Md Shahin Uz Zaman, Al Imran Malik, Lutfun Nahar Luna, Md Altaf Hossain, A. K. M. Mahbubul Alam, M. Asaduzzaman Prodhan, William Erskine
Pulse production is decreased when grown on waterlogged soil in rice-based cropping. This study evaluated four pulse crops—grass pea, field pea, cowpea and lentil—to find out their responses to waterlogging (WL) stress at emergence and vegetative stages. The treatment levels at emergence were drained control, 4-, 7- and 10-day WL, while in the vegetative stage they were drained control, 6-, 10- and 14-day WL. In the emergence stage, %emergence was significantly reduced as WL duration increased. After 10-day WL, emergence was reduced to 65% for grass pea, 30% for field pea, 5% for lentil and 7% for cowpea. At the vegetative stage, in both the WL and recovery phases, the WL treatment reduced plant height, tap root length, shoot and root dry mass compared to those in drained control with a significant difference in crops. In recovery as compared to the WL phase at 14-day WL, the chlorophyll content was increased 15% in cowpea and 14% in grass pea but decreased in field pea (26%) and lentil (35%). Similarly, in the recovery phase at 14-day WL, shoot relative growth rates (RGRs) of cowpea, grass pea, field pea and lentil were 20, 66, 10 and 5 mg plant−1 d−1; which were 66%, 70%, 8% and 14% of drained control, respectively. The RGR of root at 14-day WL was also higher in cowpea and grass pea with the rate of 13.8 and 16 mg−1 plant−1 d−1, respectively; in sharp contrast to a reduction of −4.3 mg−1 plant−1 d−1 in field pea and −3.9 mg−1 plant−1 d−1 for lentil than drained control. Furthermore, the higher number of adventitious roots was found in cowpea (14) and grass (9) pea than in field pea (6) and lentil (4). Comparison between growth stages, grass pea was tolerant to WL in both stages. Cowpea was WL sensitive at emergence, but tolerant to vegetative stage. Field pea was moderately tolerant to emergence but was sensitive at vegetative stage. Lentil was sensitive at WL at both stages. These novel insights will allow the fitting of winter pulses to various cropping systems according to the perceived risk of WL at various growth stages.
{"title":"Differences of waterlogging tolerance in winter pulse crop between emergence and vegetative stages","authors":"Md Shahin Uz Zaman, Al Imran Malik, Lutfun Nahar Luna, Md Altaf Hossain, A. K. M. Mahbubul Alam, M. Asaduzzaman Prodhan, William Erskine","doi":"10.1111/jac.12704","DOIUrl":"https://doi.org/10.1111/jac.12704","url":null,"abstract":"<p>Pulse production is decreased when grown on waterlogged soil in rice-based cropping. This study evaluated four pulse crops—grass pea, field pea, cowpea and lentil—to find out their responses to waterlogging (WL) stress at emergence and vegetative stages. The treatment levels at emergence were drained control, 4-, 7- and 10-day WL, while in the vegetative stage they were drained control, 6-, 10- and 14-day WL. In the emergence stage, %emergence was significantly reduced as WL duration increased. After 10-day WL, emergence was reduced to 65% for grass pea, 30% for field pea, 5% for lentil and 7% for cowpea. At the vegetative stage, in both the WL and recovery phases, the WL treatment reduced plant height, tap root length, shoot and root dry mass compared to those in drained control with a significant difference in crops. In recovery as compared to the WL phase at 14-day WL, the chlorophyll content was increased 15% in cowpea and 14% in grass pea but decreased in field pea (26%) and lentil (35%). Similarly, in the recovery phase at 14-day WL, shoot relative growth rates (RGRs) of cowpea, grass pea, field pea and lentil were 20, 66, 10 and 5 mg plant<sup>−1</sup> d<sup>−1</sup>; which were 66%, 70%, 8% and 14% of drained control, respectively. The RGR of root at 14-day WL was also higher in cowpea and grass pea with the rate of 13.8 and 16 mg<sup>−1</sup> plant<sup>−1</sup> d<sup>−1</sup>, respectively; in sharp contrast to a reduction of −4.3 mg<sup>−1</sup> plant<sup>−1</sup> d<sup>−1</sup> in field pea and −3.9 mg<sup>−1</sup> plant<sup>−1</sup> d<sup>−1</sup> for lentil than drained control. Furthermore, the higher number of adventitious roots was found in cowpea (14) and grass (9) pea than in field pea (6) and lentil (4). Comparison between growth stages, grass pea was tolerant to WL in both stages. Cowpea was WL sensitive at emergence, but tolerant to vegetative stage. Field pea was moderately tolerant to emergence but was sensitive at vegetative stage. Lentil was sensitive at WL at both stages. These novel insights will allow the fitting of winter pulses to various cropping systems according to the perceived risk of WL at various growth stages.</p>","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":"210 2","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140291386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nayara Pereira Capobiango, Giulia Badotti Bessa, Gabriel Cordeiro de Oliveira Peris, Felipe Lopes da Silva, Denise Cunha Fernandes dos Santos Dias, Raphael Bragança Alves Fernandes, Martha Freire da Silva, Laércio Junio da Silva
