Pengfei Dang, Yajun Li, Xuan Pu, H. Xing, Xiaoliang Qin
This study reviewed data from 1950 to 2014 on 1,257 upland cotton (Gossypium hirsutum L.) cultivars from three agroecological regions in China: Yellow River Valley, Yangtze River Valley, and Northwest Inland. The main aim was to establish future breeding and cultivation strategies. Lint yields significantly increased linearly in the three regions over time. Yield improvement in the new cultivars was due to: the decrease in planting density and increase in lint percentage and single boll mass in Yellow River Valley, the decrease in planting density and increase in lint percentage and bolls per plant in Yangtze River Valley, and the increase in planting density and lint percentage and decrease in bolls per plant in Northwest Inland. Planting density had significant effects on bolls per plant, single boll weight, lint percentage, growing period, and plant height in the three ecological regions. Our results suggest that different regions require different breeding strategies, and the evaluation of the genetic improvement process of cotton should not ignore the effects of planting density.
{"title":"Changes in the Lint Yield and Associated Traits of Upland Cotton in China","authors":"Pengfei Dang, Yajun Li, Xuan Pu, H. Xing, Xiaoliang Qin","doi":"10.56454/djzf8953","DOIUrl":"https://doi.org/10.56454/djzf8953","url":null,"abstract":"This study reviewed data from 1950 to 2014 on 1,257 upland cotton (Gossypium hirsutum L.) cultivars from three agroecological regions in China: Yellow River Valley, Yangtze River Valley, and Northwest Inland. The main aim was to establish future breeding and cultivation strategies. Lint yields significantly increased linearly in the three regions over time. Yield improvement in the new cultivars was due to: the decrease in planting density and increase in lint percentage and single boll mass in Yellow River Valley, the decrease in planting density and increase in lint percentage and bolls per plant in Yangtze River Valley, and the increase in planting density and lint percentage and decrease in bolls per plant in Northwest Inland. Planting density had significant effects on bolls per plant, single boll weight, lint percentage, growing period, and plant height in the three ecological regions. Our results suggest that different regions require different breeding strategies, and the evaluation of the genetic improvement process of cotton should not ignore the effects of planting density.","PeriodicalId":15558,"journal":{"name":"Journal of cotton science","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70803196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cotton classification is the process of using official standards and standardized procedures to measure the physical attributes of raw cotton. The USDA Agricultural Marketing Service (AMS) classes essentially all cotton grown in the U.S. Samples are collected from each bale at the gin or warehouse for classing at one of 10 AMS classing offices. Automated instrumentation is used to assess fiber length, length uniformity, strength, color, micronaire, and non-lint content. Automation has allowed AMS to continue classing cotton efficiently as crop size has expanded. A human classer examines every classing sample to determine if there is any extraneous matter present that would alter the value of the bale. Classing results are matched with a permanent bale identification number that is assigned to each bale at the time of sampling. This identification number allows the bale to be identified throughout the supply chain, from packaging of the bale at the gin through consumption on the textile mill floor.
