Sebastian Dominiak, Jennifer Majer, Christoph Bourauel, Ludger Keilig, Tomasz Gedrange
Background: The impact of tongue protrusion forces on the formation of malocclusions is well documented in academic literature. In the case of bone dehiscence of the buccal wall in front of the lower frontal teeth, this process may be even more pronounced. Augmentation with 3D customized allogenic bone blocks (CABB) has been proposed as a potential solution for treating such defects. The objective was to assess the impact of bone block adjustment accuracy on the resistance of teeth to protrusion forces at various stages of alveolar bone loss.
Methods: A finite element analysis (FEM) was conducted to ascertain whether augmentation with a CABB will result in increased resilience to tongue protrusion forces. Three-dimensional models of the mandible with dehiscenses were created, based on the dehiscences classification and modification proposed in the journal by the authors of regenerative method. The models feature a CABB positioned at three different distances: 0.1 mm, 0.4 mm, and 1.0 mm. The material parameters were as follows: bone (homogenous, isotropic, E = 2 GPa), teeth (E = 20 GPa), periodontal ligament (E = 0.44 MPa), and membrane between bones (E = 3.4 MPa). A tongue protrusion force within the range of 0-5 N was applied to each individual frontal tooth.
Results: The use of an CABB has been shown to positively impact the stability of the teeth. The closer the bone block was placed to the alveolar bone, the more stable was the result. The best results were obtained with a ¼ dehiscence and 0.1 mm distance.
Conclusions: The protrusive forces produced by the tongue might not be the biggest one, but in a presence of the bone loss they might have serious results. Even shortly after the surgery, CABB has a positive impact on the incisor resilience.
{"title":"Customized 3D Allogenic Bone Blocks for Mandibular Buccal-Bone Reconstruction Increase Resistance to Tongue-Protrusion Forces: A Finite Element Analysis.","authors":"Sebastian Dominiak, Jennifer Majer, Christoph Bourauel, Ludger Keilig, Tomasz Gedrange","doi":"10.3390/jfb16010001","DOIUrl":"10.3390/jfb16010001","url":null,"abstract":"<p><strong>Background: </strong>The impact of tongue protrusion forces on the formation of malocclusions is well documented in academic literature. In the case of bone dehiscence of the buccal wall in front of the lower frontal teeth, this process may be even more pronounced. Augmentation with 3D customized allogenic bone blocks (CABB) has been proposed as a potential solution for treating such defects. The objective was to assess the impact of bone block adjustment accuracy on the resistance of teeth to protrusion forces at various stages of alveolar bone loss.</p><p><strong>Methods: </strong>A finite element analysis (FEM) was conducted to ascertain whether augmentation with a CABB will result in increased resilience to tongue protrusion forces. Three-dimensional models of the mandible with dehiscenses were created, based on the dehiscences classification and modification proposed in the journal by the authors of regenerative method. The models feature a CABB positioned at three different distances: 0.1 mm, 0.4 mm, and 1.0 mm. The material parameters were as follows: bone (homogenous, isotropic, E = 2 GPa), teeth (E = 20 GPa), periodontal ligament (E = 0.44 MPa), and membrane between bones (E = 3.4 MPa). A tongue protrusion force within the range of 0-5 N was applied to each individual frontal tooth.</p><p><strong>Results: </strong>The use of an CABB has been shown to positively impact the stability of the teeth. The closer the bone block was placed to the alveolar bone, the more stable was the result. The best results were obtained with a ¼ dehiscence and 0.1 mm distance.</p><p><strong>Conclusions: </strong>The protrusive forces produced by the tongue might not be the biggest one, but in a presence of the bone loss they might have serious results. Even shortly after the surgery, CABB has a positive impact on the incisor resilience.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766378/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143033041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Scaffolds resembling the extracellular matrix (ECM) provide structural support for cells in the engineering of tissue constructs. Various material sources and fabrication techniques have been employed in scaffold production. Cellulose-based matrices are of interest due to their abundant supply, hydrophilicity, mechanical strength, and biological inertness. Terrestrial and marine plants offer diverse morphologies that can replicate the ECM of various tissues and be isolated through decellularization protocols. In this study, three marine macroalgae species-namely Durvillaea poha, Ulva lactuca, and Ecklonia radiata-were selected for their morphological variation. Low-intensity, chemical treatments were developed for each species to maintain native cellulose structures within the matrices while facilitating the clearance of DNA and pigment. Scaffolds generated from each seaweed species were non-toxic for human dermal fibroblasts but only the fibrous inner layer of those derived from E. radiata supported cell attachment and maturation over the seven days of culture. These findings demonstrate the potential of E. radiata-derived cellulose scaffolds for skin tissue engineering and highlight the influence of macroalgae ECM structures on decellularization efficiency, cellulose matrix properties, and scaffold utility.
