首页 > 最新文献

IEEE Journal of Quantum Electronics最新文献

英文 中文
High Temperature Mid-Wave Infrared InAsSb Barrier Photodetectors 高温中波红外 InAsSb 势垒光电探测器
IF 2.5 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-02-13 DOI: 10.1109/JQE.2024.3365649
Ting Xue;Jianliang Huang;Yanhua Zhang;Wenquan Ma
We report on mid-wave infrared InAsSb photodetectors with high-barrier materials implemented in the depletion region. The devices exhibit promising performance at high temperature. At 160 K, the 50% cutoff wavelength is $4.18~mu text{m}$ , and the shot noise limited detectivity $D^{star} $ is $1.57times 10 ^{12}$ cm $cdot $ Hz $^{1/2}$ /W for the peak wavelength of $3.79~mu text{m}$ . At 300 K, the 50% cutoff wavelength is $4.70~mu text{m}$ , and the $D^{star} $ is $4.87times 10 ^{9}$ cm $cdot $ Hz $^{1/2}$ /W for the peak response wavelength of $4.15~mu text{m}$ . The dark current of the device is found to be dominated by the diffusion current rather than the generation-recombination current for the temperature range of 160–300 K. We also determine the Varshni parameters of the InAsSb material with varying strain, and the bandgap bowing parameters.
我们报告了在耗尽区采用高势垒材料的中波红外 InAsSb 光电探测器。这些器件在高温下表现出良好的性能。在 160 K 时,50% 截止波长为 $4.18~mu text{m}$,峰值波长为 $3.79~mu text{m}$时,射出噪声限检测率 $D^{star}$ 为 1.57/times 10 ^{12}$ cm $cdot $ Hz $^{1/2}$ /W。在 300 K 时,50%截止波长为 4.70~mu text{m}$,峰值响应波长为 4.15~mu text{m}$时,$D^{star}$ 为 4.87times 10 ^{9}$ cm $cdot $ Hz $^{1/2}$ /W。我们还确定了应变变化时 InAsSb 材料的 Varshni 参数以及带隙弯曲参数。
{"title":"High Temperature Mid-Wave Infrared InAsSb Barrier Photodetectors","authors":"Ting Xue;Jianliang Huang;Yanhua Zhang;Wenquan Ma","doi":"10.1109/JQE.2024.3365649","DOIUrl":"10.1109/JQE.2024.3365649","url":null,"abstract":"We report on mid-wave infrared InAsSb photodetectors with high-barrier materials implemented in the depletion region. The devices exhibit promising performance at high temperature. At 160 K, the 50% cutoff wavelength is \u0000<inline-formula> <tex-math>$4.18~mu text{m}$ </tex-math></inline-formula>\u0000, and the shot noise limited detectivity \u0000<inline-formula> <tex-math>$D^{star} $ </tex-math></inline-formula>\u0000 is \u0000<inline-formula> <tex-math>$1.57times 10 ^{12}$ </tex-math></inline-formula>\u0000 cm\u0000<inline-formula> <tex-math>$cdot $ </tex-math></inline-formula>\u0000Hz\u0000<inline-formula> <tex-math>$^{1/2}$ </tex-math></inline-formula>\u0000/W for the peak wavelength of \u0000<inline-formula> <tex-math>$3.79~mu text{m}$ </tex-math></inline-formula>\u0000. At 300 K, the 50% cutoff wavelength is \u0000<inline-formula> <tex-math>$4.70~mu text{m}$ </tex-math></inline-formula>\u0000, and the \u0000<inline-formula> <tex-math>$D^{star} $ </tex-math></inline-formula>\u0000 is \u0000<inline-formula> <tex-math>$4.87times 10 ^{9}$ </tex-math></inline-formula>\u0000 cm\u0000<inline-formula> <tex-math>$cdot $ </tex-math></inline-formula>\u0000Hz\u0000<inline-formula> <tex-math>$^{1/2}$ </tex-math></inline-formula>\u0000/W for the peak response wavelength of \u0000<inline-formula> <tex-math>$4.15~mu text{m}$ </tex-math></inline-formula>\u0000. The dark current of the device is found to be dominated by the diffusion current rather than the generation-recombination current for the temperature range of 160–300 K. We also determine the Varshni parameters of the InAsSb material with varying strain, and the bandgap bowing parameters.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 2","pages":"1-4"},"PeriodicalIF":2.5,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139946255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrections to “Optical Pumping and Electrical Injection of a 3.6 μm Interband Cascade Laser” 对 "3.6 μm 带间级联激光器的光泵送和电注入 "的更正
IF 2.5 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-02-08 DOI: 10.1109/JQE.2024.3364628
Linda J. Olafsen;Kyler A. Stephens;Daniella R. DeVries
In the above article [1], Fig. 7(b) duplicates Fig. 6(b). The correct Fig. 7(b) is shown as follows.