{"title":"COTTON GINNERS HANDBOOK: The Classification of Cotton","authors":"C. Delhom, J. Knowlton, V. Martin, C. Blake","doi":"10.56454/eeeg9440","DOIUrl":"https://doi.org/10.56454/eeeg9440","url":null,"abstract":"Cotton classification is the process of using official standards and standardized procedures to measure the physical attributes of raw cotton. The USDA Agricultural Marketing Service (AMS) classes essentially all cotton grown in the U.S. Samples are collected from each bale at the gin or warehouse for classing at one of 10 AMS classing offices. Automated instrumentation is used to assess fiber length, length uniformity, strength, color, micronaire, and non-lint content. Automation has allowed AMS to continue classing cotton efficiently as crop size has expanded. A human classer examines every classing sample to determine if there is any extraneous matter present that would alter the value of the bale. Classing results are matched with a permanent bale identification number that is assigned to each bale at the time of sampling. This identification number allows the bale to be identified throughout the supply chain, from packaging of the bale at the gin through consumption on the textile mill floor.","PeriodicalId":15558,"journal":{"name":"Journal of cotton science","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70803442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Kerns, D. Kerns, G. Lorenz, Angus L. Catchot Jr., S. Stewart
Previous studies have indicated that the expression of insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) in cotton can have a significant influence on the behavior of bollworm larvae (Helicoverpa zea, Lepidoptera:Noctuidae). This suggests that the particular Bt protein produced by a cotton variety may need to be considered when determining the most ideal scouting methods to utilize for bollworm. NonBt, WideStrike (producing Cry1Ac + Cry1F Bt insecticidal proteins), and Bollgard II (Cry1Ac + Cry2Ab) cotton varieties were planted and either treated with an insecticide or left untreated. The presence of H. zea larvae and their feeding injury were recorded according to their location in the canopy and type of floral structure where they were found. Results from comparison of larval and injury distributions indicated no significant differences between the different cotton varieties tested, and that insecticide treatment had minimal impact on this distribution. Larval size was generally associated with location in the canopy, suggesting that larvae tend to move towards the middle of the canopy as they age. The effect of different Bt cotton technologies appears to associate with how quickly larvae move to preferred feeding sites rather than their preference for particular feeding sites. These results suggest that scouting methods could be standardized independently of the presence of a Bt cotton trait or previous insecticide application. Focusing scouting efforts on the middle portion of the canopy (i.e., nodes 6-9) should increase the detection of small larvae and ‘fresh’ injury and be less influenced by previous insecticide applications.
{"title":"Impact of Various Bt Cotton Traits and the Application of an Insecticide on the Within Plant Distribution of Helicoverpa zea (Lepidoptera: Noctuidae) Larvae and Injured Floral Structures","authors":"D. Kerns, D. Kerns, G. Lorenz, Angus L. Catchot Jr., S. Stewart","doi":"10.56454/huoe5710","DOIUrl":"https://doi.org/10.56454/huoe5710","url":null,"abstract":"Previous studies have indicated that the expression of insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) in cotton can have a significant influence on the behavior of bollworm larvae (Helicoverpa zea, Lepidoptera:Noctuidae). This suggests that the particular Bt protein produced by a cotton variety may need to be considered when determining the most ideal scouting methods to utilize for bollworm. NonBt, WideStrike (producing Cry1Ac + Cry1F Bt insecticidal proteins), and Bollgard II (Cry1Ac + Cry2Ab) cotton varieties were planted and either treated with an insecticide or left untreated. The presence of H. zea larvae and their feeding injury were recorded according to their location in the canopy and type of floral structure where they were found. Results from comparison of larval and injury distributions indicated no significant differences between the different cotton varieties tested, and that insecticide treatment had minimal impact on this distribution. Larval size was generally associated with location in the canopy, suggesting that larvae tend to move towards the middle of the canopy as they age. The effect of different Bt cotton technologies appears to associate with how quickly larvae move to preferred feeding sites rather than their preference for particular feeding sites. These results suggest that scouting methods could be standardized independently of the presence of a Bt cotton trait or previous insecticide application. Focusing scouting efforts on the middle portion of the canopy (i.e., nodes 6-9) should increase the detection of small larvae and ‘fresh’ injury and be less influenced by previous insecticide applications.","PeriodicalId":15558,"journal":{"name":"Journal of cotton science","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70803474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Understanding the focus and history of a breeding program allows fellow researchers to build upon prior knowledge and helps determine the best expertise for specific objectives. To date, the cotton-breeding program at Auburn University has had a series of breeders that have worked directly with a plant pathologist. Homer Tisdale, the program’s first breeder, was hired in 1913 with the goal of Fusarium wilt (FOV) resistance, a focus that was destined to become fundamental to the program. With the discovery of a "hot" field in Tallassee, Alabama, the program soon combined cotton variety testing and FOV screening tests. This led to the release of the most iconic variety of the program – Auburn 56 and characterizing of the relationship between root knot nematode and FOV. In 1965, the program shifted to a USDA cotton genetics project, led by R.L. Shepherd, who refined screening techniques and identified multiple sources of root knot nematode resistance. He released 40 cotton breeding lines, the most in the program’s history, which ended in 1984 when the USDA lab was moved to Mississippi. In the late 1990’s, breeder David Weaver joined a region-wide effort to investigate reniform nematode resistance. The current program, led by Jenny Koebernick, has a large emphasis on disease resistance. In 2019, attention shifted to identifying sources of resistance for the cotton leaf roll dwarf virus, collaborating directly with plant pathologists and entomologists. Overall, the greatest contribution of the program has been the synergy created between breeding and pathology that has helped advance cotton resistance to nematodes, fusarium wilt and bacterial blight.
