首页 > 最新文献

IEEE Photonics Technology Letters最新文献

英文 中文
Planar Epsilon-Near-Zero Cavity for Nonreciprocity of Thermal Radiation Enhancement 平面ε-近零空腔实现热辐射增强的非对等性
IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-12 DOI: 10.1109/LPT.2024.3442251
Liming Qian;Jingfei Ye;Shixin Pei;Gaige Zheng
Stacked epsilon-near-zero (ENZ)/insulator/ENZ nanocavity has recently emerged as a promising platform to study and engineer mid-infrared (MIR) absorption and emission, as they can be realized by lithography-free fabrication process with fine control on the optical and geometrical parameters. Using Weyl semimetal (WSM) thin film as nonreciprocal materials, we study the absorption, emission and nonreciprocity enhancement induced by a specifically tailored ENZ/WSM/ENZ structure. The nonreciprocity equals to 0.987 with a resonant wavelength of $9~mu m$ , which confirms an obvious violation of Kirchhoff’s law. We also discuss the possibility of tailoring the magnitude and sign of nonreciprocity within the MIR spectrum simply by finely designing the thickness of each layer in the stack. The presented unpatterned configuration and broad tunability of high-quality resonance can work for a wide range of incidence angles, making such proposal with great potential for thermal scavenging and conversion.
堆叠ε-近零(ENZ)/绝缘体/ENZ纳米腔最近已成为研究和设计中红外(MIR)吸收和发射的一个前景广阔的平台,因为它们可以通过无光刻制造工艺实现,并可对光学和几何参数进行精细控制。我们使用韦尔半金属(WSM)薄膜作为非互易材料,研究了专门定制的ENZ/WSM/ENZ结构引起的吸收、发射和非互易性增强。共振波长为 $9~mu m$时,非互惠性等于 0.987,这证实了对基尔霍夫定律的明显违反。我们还讨论了通过精细设计堆栈中每一层的厚度,在中红外光谱范围内定制非互易性大小和符号的可能性。所提出的无图案配置和高质量共振的广泛可调性可适用于广泛的入射角度,使这种建议在热清除和转换方面具有巨大的潜力。
{"title":"Planar Epsilon-Near-Zero Cavity for Nonreciprocity of Thermal Radiation Enhancement","authors":"Liming Qian;Jingfei Ye;Shixin Pei;Gaige Zheng","doi":"10.1109/LPT.2024.3442251","DOIUrl":"https://doi.org/10.1109/LPT.2024.3442251","url":null,"abstract":"Stacked epsilon-near-zero (ENZ)/insulator/ENZ nanocavity has recently emerged as a promising platform to study and engineer mid-infrared (MIR) absorption and emission, as they can be realized by lithography-free fabrication process with fine control on the optical and geometrical parameters. Using Weyl semimetal (WSM) thin film as nonreciprocal materials, we study the absorption, emission and nonreciprocity enhancement induced by a specifically tailored ENZ/WSM/ENZ structure. The nonreciprocity equals to 0.987 with a resonant wavelength of \u0000<inline-formula> <tex-math>$9~mu m$ </tex-math></inline-formula>\u0000, which confirms an obvious violation of Kirchhoff’s law. We also discuss the possibility of tailoring the magnitude and sign of nonreciprocity within the MIR spectrum simply by finely designing the thickness of each layer in the stack. The presented unpatterned configuration and broad tunability of high-quality resonance can work for a wide range of incidence angles, making such proposal with great potential for thermal scavenging and conversion.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142045198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanophotonics: Pseudo-Plastic Organic Crystal as a Fermat Spiral Optical Waveguide 机械光子学:作为费马螺旋光波导的伪塑料有机晶体
IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-12 DOI: 10.1109/LPT.2024.3441761
Melchi Chosenyah;Avulu Vinod Kumar;Rajadurai Chandrasekar
An unprecedented organic Fermat spiral optical waveguide (FSOW) self-transducing green fluorescence is fabricated using a pseudo-plastic (E)−1-(((5-bromopyridin-2-yl)imino)methyl)naphthalene-2-ol (BPyIN) crystal. A 1.618-millimeter-long crystal is initially bent into a hairpin-like bent waveguide. Later, a meticulous mechanophotonic strategy is employed to sculpt the hairpin-like bent waveguide into the Fermat spiral geometry, covering a compact area of $330times 238~mu $ m2. The optical signal in FSOW survives two sharp 180° turns to produce optical output. The remarkably low bending-induced optical loss in FSOW can be ascribed to the smooth-defect-free surface morphology of the crystal. The development of such versatile optical components capable of transducing light through sharp bends is pivotal for realizing large-scale all-organic photonic circuits.