在上述文章[1]中,图 7(b)重复了图 6(b)。正确的图 7(b) 如下所示。
{"title":"Corrections to “Optical Pumping and Electrical Injection of a 3.6 μm Interband Cascade Laser”","authors":"Linda J. Olafsen;Kyler A. Stephens;Daniella R. DeVries","doi":"10.1109/JQE.2024.3364628","DOIUrl":"https://doi.org/10.1109/JQE.2024.3364628","url":null,"abstract":"In the above article \u0000<xref>[1]</xref>\u0000, \u0000<xref>Fig. 7(b)</xref>\u0000 duplicates Fig. 6(b). The correct \u0000<xref>Fig. 7(b)</xref>\u0000 is shown as follows.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 2","pages":"1-1"},"PeriodicalIF":2.5,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139916565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vertical Coupling Effect on Gain Bandwidth of Chirped InAs/InP Quantum Dot Structures 垂直耦合对啁啾 InAs/InP 量子点结构增益带宽的影响
IF 2.5 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-02-05 DOI: 10.1109/JQE.2024.3357031
Gaowen Chen;Fujuan Huang;Xiupu Zhang
Quantum dot (QD) devices are usually desired to have a broadband gain spectrum. An alternative solution to achieve a broadband gain in QD devices is to use multiple layers with different QD heights, which are stacked vertically, i.e. a chirped QD structure in the active region. In the chirped stacked QD structure, the vertical strain and electron coupling effect have a significant impact on the optical transition property and thus optical gain bandwidth. However, previous studies on the vertical coupling effect have mainly focused on uniformly stacked QD structures, and the chirped QD structures have not been investigated carefully. This work presents a detailed analysis of the vertical coupling effect in chirped QD structures (i.e. ascending and descending chirped structure) and its impact on the optical gain bandwidth of the active region. It is found that the descending chirped structure leads to a wider gain bandwidth, in particular at high current injection. A Fabry-Perot mode-locked laser with the descending chirped structure presents a better performance in pulse width and frequency comb lines compared to the ascending chirped structure.