{"title":"Merging of Plant Breeding and Pathology: A History of Cotton Breeding at Auburn","authors":"J. Koebernick, Jessica Ahl, D. Weaver","doi":"10.56454/zdwp6169","DOIUrl":"https://doi.org/10.56454/zdwp6169","url":null,"abstract":"Understanding the focus and history of a breeding program allows fellow researchers to build upon prior knowledge and helps determine the best expertise for specific objectives. To date, the cotton-breeding program at Auburn University has had a series of breeders that have worked directly with a plant pathologist. Homer Tisdale, the program’s first breeder, was hired in 1913 with the goal of Fusarium wilt (FOV) resistance, a focus that was destined to become fundamental to the program. With the discovery of a \"hot\" field in Tallassee, Alabama, the program soon combined cotton variety testing and FOV screening tests. This led to the release of the most iconic variety of the program – Auburn 56 and characterizing of the relationship between root knot nematode and FOV. In 1965, the program shifted to a USDA cotton genetics project, led by R.L. Shepherd, who refined screening techniques and identified multiple sources of root knot nematode resistance. He released 40 cotton breeding lines, the most in the program’s history, which ended in 1984 when the USDA lab was moved to Mississippi. In the late 1990’s, breeder David Weaver joined a region-wide effort to investigate reniform nematode resistance. The current program, led by Jenny Koebernick, has a large emphasis on disease resistance. In 2019, attention shifted to identifying sources of resistance for the cotton leaf roll dwarf virus, collaborating directly with plant pathologists and entomologists. Overall, the greatest contribution of the program has been the synergy created between breeding and pathology that has helped advance cotton resistance to nematodes, fusarium wilt and bacterial blight.","PeriodicalId":15558,"journal":{"name":"Journal of cotton science","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70805878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. A. Griffin, Seth A. Byrd, G. Morgan, A. Dabney, T. Raper, D. Dodds, R. Norton, Andrea S. Jones, G. Collins, T. Cutts, K. Edmisten, Shawn A. Butler
Harvest aids provide cotton farmers with the ability to harvest in an efficient and timely manner. Harvest aids also assistant in preserving overall fiber quality by reducing fiber degradation and discoloration from exposure to weather and by the reduction of foreign matter. Many harvest-aid active ingredients do not translocate within the plant, thus adequate spray coverage is recommended to improve efficacy of these products. The widespread and rapid adoption of auxin-tolerant cotton varieties has increased the use of larger droplet size nozzles that are required for use with auxin herbicides. Subsequently, the use of larger droplet size nozzles for harvest-aid applications will likely increase. The objective of this study was to determine the impact of droplet size and carrier volume on defoliation, desiccation, boll opening, terminal and basal regrowth, and cotton leaf grade. Varying water volumes of 47, 93, 140, and 187 L ha-1, and nozzles that produced fine, medium, and ultra-coarse droplets were evaluated at 14 site years across the Cotton Belt in 2016 and 2017. Numeric trends indicate higher carrier volumes are more successful at defoliating and opening bolls than lower carrier volumes. Water volumes of 47 L ha-1 should be avoided when making cotton harvest-aid applications, as all defoliation, open boll, and regrowth values were consistently reduced at the lowest carrier volume. Treatments of various nozzle types had less impact on harvest-aid efficacy than carrier volume. Site interactions with harvest aids had a greater effect than nozzle type or water volume.