The identification of soybean genotypes tolerant to soil compaction makes it possible to reduce productivity loss under stress conditions. Added to this, the prior selection of these genotypes will result in greater assertiveness in the positioning of cultivars in the field. Thus, the objective was to evaluate the susceptibility of soybean genotypes to compaction in greenhouse and field conditions; verify which characteristics of seedlings under high resistance to root penetration are correlated with crop production in compacted soil; and to validate the substrate mechanical impedance method for evaluating the susceptibility of plant genotypes to soil compaction. Seeds of 20 genotypes were sown in a substrate mechanical impedance system under controlled conditions. The characteristics evaluated were total root length, total root surface area, mean root diameter, total root volume, taproot length, shoot length, root dry matter and seedling shoot dry matter. In the field experiment, half of the planting area was compacted, constituting two treatments, soil with and without compaction. The percentage of seedling emergence, initial plant height, stem diameter, number of nodes, internode length, number of lateral branches, shoot dry matter, final plant height, absolute and relative growth rate, number of pods, weight of 100 seeds and grain yield. In addition, the number of days between soybean sowing until plant flowering and grain harvest was recorded according to genotype and soil compaction level. In a controlled environment, genotypes tolerant to soil compaction show greater plasticity of root characteristics and smaller alterations in the shoot of seedlings. In the field, these genotypes show smaller reductions in growth rate, height, number of pods and grain yield. The shoot dry matter and the root dry matter of soybean seedlings in a mechanical impedance system present a positive and negative correlation, respectively, with soybean yield in compacted soil, indicating that the genetically determined susceptibility to soil compaction stress was similar throughout ontogenesis. The substrate mechanical impedance system used to evaluate the performance of soybean seedlings under stress, facilitates the decision-making in breeding programs focused on identifying genotypes expressing soil compaction tolerance.
{"title":"Performance of seedlings and yield of soybean genotypes under soil compaction","authors":"Nayara Pereira Capobiango, Giulia Badotti Bessa, Gabriel Cordeiro de Oliveira Peris, Felipe Lopes da Silva, Denise Cunha Fernandes dos Santos Dias, Raphael Bragança Alves Fernandes, Martha Freire da Silva, Laércio Junio da Silva","doi":"10.1111/jac.12699","DOIUrl":"https://doi.org/10.1111/jac.12699","url":null,"abstract":"<p>The identification of soybean genotypes tolerant to soil compaction makes it possible to reduce productivity loss under stress conditions. Added to this, the prior selection of these genotypes will result in greater assertiveness in the positioning of cultivars in the field. Thus, the objective was to evaluate the susceptibility of soybean genotypes to compaction in greenhouse and field conditions; verify which characteristics of seedlings under high resistance to root penetration are correlated with crop production in compacted soil; and to validate the substrate mechanical impedance method for evaluating the susceptibility of plant genotypes to soil compaction. Seeds of 20 genotypes were sown in a substrate mechanical impedance system under controlled conditions. The characteristics evaluated were total root length, total root surface area, mean root diameter, total root volume, taproot length, shoot length, root dry matter and seedling shoot dry matter. In the field experiment, half of the planting area was compacted, constituting two treatments, soil with and without compaction. The percentage of seedling emergence, initial plant height, stem diameter, number of nodes, internode length, number of lateral branches, shoot dry matter, final plant height, absolute and relative growth rate, number of pods, weight of 100 seeds and grain yield. In addition, the number of days between soybean sowing until plant flowering and grain harvest was recorded according to genotype and soil compaction level. In a controlled environment, genotypes tolerant to soil compaction show greater plasticity of root characteristics and smaller alterations in the shoot of seedlings. In the field, these genotypes show smaller reductions in growth rate, height, number of pods and grain yield. The shoot dry matter and the root dry matter of soybean seedlings in a mechanical impedance system present a positive and negative correlation, respectively, with soybean yield in compacted soil, indicating that the genetically determined susceptibility to soil compaction stress was similar throughout ontogenesis. The substrate mechanical impedance system used to evaluate the performance of soybean seedlings under stress, facilitates the decision-making in breeding programs focused on identifying genotypes expressing soil compaction tolerance.