量子点(QD)器件通常需要具有宽带增益频谱。在量子点器件中实现宽带增益的另一种解决方案是使用多层不同高度的量子点垂直堆叠,即在有源区采用啁啾量子点结构。在啁啾堆叠的 QD 结构中,垂直应变和电子耦合效应对光学转变特性和光学增益带宽有重要影响。然而,以往对垂直耦合效应的研究主要集中在均匀堆叠的 QD 结构上,对啁啾 QD 结构的研究并不深入。本研究详细分析了啁啾 QD 结构(即升啁啾和降啁啾结构)中的垂直耦合效应及其对有源区光增益带宽的影响。研究发现,下降啁啾结构能带来更宽的增益带宽,尤其是在高电流注入时。与上升啁啾结构相比,采用下降啁啾结构的法布里-珀罗锁模激光器在脉冲宽度和频率梳状线方面具有更好的性能。
{"title":"Vertical Coupling Effect on Gain Bandwidth of Chirped InAs/InP Quantum Dot Structures","authors":"Gaowen Chen;Fujuan Huang;Xiupu Zhang","doi":"10.1109/JQE.2024.3357031","DOIUrl":"https://doi.org/10.1109/JQE.2024.3357031","url":null,"abstract":"Quantum dot (QD) devices are usually desired to have a broadband gain spectrum. An alternative solution to achieve a broadband gain in QD devices is to use multiple layers with different QD heights, which are stacked vertically, i.e. a chirped QD structure in the active region. In the chirped stacked QD structure, the vertical strain and electron coupling effect have a significant impact on the optical transition property and thus optical gain bandwidth. However, previous studies on the vertical coupling effect have mainly focused on uniformly stacked QD structures, and the chirped QD structures have not been investigated carefully. This work presents a detailed analysis of the vertical coupling effect in chirped QD structures (i.e. ascending and descending chirped structure) and its impact on the optical gain bandwidth of the active region. It is found that the descending chirped structure leads to a wider gain bandwidth, in particular at high current injection. A Fabry-Perot mode-locked laser with the descending chirped structure presents a better performance in pulse width and frequency comb lines compared to the ascending chirped structure.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 2","pages":"1-9"},"PeriodicalIF":2.5,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139744753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hysteresis Behavior of External Cavity Quantum Cascade Lasers in the Strong Feedback Regime 强反馈机制下外腔量子级联激光器的滞后行为
IF 2.5 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-02-05 DOI: 10.1109/JQE.2024.3362272
Jonas Schundelmeier;Quankui Yang;Stefan Hugger
We experimentally investigate mode hops of a continuous-wave (cw) external cavity (EC) quantum cascade laser (QCL) in Littrow configuration, observing hysteresis for variations of either external cavity length, chip current, or grating angle. The results are compared with two different theoretical models. Simulation results suggest that hysteresis in EC-QCLs is caused by self-stabilization due to mode coupling.
我们通过实验研究了利特罗配置的连续波(cw)外腔(EC)量子级联激光器(QCL)的模式跳变,观察到了外腔长度、芯片电流或光栅角度变化时的滞后现象。结果与两种不同的理论模型进行了比较。模拟结果表明,EC-QCL 中的滞后是由模式耦合引起的自稳定造成的。
{"title":"Hysteresis Behavior of External Cavity Quantum Cascade Lasers in the Strong Feedback Regime","authors":"Jonas Schundelmeier;Quankui Yang;Stefan Hugger","doi":"10.1109/JQE.2024.3362272","DOIUrl":"10.1109/JQE.2024.3362272","url":null,"abstract":"We experimentally investigate mode hops of a continuous-wave (cw) external cavity (EC) quantum cascade laser (QCL) in Littrow configuration, observing hysteresis for variations of either external cavity length, chip current, or grating angle. The results are compared with two different theoretical models. Simulation results suggest that hysteresis in EC-QCLs is caused by self-stabilization due to mode coupling.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 2","pages":"1-10"},"PeriodicalIF":2.5,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139946180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vertical-Cavity Surface-Emitting Laser Linewidth Narrowing Enabled by Internal-Cavity Engineering 利用内腔工程缩小垂直腔表面发射激光器线宽
IF 2.5 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-02-05 DOI: 10.1109/JQE.2024.3362276
Zhiting Tang;Chuanlin Li;Feiyun Zhao;Jilin Liu;Aobo Ren;Hongxing Xu;Jiang Wu
Vertical-cavity surface-emitting lasers (VCSELs), featuring the advantages of low energy consumption, miniaturization, and high-beam quality, show potential for various applications from atomic clock to light detection and ranging (LiDAR). A high-performance atomic clock system requires laser linewidths below 10 MHz to ensure compatibility with the natural atomic linewidth (e.g., 5 MHz for cesium). However, the current prevalent method for reducing VCSEL linewidths relies on external cavities, which adds complexity and cost to the devices and hampers seamless integration into atomic clock systems. While narrow-linewidth VCSELs have been successfully demonstrated using extended cavities, there remains a need for a comprehensive and systematic study on the underlying design principles and optimization strategies. Here, we propose a VCSEL linewidth narrowing strategy enabled by internal-cavity engineering for cesium atomic clock applications. We investigate strategies to narrow the cold cavity linewidth without introducing additional optical round-trip loss. We provide a general approach to constructing the extended cavity (EC) and showcase the ability of manipulating the phase of light. To optimize the electrical properties, we explore variations in the extended layer thickness based on a monolithic VCSEL structure. We proposed an EC-VCSEL configuration with a theoretical laser spectral linewidth of approximately 1.7 MHz and a calculated output power of about 3 mW. Through exploiting gain-cavity offset, the EC-VCSEL exhibits a stable emission (894.6 nm) and a high gain of cavity mode ( $sim $ 4000 cm $^{-1}$ ) at high-temperature (e.g., 360 K). This work may serve as a reference for the realization of narrow-linewidth VCSELs, offering potential benefits in reducing device complexity and facilitating the system integration.