收获辅助设备为棉农提供了高效、及时的收获能力。收获助剂还有助于保持纤维的整体质量,因为它减少了纤维在暴露于天气下的降解和变色,减少了外来物质。许多有助于收获的活性成分不会在植物内转移,因此建议适当的喷雾覆盖以提高这些产品的功效。抗生长素棉花品种的广泛和迅速采用,增加了使用更大液滴大小的喷嘴,这需要与生长素除草剂一起使用。随后,在辅助收获应用中使用更大液滴尺寸的喷嘴可能会增加。研究了液滴大小和载体体积对棉花落叶、干燥、开铃、顶端和基部再生以及叶片等级的影响。在2016年和2017年的14个站点年里,对棉花带47、93、140和187 L ha-1的不同水量以及产生细、中、超粗水滴的喷嘴进行了评估。数值趋势表明,较高的载体体积比较低的载体体积在脱叶和开铃方面更成功。在进行棉花助收施用时应避免47 L ha-1的水量,因为在最低载体体积下,所有的落叶、开铃和再生值都持续降低。不同喷嘴类型处理对助收效果的影响小于载体体积。现场与收获辅助的相互作用比喷嘴类型或水量的影响更大。
{"title":"Water Volume and Deposition Effects on Harvest-Aid Efficacy","authors":"J. A. Griffin, Seth A. Byrd, G. Morgan, A. Dabney, T. Raper, D. Dodds, R. Norton, Andrea S. Jones, G. Collins, T. Cutts, K. Edmisten, Shawn A. Butler","doi":"10.56454/pqlq9690","DOIUrl":"https://doi.org/10.56454/pqlq9690","url":null,"abstract":"Harvest aids provide cotton farmers with the ability to harvest in an efficient and timely manner. Harvest aids also assistant in preserving overall fiber quality by reducing fiber degradation and discoloration from exposure to weather and by the reduction of foreign matter. Many harvest-aid active ingredients do not translocate within the plant, thus adequate spray coverage is recommended to improve efficacy of these products. The widespread and rapid adoption of auxin-tolerant cotton varieties has increased the use of larger droplet size nozzles that are required for use with auxin herbicides. Subsequently, the use of larger droplet size nozzles for harvest-aid applications will likely increase. The objective of this study was to determine the impact of droplet size and carrier volume on defoliation, desiccation, boll opening, terminal and basal regrowth, and cotton leaf grade. Varying water volumes of 47, 93, 140, and 187 L ha-1, and nozzles that produced fine, medium, and ultra-coarse droplets were evaluated at 14 site years across the Cotton Belt in 2016 and 2017. Numeric trends indicate higher carrier volumes are more successful at defoliating and opening bolls than lower carrier volumes. Water volumes of 47 L ha-1 should be avoided when making cotton harvest-aid applications, as all defoliation, open boll, and regrowth values were consistently reduced at the lowest carrier volume. Treatments of various nozzle types had less impact on harvest-aid efficacy than carrier volume. Site interactions with harvest aids had a greater effect than nozzle type or water volume.","PeriodicalId":15558,"journal":{"name":"Journal of cotton science","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70804847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Srinivasa R. Pinnamanemi, S. Anapalli, D. Fisher, K.Nikhitha Reddy
Addressing the challenges of dwindling groundwater resources and ever-increasing demands for water necessitate enhancing water use efficiency (WUE) in irrigated agriculture. In a 2-year study, we examined the effects of different levels of irrigation and PG on lint yield and WUE of furrow irrigated cotton in a Dundee silt loam in the Mississippi Delta. The main plots were three irrigation regimes: irrigating every furrow (FI), alternate furrow (HI), and no irrigation (RF) and subplots were two planting geometries (PG): single-row (SR) and twin-row (TR). Across FI and HI no significant differences were observed in plant height and biomass yield at flowering, but chlorophyll content index and leaf area index (LAI) were positively affected. Canopy closure in TR planting occurred earlier than SR leading to higher leaf areas available for harvesting more light during photosynthesis. Averaged across the irrigation regimes, the TR planting enhanced lint yield by 10.6% in 2018 and 17.6% in 2019 compared to SR. The average lint yield in SR and TR were: 1779 and 2028 kg ha-1 under FI, 1803 and 2082 kg ha-1 under HI, and 1573 and 1788 kg ha-1 under RF treatments, respectively. In FI and HI treatments, TR had higher lint yield than RF treatment by 13.8% and 16.5%, respectively. Lint yield in HI with TR had the highest irrigation WUE (3.4 kg ha-1 mm-1) followed by HI with SR (2.7 kg ha-1 mm-1). These results demonstrated that cotton grown in TR with HI could reduce irrigation water demand in silt loams.
