Understanding the role of biocrust-forming mosses in soil recovery after wildfires is necessary for assessing the resilience of managed ecosystems. The purpose of this study was to investigate the mid-term impacts of two contrasting post-fire management strategies on soil recovery in eucalypt plantations in north-central Portugal, where a high cover of biocrust-forming mosses developed post-fire, contributing to erosion control. Six years after a wildfire, we examined the legacy effects of salvage logging and two rates of mulch application using logging residues (a standard rate of 8.0 Mg ha-1 and a reduced rate of 2.6 Mg ha-1) on soil properties, and explored the interaction between moss biocrusts and forest management practices on soils. Our findings reveal the resilience of soils to physical disturbance after logging operations, with no persistent negative effects on their physicochemical properties. Although forest residue mulches showed minimal influence on soils after six years, an interesting interaction with moss biocrusts was observed. In the absence of moss cover, direct contact of wood residues with soil at the standard mulch rate promoted higher nutrient content and biochemical activity, potentially attributed to accelerated decomposition processes. Regardless of the management applied, our study highlights the role of moss biocrusts in improving soil aggregation and biochemical processes in the mid-term. However, the severe water repellency observed in these soils may have impeded further biocrust expansion. Understanding the implications of forest management practices on soil recovery after wildfires is imperative for guiding strategies aimed at promoting ecosystem recovery and resilience in fire-prone managed forest ecosystems.
European forests have been influenced by human interventions for millennia. Many formerly traditional forest management practices have been lost due to changes in technology and attitudes. One commonly used practice was charcoal burning, remnants of which have remained in the forests for hundreds of years. We aimed to evaluate the differences between abandoned remnants of charcoal mounds and their surroundings in terms of soil-dwelling fauna and to compare them with old-growth forests in reserves of the Czech Republic. Our primary focus was on four macroarthropod taxa: centipedes, millipedes, terrestrial woodlice and symphylans. We discovered that charcoal mounds did not significantly differ from control forest patches regarding species richness and rigidity but varied in species composition and functional traits. In comparison, forest reserves were significantly richer in species, hosted less adaptable taxa, higher functional traits and exhibited different species compositions with the same number of shared species with charcoal mounds and controls. We found that the addition of charcoal residuals from traditional forest management can enrich pedobiodiversity – old, abandoned charcoal mounds within forests can enhance the biodiversity of relatively species-poor soils. Nevertheless, these residuals cannot match the biodiversity found in undisturbed old-growth forests. However, stand-scale biochar application in plantation forests could be a promising biodiversity strategy that mimics this traditional forest management practice.
Selective logging, a common disturbance in mixed-species and uneven-aged forests, can cause substantial collateral stand damage and tree mortality. Here we explore damage patterns and some mechanisms that increase post-harvest tree mortality in a selectively logged subtropical Atlantic Forest in Argentina. We investigate the spatial relations of felled and damaged trees through spatial point pattern analysis and evaluate the relationships between mortality and different endogenous (size - diameter at breast height: DBH; and wood density: WD) and exogenous (damage and neighboring basal area: NBA) factors. The permanent plots were logged in 1999, and the fates of all pre-logging live trees ≥10 cm DBH were evaluated 20 years later. Of the monitored 3973 trees, 381 with damaged concentrated within 10.5 m of felled tree stumps. Over the next twenty years mean mortality was higher and more variable for damaged than undamaged trees (47 % ± 10 % SE and 39 % ± 2 % SE, respectively), and the presence of damage interacted with the other analyzed factors. For undamaged trees, the probability of mortality declined with DBH and NBA but not with WD. For damaged trees, instead, the probability of mortality was related to an interaction between DBH, WD, and NBA. For damaged trees <30 cm DBH, mortality increased with WD and NBA, whereas for damaged trees ≥30 cm DBH, mortality peaked at both extremes of the WD range. For these large trees with low WD, the probability of mortality decreased with NBA, whereas for trees with high WD, the opposite was observed. Our findings suggest that selective logging affects the dynamics of forests by spatially concentrating damage and may alter subsequent tree deaths. This could have, long-term effects on forest structure. Increases in logging intensity would increase overall damage and spatially isolate trees (i.e., lower NBA), rendering them more vulnerable to wind damage and other external factors. Increased tree mortality will reduce forest carbon stocks and thereby jeopardize global efforts to mitigate climate change.