垂直腔表面发射激光器(VCSEL)具有低能耗、小型化和高光束质量等优点,在原子钟、光探测和测距(LiDAR)等各种应用中都显示出潜力。高性能原子钟系统需要低于 10 MHz 的激光线宽,以确保与天然原子线宽(如铯的 5 MHz)兼容。然而,目前降低 VCSEL 线宽的流行方法依赖于外部腔体,这增加了设备的复杂性和成本,阻碍了与原子钟系统的无缝集成。虽然窄线宽 VCSEL 已利用扩展空腔成功演示,但仍需要对其基本设计原理和优化策略进行全面系统的研究。在此,我们为铯原子钟应用提出了一种通过内腔工程实现的 VCSEL 线宽收窄策略。我们研究了在不引入额外光学往返损耗的情况下缩小冷腔线宽的策略。我们提供了构建扩展腔(EC)的一般方法,并展示了操纵光相位的能力。为了优化电气特性,我们探索了基于单片 VCSEL 结构的扩展层厚度变化。我们提出了一种 EC-VCSEL 配置,其理论激光光谱线宽约为 1.7 MHz,计算输出功率约为 3 mW。通过利用增益-腔体偏移,EC-VCSEL 在高温(如 360 K)条件下表现出稳定的发射(894.6 nm)和腔模的高增益($sim $ 4000 cm $^{-1}$)。这项工作可作为实现窄线宽 VCSEL 的参考,在降低器件复杂性和促进系统集成方面具有潜在优势。
{"title":"Vertical-Cavity Surface-Emitting Laser Linewidth Narrowing Enabled by Internal-Cavity Engineering","authors":"Zhiting Tang;Chuanlin Li;Feiyun Zhao;Jilin Liu;Aobo Ren;Hongxing Xu;Jiang Wu","doi":"10.1109/JQE.2024.3362276","DOIUrl":"10.1109/JQE.2024.3362276","url":null,"abstract":"Vertical-cavity surface-emitting lasers (VCSELs), featuring the advantages of low energy consumption, miniaturization, and high-beam quality, show potential for various applications from atomic clock to light detection and ranging (LiDAR). A high-performance atomic clock system requires laser linewidths below 10 MHz to ensure compatibility with the natural atomic linewidth (e.g., 5 MHz for cesium). However, the current prevalent method for reducing VCSEL linewidths relies on external cavities, which adds complexity and cost to the devices and hampers seamless integration into atomic clock systems. While narrow-linewidth VCSELs have been successfully demonstrated using extended cavities, there remains a need for a comprehensive and systematic study on the underlying design principles and optimization strategies. Here, we propose a VCSEL linewidth narrowing strategy enabled by internal-cavity engineering for cesium atomic clock applications. We investigate strategies to narrow the cold cavity linewidth without introducing additional optical round-trip loss. We provide a general approach to constructing the extended cavity (EC) and showcase the ability of manipulating the phase of light. To optimize the electrical properties, we explore variations in the extended layer thickness based on a monolithic VCSEL structure. We proposed an EC-VCSEL configuration with a theoretical laser spectral linewidth of approximately 1.7 MHz and a calculated output power of about 3 mW. Through exploiting gain-cavity offset, the EC-VCSEL exhibits a stable emission (894.6 nm) and a high gain of cavity mode (\u0000<inline-formula> <tex-math>$sim $ </tex-math></inline-formula>\u00004000 cm\u0000<inline-formula> <tex-math>$^{-1}$ </tex-math></inline-formula>\u0000) at high-temperature (e.g., 360 K). This work may serve as a reference for the realization of narrow-linewidth VCSELs, offering potential benefits in reducing device complexity and facilitating the system integration.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 2","pages":"1-8"},"PeriodicalIF":2.5,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139946553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Journal of Quantum Electronics publication information IEEE 量子电子学报》出版信息
