high energy density and long service life, the urgent demand for low-temperature performance remains a long-standing challenge for a wide range of Li-ion battery applications, such as electric vehicles, portable electronics, large-scale grid systems, and special space/seabed/military purposes. Current Li-ion batteries suffer a major loss of capacity and power and fail to operate normally when the temperature decreases to −20 °C. This deterioration is mainly attributed to poor Li-ion transport in a bulk carbonated ester electrolyte and its derived solid–electrolyte interphase (SEI). In this mini-review discussing the limiting factors in the Li-ion diffusion process, we propose three basic requirements when formulating electrolytes for low-temperature Li-ion batteries: low melting point, poor Li<sup>+</sup> affinity, and a favorable SEI. Then, we briefly review emerging progress, including liquefied gas electrolytes, weakly solvating electrolytes, and localized high-concentration electrolytes. The proposed novel electrolytes effectively improve the reaction kinetics via accelerating Li-ion diffusion in the bulk electrolyte and interphase. The final part of the paper addresses future challenges and offers perspectives on electrolyte designs for low-temperature Li-ion batteries.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"3 6","pages":"Article 100170"},"PeriodicalIF":0.0,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001088/pdfft?md5=2a9cb18eafae7ba56d576649e19d3e1e&pid=1-s2.0-S2667141723001088-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89637098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-05DOI: 10.1016/j.esci.2023.100172
Fanrong Chen , Ze-Cheng Yao , Zhen-Hua Lyu , Jiaju Fu , Xiaoling Zhang , Jin-Song Hu
Electrocatalytic CO2 reduction (ECR) to high-value fuels and chemicals offers a promising conversion technology for achieving sustainable carbon cycles. In recent years, although great efforts have been made to develop high-efficiency ECR catalysts, challenges remain in achieving high activity and long durability simultaneously. Taking advantage of the adjustable structure, tunable component, and the M–Ch (M = Sn, In, Bi, etc., Ch = S, Se, Te) covalent bonds stabilized metal centers, the p-block metal chalcogenides (PMC) based electrocatalysts have shown great potential in converting CO2 into CO or formates. In addition, the unique p-block electron structure can suppress the competitive hydrogen evolution reaction and enhance the adsorption of ECR intermediates. Seeking to systematically understand the structure–activity relationship of PMC-based ECR catalysts, this review summarizes the recent advances in designing PMC electrocatalysts for CO2 reduction based on the fundamental aspects of heterogeneous ECR process, including advanced strategies for optimizing the intrinsic activity and improving the loading density of catalytic sites, constructing highly stable catalysts, and tuning product selectivities. Subsequently, we outline the challenges and perspectives on developing high-performance PMC ECR catalysts for practical applications.
电催化二氧化碳还原(ECR)将二氧化碳转化为高价值燃料和化学品,为实现可持续碳循环提供了一种前景广阔的转化技术。近年来,尽管人们在开发高效 ECR 催化剂方面做出了巨大努力,但在同时实现高活性和长耐久性方面仍然存在挑战。利用可调结构、可调组分和 M-Ch(M = Sn、In、Bi 等,Ch = S、Se、Te)共价键稳定金属中心的优势,基于对嵌段金属瑀(PMC)的电催化剂在将 CO2 转化为 CO 或甲酸盐方面显示出巨大的潜力。此外,独特的对嵌段电子结构还能抑制竞争性氢进化反应,并增强对 ECR 中间产物的吸附。为了系统地了解基于 PMC 的 ECR 催化剂的结构-活性关系,本综述总结了基于异相 ECR 过程基本方面设计用于 CO2 还原的 PMC 电催化剂的最新进展,包括优化催化位点的内在活性和提高负载密度、构建高稳定性催化剂以及调整产物选择性的先进策略。随后,我们概述了为实际应用开发高性能 PMC ECR 催化剂所面临的挑战和前景。
{"title":"Recent advances in p-block metal chalcogenide electrocatalysts for high-efficiency CO2 reduction","authors":"Fanrong Chen , Ze-Cheng Yao , Zhen-Hua Lyu , Jiaju Fu , Xiaoling Zhang , Jin-Song Hu","doi":"10.1016/j.esci.2023.100172","DOIUrl":"10.1016/j.esci.2023.100172","url":null,"abstract":"<div><p>Electrocatalytic CO<sub>2</sub> reduction (ECR) to high-value fuels and chemicals offers a promising conversion technology for achieving sustainable carbon cycles. In recent years, although great efforts have been made to develop high-efficiency ECR catalysts, challenges remain in achieving high activity and long durability simultaneously. Taking advantage of the adjustable structure, tunable component, and the M–Ch (M = Sn, In, Bi, etc., Ch = S, Se, Te) covalent bonds stabilized metal centers, the p-block metal chalcogenides (PMC) based electrocatalysts have shown great potential in converting CO<sub>2</sub> into CO or formates. In addition, the unique p-block electron structure can suppress the competitive hydrogen evolution reaction and enhance the adsorption of ECR intermediates. Seeking to systematically understand the structure–activity relationship of PMC-based ECR catalysts, this review summarizes the recent advances in designing PMC electrocatalysts for CO<sub>2</sub> reduction based on the fundamental aspects of heterogeneous ECR process, including advanced strategies for optimizing the intrinsic activity and improving the loading density of catalytic sites, constructing highly stable catalysts, and tuning product selectivities. Subsequently, we outline the challenges and perspectives on developing high-performance PMC ECR catalysts for practical applications.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 2","pages":"Article 100172"},"PeriodicalIF":0.0,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001106/pdfft?md5=2b3f2a1af817a8f83d1c555b2d3b0c80&pid=1-s2.0-S2667141723001106-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79982320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1016/j.esci.2023.100142