</p>","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":"210 2","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140291374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dhurba Neupane, Nicholas A. Niechayev, Lisa M. Petrusa, Claire Heinitz, John C. Cushman
Increased food, feed, and biofuel demands of the future will require a greater reliance upon crop production systems in arid and semi-arid regions around the world. Diminishing freshwater resources and hotter and drier climatic conditions will also necessitate the use of highly drought tolerant and water-use efficient crops. Cactus pear (Opuntia ficus-indica) is a low-water input, climate-resilient crop capable of high biomass production due to its use of crassulacean acid metabolism (CAM). Cactus pear produces both food and forage/fodder, a wide variety of high-value byproducts, and serves as a bioenergy feedstock for biogas or bioethanol production. Here, we evaluated the biomass productivity of 14 Opuntia spp. accessions from the National Arid Land Plant Genetic Resources Unit (NALPGRU) in Parlier, CA under semi-arid conditions with a planting density of 6667 plants ha−1 over a 3-year period to identify high-yielding biomass producers. Mean annual cladode fresh weight (CFW) (73.7 Mg ha−1 year−1), cladode dry weight (CDW) (5.2 Mg ha−1 year−1), and cladode count (CC) (10.5 cladodes plant−1) increased by 2.9-, 2.8-, and 2.8-fold in year 3 compared with year 1. PARL 845, hybrid no. 46 (O. ficus-indica × O. lindheimerii), showed the highest annual mean CFW (152.8 Mg ha−1 year−1), CDW (13.3 Mg ha−1 year−1), CC (22.1 cladodes plant−1), and dry matter content (DMC, 11.2%) among all accessions tested. Non-hybrid accessions PARL 242 (O. cochenillifera), PARL 582 (Opuntia sp.), and PARL 584 (Opuntia sp.) showed 100% cladode establishment rates and CDW productivity of >6 Mg ha−1 year−1. Such biomass productivity results indicate that cactus pear displays great potential as a crop with many uses with lower water inputs than conventional crops for arid and semi-arid environments.
{"title":"Biomass production of 14 accessions of cactus pear (Opuntia spp.) under semi-arid land conditions","authors":"Dhurba Neupane, Nicholas A. Niechayev, Lisa M. Petrusa, Claire Heinitz, John C. Cushman","doi":"10.1111/jac.12705","DOIUrl":"https://doi.org/10.1111/jac.12705","url":null,"abstract":"<p>Increased food, feed, and biofuel demands of the future will require a greater reliance upon crop production systems in arid and semi-arid regions around the world. Diminishing freshwater resources and hotter and drier climatic conditions will also necessitate the use of highly drought tolerant and water-use efficient crops. Cactus pear (<i>Opuntia ficus-indica</i>) is a low-water input, climate-resilient crop capable of high biomass production due to its use of crassulacean acid metabolism (CAM). Cactus pear produces both food and forage/fodder, a wide variety of high-value byproducts, and serves as a bioenergy feedstock for biogas or bioethanol production. Here, we evaluated the biomass productivity of 14 <i>Opuntia</i> spp. accessions from the National Arid Land Plant Genetic Resources Unit (NALPGRU) in Parlier, CA under semi-arid conditions with a planting density of 6667 plants ha<sup>−1</sup> over a 3-year period to identify high-yielding biomass producers. Mean annual cladode fresh weight (CFW) (73.7 Mg ha<sup>−1</sup> year<sup>−1</sup>), cladode dry weight (CDW) (5.2 Mg ha<sup>−1</sup> year<sup>−1</sup>), and cladode count (CC) (10.5 cladodes plant<sup>−1</sup>) increased by 2.9-, 2.8-, and 2.8-fold in year 3 compared with year 1. PARL 845, hybrid no. 46 (<i>O. ficus-indica</i> × <i>O. lindheimerii</i>), showed the highest annual mean CFW (152.8 Mg ha<sup>−1</sup> year<sup>−1</sup>), CDW (13.3 Mg ha<sup>−1</sup> year<sup>−1</sup>), CC (22.1 cladodes plant<sup>−1</sup>), and dry matter content (DMC, 11.2%) among all accessions tested. Non-hybrid accessions PARL 242 (<i>O. cochenillifera</i>), PARL 582 (<i>Opuntia</i> sp.), and PARL 584 (<i>Opuntia</i> sp.) showed 100% cladode establishment rates and CDW productivity of >6 Mg ha<sup>−1</sup> year<sup>−1</sup>. Such biomass productivity results indicate that cactus pear displays great potential as a crop with many uses with lower water inputs than conventional crops for arid and semi-arid environments.</p>","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":"210 2","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140291387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liuyan Yang, Xingke Liu, Jiahao Duan, Kang Du, Yuyao Wang, Xingjia Liang, Yang Liu, Wei Hu, Zhiguo Zhou, Lei Zhang, Wenqing Zhao