IF 2.5 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-01-29 DOI: 10.1109/JQE.2024.3355921
{"title":"IEEE Journal of Quantum Electronics publication information","authors":"","doi":"10.1109/JQE.2024.3355921","DOIUrl":"https://doi.org/10.1109/JQE.2024.3355921","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 1","pages":"C2-C2"},"PeriodicalIF":2.5,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10415559","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139654259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Journal of Quantum Electronics information for authors IEEE 期刊《量子电子学》为作者提供的信息
IF 2.5 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-01-29 DOI: 10.1109/JQE.2024.3355915
{"title":"IEEE Journal of Quantum Electronics information for authors","authors":"","doi":"10.1109/JQE.2024.3355915","DOIUrl":"https://doi.org/10.1109/JQE.2024.3355915","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 1","pages":"C3-C3"},"PeriodicalIF":2.5,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10415624","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139654802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blank Page 空白页
IF 2.5 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-01-29 DOI: 10.1109/JQE.2024.3355917
{"title":"Blank Page","authors":"","doi":"10.1109/JQE.2024.3355917","DOIUrl":"https://doi.org/10.1109/JQE.2024.3355917","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 1","pages":"C4-C4"},"PeriodicalIF":2.5,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10415626","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139654979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-Wave Infrared ZnGeP2 Optical Parametric Oscillator With a Wide Tuning Range by Rotating a Diffraction Grating 通过旋转衍射光栅实现宽调谐范围的长波红外线 ZnGeP2 光参量振荡器
IF 2.5 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-01-19 DOI: 10.1109/JQE.2024.3356367
Hai Wang;Zhiyong Li;Juntao Tian;Lili Zhao;Rongqing Tan
We report a ZnGeP $_{mathbf {2}}$ optical parametric oscillator (OPO) with a wide tuning range in the long-wave infrared. The OPO was pumped by a Ho: YLF laser with high peak power, and a resonate cavity with a diffraction grating was used. A tunable long-wave laser with the wavelength of 8.45- $11.37~mu text{m}$ was achieved by rotating the grating. Meanwhile, the linewidth was less than 61 nm at the wavelength within the tunable range from $8.45~mu text{m}$ to $9.15~mu text{m}$ . When the wavelength of the idler light was $8.84~mu text{m}$ , the maximum output energy was $52.80~mu text{J}$ , and the peak power was 6.60 kW. The novel tuning method offers an effective way to realize a tunable long-wave source for stand-off gas concentration detection.