Jianhua Jing, Yuejia Dou, Shihao Chen, Kai Zhang, Fei Huang
Organic optoelectronic materials enable cutting-edge, low-cost organic photodiodes, including organic solar cells (OSCs) for energy conversion and organic photodetectors (OPDs) for image sensors. The bulk heterojunction (BHJ) structure, derived by blending donor and acceptor materials in a single solution, has dominated in the construction of active layer, but its morphological evolution during film formation poses a great challenge for obtaining an ideal nanoscale morphology to maximize exciton dissociation and minimize nongeminate recombination. Solution sequential deposition (SSD) can deliver favorable p–i–n vertical component distribution with abundant donor/acceptor interfaces and relatively neat donor and acceptor phases near electrodes, making it highly promising for excellent device performance and long-term stability. Focusing on the p–i–n structure, this review provides a systematic retrospect on regulating this morphology in SSD by summarizing solvent selection and additive strategies. These methods have been successfully implemented to achieve well-defined morphology in ternary OSCs, all-polymer solar cells, and OPDs. To provide a practical perspective, comparative studies of device stability with BHJ and SSD film are also discussed, and we review influential progress in blade-coating techniques and large-area modules to shed light on industrial production. Finally, challenging issues are outlined for further research toward eventual commercialization.
{"title":"Solution sequential deposited organic photovoltaics: From morphology control to large-area modules","authors":"Jianhua Jing, Yuejia Dou, Shihao Chen, Kai Zhang, Fei Huang","doi":"10.1016/j.esci.2023.100142","DOIUrl":"https://doi.org/10.1016/j.esci.2023.100142","url":null,"abstract":"<div><p>Organic optoelectronic materials enable cutting-edge, low-cost organic photodiodes, including organic solar cells (OSCs) for energy conversion and organic photodetectors (OPDs) for image sensors. The bulk heterojunction (BHJ) structure, derived by blending donor and acceptor materials in a single solution, has dominated in the construction of active layer, but its morphological evolution during film formation poses a great challenge for obtaining an ideal nanoscale morphology to maximize exciton dissociation and minimize nongeminate recombination. Solution sequential deposition (SSD) can deliver favorable p–i–n vertical component distribution with abundant donor/acceptor interfaces and relatively neat donor and acceptor phases near electrodes, making it highly promising for excellent device performance and long-term stability. Focusing on the p–i–n structure, this review provides a systematic retrospect on regulating this morphology in SSD by summarizing solvent selection and additive strategies. These methods have been successfully implemented to achieve well-defined morphology in ternary OSCs, all-polymer solar cells, and OPDs. To provide a practical perspective, comparative studies of device stability with BHJ and SSD film are also discussed, and we review influential progress in blade-coating techniques and large-area modules to shed light on industrial production. Finally, challenging issues are outlined for further research toward eventual commercialization.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"3 4","pages":"Article 100142"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49879074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1016/j.esci.2023.100138
Rong Liu , Lai Yu , Xiaoyue He , Huanhuan Liu , Xinyi Ma , Zongzhi Tao , Guanglin Wan , Nazir Ahmad , Bo Peng , Liang Shi , Genqiang Zhang
Bismuth sulfide (Bi2S3) is a dominant anode material for sodium-ion batteries due to its high theoretical capacity. However, extreme volume fluctuations as well as low electrical conductivity and reaction kinetics still limit its practical applications. Herein, we construct an abundant heterointerface of Bi/Bi2S3 by engineering the structure of Bi nanoparticles embedded on Bi2S3 nanorods (denoted as Bi–Bi2S3 NRs) to effectively solve the abovementioned obstacles. Theoretical and systematic characterization results reveal that the constructed heterointerface of Bi/Bi2S3 has a built-in electric field, significantly boosts the electrical conductivity, enhances the Na+ diffusion kinetics, and buffers the volume variation. With this modification, it can deliver long cycling life, with an ultra-high capacity of 500 mAh g−1 over 500 cycles at 1 A g−1, and outstanding rate capability, with a capacity of 456 mAh g−1 even at 15 A g−1. Moreover, a full cell can achieve a high energy density of 180 Wh kg−1 at a power density of 40 W kg−1. Our research opens up a fresh path for improving the dynamics and structural stability of metal sulfide-based electrode materials for SIBs.