{"title":"Decellularized Green and Brown Macroalgae as Cellulose Matrices for Tissue Engineering.","authors":"Caitlin Berry-Kilgour, Indrawati Oey, Jaydee Cabral, Georgina Dowd, Lyn Wise","doi":"10.3390/jfb15120390","DOIUrl":"10.3390/jfb15120390","url":null,"abstract":"<p><p>Scaffolds resembling the extracellular matrix (ECM) provide structural support for cells in the engineering of tissue constructs. Various material sources and fabrication techniques have been employed in scaffold production. Cellulose-based matrices are of interest due to their abundant supply, hydrophilicity, mechanical strength, and biological inertness. Terrestrial and marine plants offer diverse morphologies that can replicate the ECM of various tissues and be isolated through decellularization protocols. In this study, three marine macroalgae species-namely <i>Durvillaea poha</i>, <i>Ulva lactuca</i>, and <i>Ecklonia radiata</i>-were selected for their morphological variation. Low-intensity, chemical treatments were developed for each species to maintain native cellulose structures within the matrices while facilitating the clearance of DNA and pigment. Scaffolds generated from each seaweed species were non-toxic for human dermal fibroblasts but only the fibrous inner layer of those derived from <i>E. radiata</i> supported cell attachment and maturation over the seven days of culture. These findings demonstrate the potential of <i>E. radiata</i>-derived cellulose scaffolds for skin tissue engineering and highlight the influence of macroalgae ECM structures on decellularization efficiency, cellulose matrix properties, and scaffold utility.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 12","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677820/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142894998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kevin Y Wu, Rebecca Khammar, Hafsah Sheikh, Michael Marchand
Intraocular lenses (IOLs) play a pivotal role in restoring vision following cataract surgery. The evolution of polymeric biomaterials has been central to addressing challenges such as biocompatibility, optical clarity, mechanical stability, and resistance to opacification. This review explores essential requirements for IOL biomaterials, emphasizing their ability to mitigate complications like posterior capsule opacification (PCO) and dysphotopsias while maintaining long-term durability and visual quality. Traditional polymeric materials, including polymethyl methacrylate (PMMA), silicone, and acrylic polymers, are critically analyzed alongside cutting-edge innovations such as hydrogels, shape memory polymers, and light-adjustable lenses (LALs). Advances in polymer engineering have enabled these materials to achieve enhanced flexibility, transparency, and biocompatibility, driving their adoption in modern IOL design. Functionalization strategies, including surface modifications and drug-eluting designs, highlight advancements in preventing inflammation, infection, and other complications. The incorporation of UV-blocking and blue-light-filtering agents is also examined for their potential in reducing retinal damage. Furthermore, emerging technologies like nanotechnology and smart polymer-based biomaterials offer promising avenues for personalized, biocompatible IOLs with enhanced performance. Clinical outcomes, including visual acuity, contrast sensitivity, and patient satisfaction, are evaluated to provide an understanding of the current advancements and limitations in IOL development. We also discuss the current challenges and future directions, underscoring the need for cost-effective, innovative polymer-based solutions to optimize surgical outcomes and improve patients' quality of life.
{"title":"Innovative Polymeric Biomaterials for Intraocular Lenses in Cataract Surgery.","authors":"Kevin Y Wu, Rebecca Khammar, Hafsah Sheikh, Michael Marchand","doi":"10.3390/jfb15120391","DOIUrl":"10.3390/jfb15120391","url":null,"abstract":"<p><p>Intraocular lenses (IOLs) play a pivotal role in restoring vision following cataract surgery. The evolution of polymeric biomaterials has been central to addressing challenges such as biocompatibility, optical clarity, mechanical stability, and resistance to opacification. This review explores essential requirements for IOL biomaterials, emphasizing their ability to mitigate complications like posterior capsule opacification (PCO) and dysphotopsias while maintaining long-term durability and visual quality. Traditional polymeric materials, including polymethyl methacrylate (PMMA), silicone, and acrylic polymers, are critically analyzed alongside cutting-edge innovations such as hydrogels, shape memory polymers, and light-adjustable lenses (LALs). Advances in polymer engineering have enabled these materials to achieve enhanced flexibility, transparency, and biocompatibility, driving their adoption in modern IOL design. Functionalization strategies, including surface modifications and drug-eluting designs, highlight advancements in preventing inflammation, infection, and other complications. The incorporation of UV-blocking and blue-light-filtering agents is also examined for their potential in reducing retinal damage. Furthermore, emerging technologies like nanotechnology and smart polymer-based biomaterials offer promising avenues for personalized, biocompatible IOLs with enhanced performance. Clinical outcomes, including visual acuity, contrast sensitivity, and patient satisfaction, are evaluated to provide an understanding of the current advancements and limitations in IOL development. We also discuss the current challenges and future directions, underscoring the need for cost-effective, innovative polymer-based solutions to optimize surgical outcomes and improve patients' quality of life.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 12","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678174/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142895015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: This study aimed to assess and compare the internal fit of custom-made posts and cores fabricated using digital impressions (DI) and conventional vinyl polysiloxane (VPS) impressions in restorative dentistry.