要解决地下水资源减少和对水需求不断增加的挑战,就必须提高灌溉农业的用水效率。在一项为期2年的研究中,我们研究了不同水平的灌溉和PG对密西西比三角洲邓迪淤泥壤土沟灌棉花产量和水分利用效率的影响。主样地有三种灌溉方式:每沟灌溉(FI)、隔沟灌溉(HI)和不灌溉(RF),次样地有两种种植方式:单行(SR)和双行(TR)。不同施肥条件下,植物株高和开花生物量差异不显著,但叶绿素含量指数和叶面积指数(LAI)受到显著影响。TR种植的冠层闭合时间早于SR种植,因此在光合作用期间可用于收获更多光的叶面积较大。各灌溉制度的平均水平显示,与常规灌溉相比,常规灌溉在2018年和2019年的皮棉产量分别提高了10.6%和17.6%。常规灌溉和常规灌溉的平均皮棉产量分别为:FI处理1779和2028 kg ha-1, HI处理1803和2082 kg ha-1, RF处理1573和1788 kg ha-1。在FI和HI处理中,TR比RF处理的皮棉产量分别提高13.8%和16.5%。灌水水分利用效率最高(3.4 kg ha-1 mm-1),其次是灌水水分利用效率最高(2.7 kg ha-1 mm-1)。综上所述,在高施氮条件下种植棉花可以减少淤泥质壤土的灌溉需水量。
{"title":"Irrigation and Planting Geometry Effects on Cotton (Gossypium hirsutum L.) Yield and Water Use","authors":"Srinivasa R. Pinnamanemi, S. Anapalli, D. Fisher, K.Nikhitha Reddy","doi":"10.56454/qowp3595","DOIUrl":"https://doi.org/10.56454/qowp3595","url":null,"abstract":"Addressing the challenges of dwindling groundwater resources and ever-increasing demands for water necessitate enhancing water use efficiency (WUE) in irrigated agriculture. In a 2-year study, we examined the effects of different levels of irrigation and PG on lint yield and WUE of furrow irrigated cotton in a Dundee silt loam in the Mississippi Delta. The main plots were three irrigation regimes: irrigating every furrow (FI), alternate furrow (HI), and no irrigation (RF) and subplots were two planting geometries (PG): single-row (SR) and twin-row (TR). Across FI and HI no significant differences were observed in plant height and biomass yield at flowering, but chlorophyll content index and leaf area index (LAI) were positively affected. Canopy closure in TR planting occurred earlier than SR leading to higher leaf areas available for harvesting more light during photosynthesis. Averaged across the irrigation regimes, the TR planting enhanced lint yield by 10.6% in 2018 and 17.6% in 2019 compared to SR. The average lint yield in SR and TR were: 1779 and 2028 kg ha-1 under FI, 1803 and 2082 kg ha-1 under HI, and 1573 and 1788 kg ha-1 under RF treatments, respectively. In FI and HI treatments, TR had higher lint yield than RF treatment by 13.8% and 16.5%, respectively. Lint yield in HI with TR had the highest irrigation WUE (3.4 kg ha-1 mm-1) followed by HI with SR (2.7 kg ha-1 mm-1). These results demonstrated that cotton grown in TR with HI could reduce irrigation water demand in silt loams.","PeriodicalId":15558,"journal":{"name":"Journal of cotton science","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70804978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Virk, W. Porter, J. Snider, J. Whitaker, G. Rains, Changying Li
Cotton (Gossypium hirsutum L.) growers are motivated to reduce seeding rates due to increased technology fees associated with improved transgenic cotton cultivars. Advances in planting machinery have improved precision of seed metering and seed placement in recent years. A two-year study was conducted to evaluate the effect of seeding rate, planter downforce, and cultivar on crop emergence and lint yield in cotton planted as singulated and hill-drop (two seed hill-1) configuration. Study treatments consisted of two seeding rates (71,660 and 107,490 seed ha-1), two to three planter downforces (0, 445 and 890 N in 2017; 0 and 890 N in 2018) and two cotton cultivars (representing a large-seeded and small-seeded cultivar, 9,259 - 10,582 and 11,244 - 14,330 seed kg-1, respectively) arranged in a strip-split plot design in both seeding configurations. Crop emergence and lint yield in the middle two rows (four-row plots) were measured to evaluate treatment effects among seeding configurations. Results showed that seeding rate and cultivar did not affect (p>0.05) crop emergence and lint yield in both singulated and hill-drop cotton. Crop emergence varied between the two years due to differences in field tillage conditions. Planter downforce affected crop emergence in singulated cotton but not in hill-drop cotton during both years. Field tillage conditions also influenced downforce effect on crop emergence. Selection of an optimal planter downforce had more significant effect (p<0.05) on singulated cotton than hill-dropped cotton. Results showed that large-seeded cultivars can be utilized to attain a high crop emergence early in the season which can help in minimizing production risks associated with poor stand establishment. High seed and technology fees incurred by growers can be effectively reduced by planting lower seeding rates - given an adequate stand establishment is attained using appropriate planter setup including downforce and cultivar selection.