硫化铋(Bi2S3)具有较高的理论容量,是钠离子电池的主要负极材料。然而,极端的体积波动以及低电导率和反应动力学仍然限制了它的实际应用。本文通过工程设计嵌入Bi2S3纳米棒上的Bi纳米颗粒(表示为Bi - Bi2S3 NRs)结构,构建了丰富的Bi/Bi2S3异质界面,有效解决了上述障碍。理论和系统表征结果表明,构建的Bi/Bi2S3异质界面具有内置电场,显著提高了电导率,增强了Na+扩散动力学,缓冲了体积变化。经过这种改进,它可以提供很长的循环寿命,在1 A g−1下,在500次循环中具有500 mAh g−1的超高容量,并且具有出色的速率能力,即使在15 A g−1下也具有456 mAh g−1的容量。此外,在40w kg - 1的功率密度下,一个完整的电池可以实现180wh kg - 1的高能量密度。我们的研究为改善金属硫化物基sib电极材料的动力学和结构稳定性开辟了一条新的途径。
{"title":"Constructing heterointerface of Bi/Bi2S3 with built-in electric field realizes superior sodium-ion storage capability","authors":"Rong Liu , Lai Yu , Xiaoyue He , Huanhuan Liu , Xinyi Ma , Zongzhi Tao , Guanglin Wan , Nazir Ahmad , Bo Peng , Liang Shi , Genqiang Zhang","doi":"10.1016/j.esci.2023.100138","DOIUrl":"https://doi.org/10.1016/j.esci.2023.100138","url":null,"abstract":"<div><p>Bismuth sulfide (Bi<sub>2</sub>S<sub>3</sub>) is a dominant anode material for sodium-ion batteries due to its high theoretical capacity. However, extreme volume fluctuations as well as low electrical conductivity and reaction kinetics still limit its practical applications. Herein, we construct an abundant heterointerface of Bi/Bi<sub>2</sub>S<sub>3</sub> by engineering the structure of Bi nanoparticles embedded on Bi<sub>2</sub>S<sub>3</sub> nanorods (denoted as Bi–Bi<sub>2</sub>S<sub>3</sub> NRs) to effectively solve the abovementioned obstacles. Theoretical and systematic characterization results reveal that the constructed heterointerface of Bi/Bi<sub>2</sub>S<sub>3</sub> has a built-in electric field, significantly boosts the electrical conductivity, enhances the Na<sup>+</sup> diffusion kinetics, and buffers the volume variation. With this modification, it can deliver long cycling life, with an ultra-high capacity of 500 mAh g<sup>−1</sup> over 500 cycles at 1 A g<sup>−1</sup>, and outstanding rate capability, with a capacity of 456 mAh g<sup>−1</sup> even at 15 A g<sup>−1</sup>. Moreover, a full cell can achieve a high energy density of 180 Wh kg<sup>−1</sup> at a power density of 40 W kg<sup>−1</sup>. Our research opens up a fresh path for improving the dynamics and structural stability of metal sulfide-based electrode materials for SIBs.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"3 4","pages":"Article 100138"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49878985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}