Materials and methods: A typodont tooth model, simulating the anatomy of the root canal of a central incisor, was utilized for the study. Two groups were formed, Group A and Group B, and each group provided a total of 18 impressions of two types: DIs and VPS impressions. In Group A, posts and cores (PCs) were fabricated using Selective Laser Melting (SLM) from the DIs. Meanwhile, in Group B, conventionally cast (CC) PCs were created from the VPS impressions. Silicone replicas of the internal surfaces were produced, and measurements were made at seven different points for each group. A statistical analysis was performed to assess the differences in internal fit between the two impression techniques.
Results: The results revealed a statistically significant difference in mean internal fit between Group A (DI and SLM) and Group B (VPS and CC), with Group A exhibiting a mean internal fit of 182.6 µm and Group B showing a mean of 205.9 µm. While both groups demonstrated considerable variability in internal fit measurements, the digital impression technique showed promise for achieving superior internal fit, with a significantly greater fit for measuring points on sides and the most apical part of the post for Group A. Variations were observed across different measuring points, emphasizing the impact of impression technique on specific regions within the tooth.
Conclusion: This study contributes to the growing body of knowledge in digital dentistry by highlighting the potential benefits of DIs in achieving a superior internal fit for custom-made PCs. Clinicians may consider the advantages of digital techniques to enhance the precision of their restorative procedures, although further research is warranted to evaluate the clinical impact of these findings.
{"title":"Evaluation of Internal Fit in Custom-Made Posts and Cores Fabricated with Fully Digital Versus Conventional Techniques.","authors":"Eric Jensen, Shariel Sayardoust","doi":"10.3390/jfb15120389","DOIUrl":"10.3390/jfb15120389","url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to assess and compare the internal fit of custom-made posts and cores fabricated using digital impressions (DI) and conventional vinyl polysiloxane (VPS) impressions in restorative dentistry.</p><p><strong>Materials and methods: </strong>A typodont tooth model, simulating the anatomy of the root canal of a central incisor, was utilized for the study. Two groups were formed, Group A and Group B, and each group provided a total of 18 impressions of two types: DIs and VPS impressions. In Group A, posts and cores (PCs) were fabricated using Selective Laser Melting (SLM) from the DIs. Meanwhile, in Group B, conventionally cast (CC) PCs were created from the VPS impressions. Silicone replicas of the internal surfaces were produced, and measurements were made at seven different points for each group. A statistical analysis was performed to assess the differences in internal fit between the two impression techniques.</p><p><strong>Results: </strong>The results revealed a statistically significant difference in mean internal fit between Group A (DI and SLM) and Group B (VPS and CC), with Group A exhibiting a mean internal fit of 182.6 µm and Group B showing a mean of 205.9 µm. While both groups demonstrated considerable variability in internal fit measurements, the digital impression technique showed promise for achieving superior internal fit, with a significantly greater fit for measuring points on sides and the most apical part of the post for Group A. Variations were observed across different measuring points, emphasizing the impact of impression technique on specific regions within the tooth.</p><p><strong>Conclusion: </strong>This study contributes to the growing body of knowledge in digital dentistry by highlighting the potential benefits of DIs in achieving a superior internal fit for custom-made PCs. Clinicians may consider the advantages of digital techniques to enhance the precision of their restorative procedures, although further research is warranted to evaluate the clinical impact of these findings.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 12","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676165/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142894824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Metformin (Met) is one of the most commonly prescribed first-line drugs for diabetes treatment. However, it has several issues, including low bioavailability, therapeutic platform, and side effects at high doses. In order to improve the therapeutic efficiency of Met, this study proposes a strategy of using Met and curcumin (Cur) to prepare Cur-Zn(II)-Met infinite coordination polymer nanoparticles (CM ICP NPs), and combining this with intraperitoneal injections, for the treatment of diabetic mice. Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), nanoparticle analysis, cytotoxicity experiments, and mice experiments were used to investigate structure, properties, and application effects. The results showed that CM ICP NPs exhibit a high drug encapsulation rate (100%), good stability, and an absence of in vivo and in vitro toxicity. The blood glucose level of diabetic mice after treatment was reduced to 6.7 ± 0.65 mmol/L at the seventh week. In terms of therapeutic mechanism, it appears that Met and Cur can synergistically regulate blood glucose in mice from multiple paths. This study provides a promising method for the treatment of diabetes using Met and other drugs.