{"title":"Influence of Seeding Rate, Planter Downforce and Cultivar on Crop Emergence and Yield in Singulated and Hill-Dropped Cotton","authors":"S. Virk, W. Porter, J. Snider, J. Whitaker, G. Rains, Changying Li","doi":"10.56454/wrjs4850","DOIUrl":"https://doi.org/10.56454/wrjs4850","url":null,"abstract":"Cotton (Gossypium hirsutum L.) growers are motivated to reduce seeding rates due to increased technology fees associated with improved transgenic cotton cultivars. Advances in planting machinery have improved precision of seed metering and seed placement in recent years. A two-year study was conducted to evaluate the effect of seeding rate, planter downforce, and cultivar on crop emergence and lint yield in cotton planted as singulated and hill-drop (two seed hill-1) configuration. Study treatments consisted of two seeding rates (71,660 and 107,490 seed ha-1), two to three planter downforces (0, 445 and 890 N in 2017; 0 and 890 N in 2018) and two cotton cultivars (representing a large-seeded and small-seeded cultivar, 9,259 - 10,582 and 11,244 - 14,330 seed kg-1, respectively) arranged in a strip-split plot design in both seeding configurations. Crop emergence and lint yield in the middle two rows (four-row plots) were measured to evaluate treatment effects among seeding configurations. Results showed that seeding rate and cultivar did not affect (p>0.05) crop emergence and lint yield in both singulated and hill-drop cotton. Crop emergence varied between the two years due to differences in field tillage conditions. Planter downforce affected crop emergence in singulated cotton but not in hill-drop cotton during both years. Field tillage conditions also influenced downforce effect on crop emergence. Selection of an optimal planter downforce had more significant effect (p<0.05) on singulated cotton than hill-dropped cotton. Results showed that large-seeded cultivars can be utilized to attain a high crop emergence early in the season which can help in minimizing production risks associated with poor stand establishment. High seed and technology fees incurred by growers can be effectively reduced by planting lower seeding rates - given an adequate stand establishment is attained using appropriate planter setup including downforce and cultivar selection.","PeriodicalId":15558,"journal":{"name":"Journal of cotton science","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70805444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study was conducted to determine the effectiveness, in terms of cleaning efficiency and fiber quality, of the seed cotton cleaning stages installed in cotton gins that process predominately spindle-harvested, irrigated Upland cotton and to determine the effect of the various processing stages during ginning on gin turn out and fiber quality. The study showed that the average amount of trash content present in seed cotton was typically < 10%. The seed cotton cleaning process was able to remove 20 to 40% with the remainder of the trash removed by subsequent lint cleaning stages. The study also showed that the gin stand has no influence on fiber quality provided that the gin stand was not overloaded, maintained to manufacturers recommendations, and moisture levels maintained within the recommended levels. Flow-through air lint cleaners had no significant effect on fiber quality with minimal reduction in trash. The controlled-batt saw lint cleaners had positive and significant effects on color and trash; negative effects on length, length uniformity, short fiber and nep content, elongation; and no effect on strength, micronaire, fineness, maturity, number and size of SCN and fiber nep size. The batt-less saw lint cleaners had similar effects on fiber quality, although not as severe. The controlled-batt saw lint cleaners were more aggressive than the batt-less saw lint cleaners and removed more trash and hence achieved a better color grade, with this improvement resulting in notable reductions in lint turn out, fiber length, and increased short fiber and nep content.