Cotton (Gossypium hirsutum L.) cultivars exhibit varying responses to heat stress. To investigate the heat resistance of various cotton and establish an index system for evaluating their heat resistance, 21 cotton cultivars were selected and subjected to two temperature regimes (CK, average temperature 28°C, 32/24°C; HT, average temperature 38°C, 42/34°C). The results showed that under high temperatures, different changes occurred in individual indexes of cotton, reflecting the differences in heat resistance in cotton cultivars. A total of 21 cotton cultivars could be classified into four types: heat-tolerant, moderate heat-tolerant, moderate heat-sensitive and heat-sensitive cultivars by multivariate statistical analysis. Moreover, the indexes of net photosynthetic rate (Pn), leaf superoxide dismutase activity (LSOD), the maximum photochemical quantum yield (Fv/Fm), the actual photochemical quantum yield (ΦPSII), leaf malondialdehyde content (LMDA), leaf catalase activity (LCAT), dry matter weight of shoot (SDW) and root malondialdehyde content (RMDA) were determined to be useful for evaluating the cotton heat tolerance by stepwise regression analysis. The pot experiment showed that the reduction of boll number, boll weight and seed cotton yield was more remarkable under HT in the heat-sensitive cultivar CCRI-92 than in the heat-resistant cultivar CCRI-69, which further verified the screening results. In conclusion, the heat-sensitive cultivars CCRI-92 and heat-resistant cultivar CCRI-69 which are identified by seedling experiment could serve as ideal experimental materials for studying heat resistance in cotton. The physiological indices such as Pn, LSOD, Fv/Fm, ΦPSII, LMDA, LCAT, SDW and RMDA be employed for assessing the heat tolerance in cotton.
{"title":"Comprehensive evaluation and screening identification indexes of heat-resistance indices in cotton (Gossypium hirsutum L.)","authors":"Liuyan Yang, Xingke Liu, Jiahao Duan, Kang Du, Yuyao Wang, Xingjia Liang, Yang Liu, Wei Hu, Zhiguo Zhou, Lei Zhang, Wenqing Zhao","doi":"10.1111/jac.12697","DOIUrl":"https://doi.org/10.1111/jac.12697","url":null,"abstract":"<p>Cotton (<i>Gossypium hirsutum</i> L.) cultivars exhibit varying responses to heat stress. To investigate the heat resistance of various cotton and establish an index system for evaluating their heat resistance, 21 cotton cultivars were selected and subjected to two temperature regimes (CK, average temperature 28°C, 32/24°C; HT, average temperature 38°C, 42/34°C). The results showed that under high temperatures, different changes occurred in individual indexes of cotton, reflecting the differences in heat resistance in cotton cultivars. A total of 21 cotton cultivars could be classified into four types: heat-tolerant, moderate heat-tolerant, moderate heat-sensitive and heat-sensitive cultivars by multivariate statistical analysis. Moreover, the indexes of net photosynthetic rate (<i>P</i><sub>n</sub>), leaf superoxide dismutase activity (LSOD), the maximum photochemical quantum yield (<i>F</i><sub>v</sub>/<i>F</i><sub>m</sub>), the actual photochemical quantum yield (<i>Φ</i><sub>PSII</sub>), leaf malondialdehyde content (LMDA), leaf catalase activity (LCAT), dry matter weight of shoot (SDW) and root malondialdehyde content (RMDA) were determined to be useful for evaluating the cotton heat tolerance by stepwise regression analysis. The pot experiment showed that the reduction of boll number, boll weight and seed cotton yield was more remarkable under HT in the heat-sensitive cultivar CCRI-92 than in the heat-resistant cultivar CCRI-69, which further verified the screening results. In conclusion, the heat-sensitive cultivars CCRI-92 and heat-resistant cultivar CCRI-69 which are identified by seedling experiment could serve as ideal experimental materials for studying heat resistance in cotton. The physiological indices such as <i>P</i><sub>n</sub>, LSOD, <i>F</i><sub>v</sub>/<i>F</i><sub>m</sub>, <i>Φ</i><sub>PSII</sub>, LMDA, LCAT, SDW and RMDA be employed for assessing the heat tolerance in cotton.