{"title":"Curcumin and Metformin Infinite Coordination Polymer Nanoparticles for Combined Therapy of Diabetic Mice via Intraperitoneal Injections.","authors":"Siwei Sun, Xinyi Hou, Ke Li, Chenqi Huang, Yu Rong, Jiao Bi, Xueping Li, Daocheng Wu","doi":"10.3390/jfb15120388","DOIUrl":"10.3390/jfb15120388","url":null,"abstract":"<p><p>Metformin (Met) is one of the most commonly prescribed first-line drugs for diabetes treatment. However, it has several issues, including low bioavailability, therapeutic platform, and side effects at high doses. In order to improve the therapeutic efficiency of Met, this study proposes a strategy of using Met and curcumin (Cur) to prepare Cur-Zn(II)-Met infinite coordination polymer nanoparticles (CM ICP NPs), and combining this with intraperitoneal injections, for the treatment of diabetic mice. Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), nanoparticle analysis, cytotoxicity experiments, and mice experiments were used to investigate structure, properties, and application effects. The results showed that CM ICP NPs exhibit a high drug encapsulation rate (100%), good stability, and an absence of in vivo and in vitro toxicity. The blood glucose level of diabetic mice after treatment was reduced to 6.7 ± 0.65 mmol/L at the seventh week. In terms of therapeutic mechanism, it appears that Met and Cur can synergistically regulate blood glucose in mice from multiple paths. This study provides a promising method for the treatment of diabetes using Met and other drugs.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 12","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677912/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142895019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ryszard Uklejewski, Mariusz Winiecki, Adam Patalas, Patryk Mietliński, Paweł Zawadzki, Mikołaj Dąbrowski
The prototype of a biomimetic multi-spiked connecting scaffold (MSC-Scaffold) represents an essential innovation in the fixation in subchondral trabecular bone of components for a new generation of entirely cementless hip resurfacing arthroplasty (RA) endoprostheses. In designing such a functional biomaterial scaffold, identifying the microstructural and mechanical properties of the host bone compromised by degenerative disease is crucial for proper post-operative functioning and long-term maintenance of the endoprosthesis components. This study aimed to explore, depending on the occurrence of obesity, changes in the microstructure and mechanical properties of the subchondral trabecular bone in femoral heads of osteoarthritis (OA) patients caused by the MSC-Scaffold embedding. Computed microtomography (micro-CT) scanning of femoral heads from OA patients was conducted before and after the mechanical embedding of the MSC-Scaffold. Bone morphometric parameters such as bone volume/total volume (BV/TV), trabecular thickness (Tb.Th), and trabecular number (Tb.N) for regions surrounding the MSC-Scaffold were computed, and the mechanical properties such as bone density (ρB), bone compressive strength (S), and the Young's modulus (E) within these regions were calculated. A statistically significant increase in BV/TV (by 15.0% and 24.9%) and Tb.Th (by 13.1% and 42.5%) and a decrease in Tb.N (by 15.2% and 23.6%) were observed, which translates to an increase in ρB (by 15.0% and 24.9%), S (by 28.8% and 49.5%), and E (by 18.0% and 29.8%) in non-obese patients and obese patients, respectively. These changes in properties are favorable for the mechanical loads' transfer from the artificial joint surface via the MSC-Scaffold to the periarticular trabecular bone of the OA femoral head in the postoperative period.