{"title":"The Effect of Various Processing Stages During Ginning on Fiber Quality","authors":"M. V. D. VAN DER SLUIJS","doi":"10.56454/cpaz3825","DOIUrl":"https://doi.org/10.56454/cpaz3825","url":null,"abstract":"This study was conducted to determine the effectiveness, in terms of cleaning efficiency and fiber quality, of the seed cotton cleaning stages installed in cotton gins that process predominately spindle-harvested, irrigated Upland cotton and to determine the effect of the various processing stages during ginning on gin turn out and fiber quality. The study showed that the average amount of trash content present in seed cotton was typically < 10%. The seed cotton cleaning process was able to remove 20 to 40% with the remainder of the trash removed by subsequent lint cleaning stages. The study also showed that the gin stand has no influence on fiber quality provided that the gin stand was not overloaded, maintained to manufacturers recommendations, and moisture levels maintained within the recommended levels. Flow-through air lint cleaners had no significant effect on fiber quality with minimal reduction in trash. The controlled-batt saw lint cleaners had positive and significant effects on color and trash; negative effects on length, length uniformity, short fiber and nep content, elongation; and no effect on strength, micronaire, fineness, maturity, number and size of SCN and fiber nep size. The batt-less saw lint cleaners had similar effects on fiber quality, although not as severe. The controlled-batt saw lint cleaners were more aggressive than the batt-less saw lint cleaners and removed more trash and hence achieved a better color grade, with this improvement resulting in notable reductions in lint turn out, fiber length, and increased short fiber and nep content.","PeriodicalId":15558,"journal":{"name":"Journal of cotton science","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70803186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
W. Crow, Angus L. Catchot Jr., J. Gore, D. Dodds, D. Cook, T. Allen
Numerous pests infest cotton early in the season. Some economically important are Palmer amaranth, Amaranthus palmeri (S. Wats); tobacco thrips, Frankliniella fusca (Hinds); and reniform nematode, Rotylenchulus reniformis (Linford and Oliveira). Thrips and weed management are essential to prevent delayed maturity and reduced crop yield. A field study was conducted during 2015 and 2016 to evaluate the influence of insecticide seed treatment, herbicide, and nematicide on tobacco thrips and reniform nematode control, as well as the impact on cotton growth, development, and yield. Treatments consisted of insecticide seed treatment (insecticide seed treatment and fungicide only), herbicide application (S-metolachlor, glufosinate, S-metolachlor plus glufosinate, and no herbicide), and nematicide application (1, 3-dichloropropene and no nematicide). There were no significant interactions between insecticide seed treatment, herbicide, and nematicide for any parameter. Nor were there any interactions in respect to nematode densities, thrips densities, thrips injury, herbicide injury, or plant biomass. Nematode densities were reduced with the use of 1,3-dichloropropene when sampled at first square and post-harvest. Thrips densities and injury were reduced at the 1- to 2-leaf stage sample timing with an insecticide seed treatment, but not at the 3- to 4-leaf stage sample timing. Herbicide injury was the greatest following S-metolachlor plus glufosinate applications (< 12%). A significant interaction between nematicide and insecticide seed treatment was observed for cotton yield, where the use of 1,3-dichloropropene and the insecticide seed treatment resulted in greater yields than all other treatments.