利用伪塑(E)-1-(((5-溴吡啶-2-基)亚氨基)甲基)萘-2-醇(BPyIN)晶体制造出了一种前所未有的有机费马螺旋光波导(FSOW),它能自发绿色荧光。1.618 毫米长的晶体最初被弯曲成发夹状弯曲波导。随后,采用细致的机械光子策略将发夹状弯曲波导雕刻成费马螺旋几何形状,覆盖面积为 330 美元/次 238~mu $ m2。FSOW 中的光信号经过两次 180° 的急转弯后产生光输出。FSOW 的弯曲引起的光损耗非常低,这要归功于晶体光滑无缺陷的表面形态。开发这种能够通过急弯传输光的多功能光学元件,对于实现大规模全有机光子电路至关重要。
{"title":"Mechanophotonics: Pseudo-Plastic Organic Crystal as a Fermat Spiral Optical Waveguide","authors":"Melchi Chosenyah;Avulu Vinod Kumar;Rajadurai Chandrasekar","doi":"10.1109/LPT.2024.3441761","DOIUrl":"https://doi.org/10.1109/LPT.2024.3441761","url":null,"abstract":"An unprecedented organic Fermat spiral optical waveguide (FSOW) self-transducing green fluorescence is fabricated using a pseudo-plastic (E)−1-(((5-bromopyridin-2-yl)imino)methyl)naphthalene-2-ol (BPyIN) crystal. A 1.618-millimeter-long crystal is initially bent into a hairpin-like bent waveguide. Later, a meticulous mechanophotonic strategy is employed to sculpt the hairpin-like bent waveguide into the Fermat spiral geometry, covering a compact area of \u0000<inline-formula> <tex-math>$330times 238~mu $ </tex-math></inline-formula>\u0000m2. The optical signal in FSOW survives two sharp 180° turns to produce optical output. The remarkably low bending-induced optical loss in FSOW can be ascribed to the smooth-defect-free surface morphology of the crystal. The development of such versatile optical components capable of transducing light through sharp bends is pivotal for realizing large-scale all-organic photonic circuits.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142013326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frequency Control in a Non-Hermitian Time-Floquet Resonator With Backscattering 带有反向散射的非赫米提时间-弗洛塞特谐振器的频率控制
IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-09 DOI: 10.1109/LPT.2024.3441377
Awanish Pandey
I report atypical transmission characteristics of a micro cavity supporting two degenerate modes with their mode-coupling subjected to non-Hermitian modulation. Such non-Hermitian time-Floquet systems allow for effective optical energy exchange between different Floquet modes enabling its utilization as both a frequency shifter and a frequency beam splitter. Additionally, depending on the driving signal parameters, the modes can be amplified compensating for insertion loss. I provide a detailed analytical framework to model the time-varying cavity and optimize its parameters for efficient performance. The reported results and analysis are expected to be valuable for applications in quantum photonics and optical communication.
我报告了一个微型腔体的非典型传输特性,该腔体支持两个退化模式,其模式耦合受到非赫米提调制。这种非ermitian 时间-Floquet 系统允许不同 Floquet 模式之间进行有效的光能交换,从而使其既能用作移频器,又能用作分光器。此外,根据驱动信号参数的不同,还可以放大模式,补偿插入损耗。我提供了一个详细的分析框架来模拟时变腔,并优化其参数以实现高效性能。所报告的结果和分析有望在量子光子学和光通信领域的应用中发挥重要作用。
{"title":"Frequency Control in a Non-Hermitian Time-Floquet Resonator With Backscattering","authors":"Awanish Pandey","doi":"10.1109/LPT.2024.3441377","DOIUrl":"10.1109/LPT.2024.3441377","url":null,"abstract":"I report atypical transmission characteristics of a micro cavity supporting two degenerate modes with their mode-coupling subjected to non-Hermitian modulation. Such non-Hermitian time-Floquet systems allow for effective optical energy exchange between different Floquet modes enabling its utilization as both a frequency shifter and a frequency beam splitter. Additionally, depending on the driving signal parameters, the modes can be amplified compensating for insertion loss. I provide a detailed analytical framework to model the time-varying cavity and optimize its parameters for efficient performance. The reported results and analysis are expected to be valuable for applications in quantum photonics and optical communication.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141939748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data-Driven Erbium-Doped Fiber Amplifier Gain Modeling Using Gaussian Process Regression 利用高斯过程回归进行数据驱动的掺铒光纤放大器增益建模
IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-09 DOI: 10.1109/LPT.2024.3441110
Calum Harvey;Md. Saifuddin Faruk;Seb J. Savory
We propose a data-driven erbium-doped fiber amplifier (EDFA) gain model utilizing Gaussian process regression (GPR). An additive Laplacian and radial-basis function kernel is proposed for the GPR and was found to outperform deep neural network (DNN) methods while additionally providing prediction uncertainty. Performance is measured using mean absolute error (MAE) averaged across five different EDFAs with three manufacturers. The GPR achieves an MAE of 0.1 dB using 30 training samples in contrast to the DNN that achieves an MAE of 0.25 dB using 3000 training samples. Additionally, we demonstrate that active learning can be used to improve robustness and repeatability of convergence.
