The efficient, mild, and convenient photopolymerization technology offers a promising green fabrication method for composites and has already been successfully applied in structural repair and outdoor manufacture. In previous studies, a method was developed for producing thick glass fiber-reinforced composites (GFRPC) of up to 20 mm based on upconversion assisted near-infrared photopolymerization (UCAP). Photo-thermal dual curing can further improve both curing uniformity and efficiency. The present work fully utilized the synergistic photothermal effects of UCAP. Near-infrared induced the cleavage of Phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide (BAPO) to generate benzoyl radicals, while benzopinacol (BPNC) thermally decomposed into benzophenone radicals, jointly promoting acrylate matrix crosslinking. When the thickness of GFRPC reached 15 mm, the curing time was reduced to 60 s, achieving double bond conversion of 81 % and 71 % on the top and bottom surfaces, respectively. Compared to the BAPO/UCAP photoinitiated system, the BPNC/BAPO/UCAP photo-thermal synergistic system significantly enhanced both the curing efficiency and uniformity of GFRPC. The resulting GFRPC exhibited an interfacial shear strength (IFSS) of 37.15 MPa, a flexural strength of 506.85 MPa, and an increased impact toughness of 242.70 kJ/m2. The photo-thermal synergistic curing method effectively facilitated the construction of reliable GFRPC with enhanced properties, thereby bolstering the potential for rapid manufacturing of high-performance GFRPC in outdoor applications using photopolymerization techniques.