{"title":"Evaluation of Seed Treatment, Herbicide, and Nematicide on Tobacco Thrips (Thysanoptera: Thripdae) and Reniform Nematode (Tylenchida: Hoplolaimidae) Control","authors":"W. Crow, Angus L. Catchot Jr., J. Gore, D. Dodds, D. Cook, T. Allen","doi":"10.56454/olyr7876","DOIUrl":"https://doi.org/10.56454/olyr7876","url":null,"abstract":"Numerous pests infest cotton early in the season. Some economically important are Palmer amaranth, Amaranthus palmeri (S. Wats); tobacco thrips, Frankliniella fusca (Hinds); and reniform nematode, Rotylenchulus reniformis (Linford and Oliveira). Thrips and weed management are essential to prevent delayed maturity and reduced crop yield. A field study was conducted during 2015 and 2016 to evaluate the influence of insecticide seed treatment, herbicide, and nematicide on tobacco thrips and reniform nematode control, as well as the impact on cotton growth, development, and yield. Treatments consisted of insecticide seed treatment (insecticide seed treatment and fungicide only), herbicide application (S-metolachlor, glufosinate, S-metolachlor plus glufosinate, and no herbicide), and nematicide application (1, 3-dichloropropene and no nematicide). There were no significant interactions between insecticide seed treatment, herbicide, and nematicide for any parameter. Nor were there any interactions in respect to nematode densities, thrips densities, thrips injury, herbicide injury, or plant biomass. Nematode densities were reduced with the use of 1,3-dichloropropene when sampled at first square and post-harvest. Thrips densities and injury were reduced at the 1- to 2-leaf stage sample timing with an insecticide seed treatment, but not at the 3- to 4-leaf stage sample timing. Herbicide injury was the greatest following S-metolachlor plus glufosinate applications (< 12%). A significant interaction between nematicide and insecticide seed treatment was observed for cotton yield, where the use of 1,3-dichloropropene and the insecticide seed treatment resulted in greater yields than all other treatments.","PeriodicalId":15558,"journal":{"name":"Journal of cotton science","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70805135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Savana D. Denton, D. Dodds, L. Krutz, J. Varco, J. Gore, T. Raper
The termination timing of cover crops varies by farm. This research was conducted to determine whether the timing of cover crop termination alters cotton growth and development. The effects of cover crop (crimson clover, cereal rye, oat, and a blend of cereal rye + crimson clover) and termination timing (targeted dates 01 February, 01 March, 01 April, and 01 May) on cotton emergence, plant height, nodes above white flower and yield was evaluated near Starkville, MS on a Leeper silty clay loam (fine, smectitic, nonacid, thermic Vertic Epiaquepts) in 2017 and 2018 and near Tribbett, MS on a Dundee silty clay loam (Fine-silty, mixed, active, thermic type Typic Endoqualfs) in 2017. Timing of cover crop termination had a transient effect on cotton emergence. Relative to terminating cover crops in March or April, terminating in February or May decreased cotton emergence at 7 days after planting (DAP) by up to 26%. However, by 14 DAP, cotton stand averaged 74,190 plants/ha and there was no effect of cover crop termination timing on emergence. There were modest interaction effects of cover crop and termination timing on cotton development including plant height, number of nodes, and nodes above white flower. Cotton lint yield did not differ due to cover crop species but increased up to 8% when cover crop termination was delayed from February until May. This research indicates that April and May are the optimal times to terminate a cover crop in a Mississippi cotton production system, provided there is a suitable environment for healthy cotton growth.
{"title":"Evaluation of Cover Crop Species Termination Timing Prior to Cotton Production in Mississippi","authors":"Savana D. Denton, D. Dodds, L. Krutz, J. Varco, J. Gore, T. Raper","doi":"10.56454/zcql1443","DOIUrl":"https://doi.org/10.56454/zcql1443","url":null,"abstract":"The termination timing of cover crops varies by farm. This research was conducted to determine whether the timing of cover crop termination alters cotton growth and development. The effects of cover crop (crimson clover, cereal rye, oat, and a blend of cereal rye + crimson clover) and termination timing (targeted dates 01 February, 01 March, 01 April, and 01 May) on cotton emergence, plant height, nodes above white flower and yield was evaluated near Starkville, MS on a Leeper silty clay loam (fine, smectitic, nonacid, thermic Vertic Epiaquepts) in 2017 and 2018 and near Tribbett, MS on a Dundee silty clay loam (Fine-silty, mixed, active, thermic type Typic Endoqualfs) in 2017. Timing of cover crop termination had a transient effect on cotton emergence. Relative to terminating cover crops in March or April, terminating in February or May decreased cotton emergence at 7 days after planting (DAP) by up to 26%. However, by 14 DAP, cotton stand averaged 74,190 plants/ha and there was no effect of cover crop termination timing on emergence. There were modest interaction effects of cover crop and termination timing on cotton development including plant height, number of nodes, and nodes above white flower. Cotton lint yield did not differ due to cover crop species but increased up to 8% when cover crop termination was delayed from February until May. This research indicates that April and May are the optimal times to terminate a cover crop in a Mississippi cotton production system, provided there is a suitable environment for healthy cotton growth.","PeriodicalId":15558,"journal":{"name":"Journal of cotton science","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70805868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}