</p>","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":"210 2","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139993938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The greenhouse effect caused by global warming was becoming more and more obvious, resulting in increased frequency of high temperature and high humidity, which significantly affected maize productivity. However, it was poorly understood how the interactions of high temperature and high humidity affected leaf senescence, photosynthetic performance and yield of summer maize. Three stress treatments including (a) high temperature stress (T), (b) waterlogging stress (W) and (c) complex stress (T-W) were set at the third leaf stage (V3), the sixth leaf stage (V6) and the tasselling stage (VT) in 2019–2020 to explore the influence mechanism of complex stress. Each stress treatment period lasted 6 days. Non-stressed plants served as control. Yield, antioxidant enzyme activity, photosynthetic characteristics, and dry matter accumulation were determined. Our study found that the activity of antioxidant enzymes was significantly decreased, while malonyldialdehyde (MDA) accumulation was increased under each stress treatment. As a result, the photosynthetic characteristics were impaired, manifested in a significant decrease in net photosynthetic rate (Pn), enzyme activities of phosphoenolpyruvate carboxylase (PEPCase) and ribulose diphosphate carboxylase (RUBPCase). The decrease in photosynthetic intensity affected by each stress treatment led to a significant decrease in total dry matter accumulation and grain yield. The most significant effects of waterlogging and combined stresses on yield occurred at the V3 stage, followed by the V6 and VT stages. However, the most significant effects of high temperature occurred at the VT stage, followed by the V6 and V3 stages. Moreover, the compound stress exacerbated damage to leaf senescence and photosynthetic properties of summer maize compared to the single stress of high temperature or waterlogging.
{"title":"The complex stress of waterlogging and high temperature accelerated maize leaf senescence and decreased photosynthetic performance at different growth stages","authors":"Jingyi Shao, Qinghao Wang, Peng Liu, Bin Zhao, Wei Han, Jiwang Zhang, Baizhao Ren","doi":"10.1111/jac.12689","DOIUrl":"https://doi.org/10.1111/jac.12689","url":null,"abstract":"<p>The greenhouse effect caused by global warming was becoming more and more obvious, resulting in increased frequency of high temperature and high humidity, which significantly affected maize productivity. However, it was poorly understood how the interactions of high temperature and high humidity affected leaf senescence, photosynthetic performance and yield of summer maize. Three stress treatments including (a) high temperature stress (T), (b) waterlogging stress (W) and (c) complex stress (T-W) were set at the third leaf stage (V3), the sixth leaf stage (V6) and the tasselling stage (VT) in 2019–2020 to explore the influence mechanism of complex stress. Each stress treatment period lasted 6 days. Non-stressed plants served as control. Yield, antioxidant enzyme activity, photosynthetic characteristics, and dry matter accumulation were determined. Our study found that the activity of antioxidant enzymes was significantly decreased, while malonyldialdehyde (MDA) accumulation was increased under each stress treatment. As a result, the photosynthetic characteristics were impaired, manifested in a significant decrease in net photosynthetic rate (<i>P</i>n), enzyme activities of phosphoenolpyruvate carboxylase (PEPCase) and ribulose diphosphate carboxylase (RUBPCase). The decrease in photosynthetic intensity affected by each stress treatment led to a significant decrease in total dry matter accumulation and grain yield. The most significant effects of waterlogging and combined stresses on yield occurred at the V3 stage, followed by the V6 and VT stages. However, the most significant effects of high temperature occurred at the VT stage, followed by the V6 and V3 stages. Moreover, the compound stress exacerbated damage to leaf senescence and photosynthetic properties of summer maize compared to the single stress of high temperature or waterlogging.</p>","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":"210 2","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139942902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reproductive failure in cotton caused by drought has been reported to be closely associated with alterations in pistil fertility; however, the mechanism of the effect of drought on pistil fertility in cotton is less studied. We hypothesized that drought would inhibit the ovule formation to alter pistil potential fertility. To address this hypothesis, we conducted a water deficit induction experiment with a cotton cultivar, Dexiamian 1. Results showed that drought damaged the cytological structure of the developing ovules. This resulted in a lower ovule number, finally leading to lower cottonseed number and boll weight. And the decreased ovule number was closely related to the reactive oxygen species (ROS) accumulation in pistil during ovule development. Further analysis of antioxidant metabolism found that in the enzymatic antioxidant system, drought decreased the activities of superoxide dismutase (SOD) and catalase (CAT), resulting in the accumulation of superoxide anion (