我们报告了一种在长波红外具有宽调谐范围的 ZnGeP $_{{mathbf {2}}$光参量振荡器(OPO)。该 OPO 由峰值功率很高的 Ho: YLF 激光器泵浦,并使用了带有衍射光栅的谐振腔。通过旋转光栅实现了波长为 8.45- $11.37~mu text{m}$的可调谐长波激光。同时,在波长为 8.45~11.37 美元(text{m}$)到 9.15~11.37 美元(text{m}$)的可调谐范围内,线宽小于 61 nm。当惰极光的波长为 8.84~mu text{m}$ 时,最大输出能量为 52.80~mu text{J}$ ,峰值功率为 6.60 kW。这种新颖的调谐方法为实现可调谐长波光源用于离散气体浓度检测提供了有效途径。
{"title":"Long-Wave Infrared ZnGeP2 Optical Parametric Oscillator With a Wide Tuning Range by Rotating a Diffraction Grating","authors":"Hai Wang;Zhiyong Li;Juntao Tian;Lili Zhao;Rongqing Tan","doi":"10.1109/JQE.2024.3356367","DOIUrl":"https://doi.org/10.1109/JQE.2024.3356367","url":null,"abstract":"We report a ZnGeP\u0000<inline-formula> <tex-math>$_{mathbf {2}}$ </tex-math></inline-formula>\u0000 optical parametric oscillator (OPO) with a wide tuning range in the long-wave infrared. The OPO was pumped by a Ho: YLF laser with high peak power, and a resonate cavity with a diffraction grating was used. A tunable long-wave laser with the wavelength of 8.45-\u0000<inline-formula> <tex-math>$11.37~mu text{m}$ </tex-math></inline-formula>\u0000 was achieved by rotating the grating. Meanwhile, the linewidth was less than 61 nm at the wavelength within the tunable range from \u0000<inline-formula> <tex-math>$8.45~mu text{m}$ </tex-math></inline-formula>\u0000 to \u0000<inline-formula> <tex-math>$9.15~mu text{m}$ </tex-math></inline-formula>\u0000. When the wavelength of the idler light was \u0000<inline-formula> <tex-math>$8.84~mu text{m}$ </tex-math></inline-formula>\u0000, the maximum output energy was \u0000<inline-formula> <tex-math>$52.80~mu text{J}$ </tex-math></inline-formula>\u0000, and the peak power was 6.60 kW. The novel tuning method offers an effective way to realize a tunable long-wave source for stand-off gas concentration detection.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 2","pages":"1-7"},"PeriodicalIF":2.5,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139744699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New SOA Design With Large Gain, Small Noise Figure, and High Saturation Output Power Level 具有大增益、小噪声系数和高饱和输出功率级的新型 SOA 设计
IF 2.5 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-01-19 DOI: 10.1109/JQE.2024.3356366
Shuqi Yu;Antonin Gallet;Iosif Demirtzioglou;Sheherazade Lamkadmi Azouigui;Nayla El Dahdah;Romain Brenot
We introduce a semiconductor optical amplifier (SOA) chip with high gain (>40 dB) and high saturation power (>21 dBm) with moderate drive current (1.3A). A design model for optimizing the new dual-section SOA concept is presented. The model predictions are in very good agreement with the measurement results on fabricated chips. Using the gain and saturation output power product as the figure of merit, it shows the best-reported trade-off result so far. However, due to the slight degradation of the noise figure that ensued, an advanced design is introduced, enabling the optimization of the noise figure in addition to the gain and saturation output power.
我们介绍了一种具有高增益(>40 dB)和高饱和功率(>21 dBm)且驱动电流适中(1.3 A)的半导体光放大器(SOA)芯片。本文提出了一个用于优化新型双截面 SOA 概念的设计模型。模型预测结果与制造芯片的测量结果非常吻合。使用增益和饱和输出功率乘积作为优越性指标,它显示了迄今为止报告的最佳权衡结果。不过,由于随之而来的噪声系数略有下降,因此引入了一种先进的设计,除了增益和饱和输出功率外,还能优化噪声系数。
{"title":"New SOA Design With Large Gain, Small Noise Figure, and High Saturation Output Power Level","authors":"Shuqi Yu;Antonin Gallet;Iosif Demirtzioglou;Sheherazade Lamkadmi Azouigui;Nayla El Dahdah;Romain Brenot","doi":"10.1109/JQE.2024.3356366","DOIUrl":"https://doi.org/10.1109/JQE.2024.3356366","url":null,"abstract":"We introduce a semiconductor optical amplifier (SOA) chip with high gain (>40 dB) and high saturation power (>21 dBm) with moderate drive current (1.3A). A design model for optimizing the new dual-section SOA concept is presented. The model predictions are in very good agreement with the measurement results on fabricated chips. Using the gain and saturation output power product as the figure of merit, it shows the best-reported trade-off result so far. However, due to the slight degradation of the noise figure that ensued, an advanced design is introduced, enabling the optimization of the noise figure in addition to the gain and saturation output power.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 2","pages":"1-7"},"PeriodicalIF":2.5,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139916640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Journal of Quantum Electronics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1