我们提出了一种利用高斯过程回归(GPR)的数据驱动型掺铒光纤放大器(EDFA)增益模型。我们为 GPR 提出了一种加性拉普拉斯和径向基函数核,发现其性能优于深度神经网络 (DNN) 方法,同时还提供了预测不确定性。性能采用平均绝对误差(MAE)进行测量,该平均绝对误差是由三家制造商生产的五种不同 EDFA 的平均值得出的。GPR 使用 30 个训练样本实现了 0.1 dB 的 MAE,而 DNN 使用 3000 个训练样本实现了 0.25 dB 的 MAE。此外,我们还证明了主动学习可用于提高收敛的稳健性和可重复性。
{"title":"Data-Driven Erbium-Doped Fiber Amplifier Gain Modeling Using Gaussian Process Regression","authors":"Calum Harvey;Md. Saifuddin Faruk;Seb J. Savory","doi":"10.1109/LPT.2024.3441110","DOIUrl":"10.1109/LPT.2024.3441110","url":null,"abstract":"We propose a data-driven erbium-doped fiber amplifier (EDFA) gain model utilizing Gaussian process regression (GPR). An additive Laplacian and radial-basis function kernel is proposed for the GPR and was found to outperform deep neural network (DNN) methods while additionally providing prediction uncertainty. Performance is measured using mean absolute error (MAE) averaged across five different EDFAs with three manufacturers. The GPR achieves an MAE of 0.1 dB using 30 training samples in contrast to the DNN that achieves an MAE of 0.25 dB using 3000 training samples. Additionally, we demonstrate that active learning can be used to improve robustness and repeatability of convergence.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141939823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blank Page 空白页
IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-02 DOI: 10.1109/LPT.2024.3425297
{"title":"Blank Page","authors":"","doi":"10.1109/LPT.2024.3425297","DOIUrl":"10.1109/LPT.2024.3425297","url":null,"abstract":"","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10621981","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Photonics Technology Letters Information for Authors IEEE Photonics Technology Letters 为作者提供的信息
IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-02 DOI: 10.1109/LPT.2024.3425295
{"title":"IEEE Photonics Technology Letters Information for Authors","authors":"","doi":"10.1109/LPT.2024.3425295","DOIUrl":"10.1109/LPT.2024.3425295","url":null,"abstract":"","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10621964","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Photonics Technology Letters publication information IEEE Photonics Technology Letters 出版信息
IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-02 DOI: 10.1109/LPT.2024.3425291
{"title":"IEEE Photonics Technology Letters publication information","authors":"","doi":"10.1109/LPT.2024.3425291","DOIUrl":"10.1109/LPT.2024.3425291","url":null,"abstract":"","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10621975","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Photonics Technology Letters publication information IEEE Photonics Technology Letters 出版信息
IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-01 DOI: 10.1109/LPT.2024.3425215
{"title":"IEEE Photonics Technology Letters publication information","authors":"","doi":"10.1109/LPT.2024.3425215","DOIUrl":"10.1109/LPT.2024.3425215","url":null,"abstract":"","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10621945","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Photonics Technology Letters Information for Authors IEEE Photonics Technology Letters 为作者提供的信息
IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-01 DOI: 10.1109/LPT.2024.3425219
{"title":"IEEE Photonics Technology Letters Information for Authors","authors":"","doi":"10.1109/LPT.2024.3425219","DOIUrl":"10.1109/LPT.2024.3425219","url":null,"abstract":"","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10621973","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blank Page 空白页
IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-01 DOI: 10.1109/LPT.2024.3425221
{"title":"Blank Page","authors":"","doi":"10.1109/LPT.2024.3425221","DOIUrl":"10.1109/LPT.2024.3425221","url":null,"abstract":"","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10621949","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Photonics Technology Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1