{"title":"Micro-CT Assessment During Embedding of Prototype Ti Alloy Multi-Spiked Connecting Scaffold in Subchondral Trabecular Bone of Osteoarthritic Femoral Heads, Depending on Host BMI.","authors":"Ryszard Uklejewski, Mariusz Winiecki, Adam Patalas, Patryk Mietliński, Paweł Zawadzki, Mikołaj Dąbrowski","doi":"10.3390/jfb15120387","DOIUrl":"10.3390/jfb15120387","url":null,"abstract":"<p><p>The prototype of a biomimetic multi-spiked connecting scaffold (MSC-Scaffold) represents an essential innovation in the fixation in subchondral trabecular bone of components for a new generation of entirely cementless hip resurfacing arthroplasty (RA) endoprostheses. In designing such a functional biomaterial scaffold, identifying the microstructural and mechanical properties of the host bone compromised by degenerative disease is crucial for proper post-operative functioning and long-term maintenance of the endoprosthesis components. This study aimed to explore, depending on the occurrence of obesity, changes in the microstructure and mechanical properties of the subchondral trabecular bone in femoral heads of osteoarthritis (OA) patients caused by the MSC-Scaffold embedding. Computed microtomography (micro-CT) scanning of femoral heads from OA patients was conducted before and after the mechanical embedding of the MSC-Scaffold. Bone morphometric parameters such as bone volume/total volume (BV/TV), trabecular thickness (Tb.Th), and trabecular number (Tb.N) for regions surrounding the MSC-Scaffold were computed, and the mechanical properties such as bone density (<i>ρ<sub>B</sub></i>), bone compressive strength (<i>S</i>), and the Young's modulus (<i>E</i>) within these regions were calculated. A statistically significant increase in BV/TV (by 15.0% and 24.9%) and Tb.Th (by 13.1% and 42.5%) and a decrease in Tb.N (by 15.2% and 23.6%) were observed, which translates to an increase in <i>ρ<sub>B</sub></i> (by 15.0% and 24.9%), <i>S</i> (by 28.8% and 49.5%), and <i>E</i> (by 18.0% and 29.8%) in non-obese patients and obese patients, respectively. These changes in properties are favorable for the mechanical loads' transfer from the artificial joint surface via the MSC-Scaffold to the periarticular trabecular bone of the OA femoral head in the postoperative period.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 12","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677722/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142895047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ilya L Tsiklin, Denis S Bezdenezhnych, Aleksei S Mantsagov, Alexandr V Kolsanov, Larisa T Volova
Mandibular bone defect reconstruction remains a significant challenge for surgeons worldwide. Among multiple biodegradable biopolymers, allogeneic bone scaffolds derived from human sources have been used as an alternative to autologous bone grafts, providing optimal conditions for cell recruitment, adhesion, and proliferation and demonstrating significant osteogenic properties. This study aims to investigate the bone microstructure of the human scapula as a source for allogeneic bone scaffold fabrication for mandibular tissue engineering purposes. We created color-coded anatomical maps of the scapula and the mandible, reflecting the best anatomical and geometrical match. In this pilot study, we hypothesized a microstructural similarity of these bone structures and evaluated the human scapula's bone tissue engineering potential for mandibular bone tissue engineering by focusing on the microstructural characteristics. Lyophilized human scapular and mandibular bioimplants were manufactured and sterilized. Experimental bone samples from the scapula's acromion, coracoid, and lateral border from the mandibular condyle, mandibular angle, and mental protuberance were harvested and analyzed using micro-CT and quantitative morphometric analysis. This pilot study demonstrates significant microstructural qualitative and quantitative intra-group differences in the scapular and mandibular experimental bone samples harvested from the various anatomical regions. The revealed microstructural similarity of the human scapular and mandibular bone samples, to a certain extent, supports the stated hypothesis and, thus, allows us to suggest the human scapula as an alternative off-the-shelf allogeneic scaffold for mandibular reconstruction and bone tissue engineering applications.
{"title":"Microstructural Analysis of the Human Scapula: Mandibular Bone Tissue Engineering Perspectives.","authors":"Ilya L Tsiklin, Denis S Bezdenezhnych, Aleksei S Mantsagov, Alexandr V Kolsanov, Larisa T Volova","doi":"10.3390/jfb15120386","DOIUrl":"10.3390/jfb15120386","url":null,"abstract":"<p><p>Mandibular bone defect reconstruction remains a significant challenge for surgeons worldwide. Among multiple biodegradable biopolymers, allogeneic bone scaffolds derived from human sources have been used as an alternative to autologous bone grafts, providing optimal conditions for cell recruitment, adhesion, and proliferation and demonstrating significant osteogenic properties. This study aims to investigate the bone microstructure of the human scapula as a source for allogeneic bone scaffold fabrication for mandibular tissue engineering purposes. We created color-coded anatomical maps of the scapula and the mandible, reflecting the best anatomical and geometrical match. In this pilot study, we hypothesized a microstructural similarity of these bone structures and evaluated the human scapula's bone tissue engineering potential for mandibular bone tissue engineering by focusing on the microstructural characteristics. Lyophilized human scapular and mandibular bioimplants were manufactured and sterilized. Experimental bone samples from the scapula's acromion, coracoid, and lateral border from the mandibular condyle, mandibular angle, and mental protuberance were harvested and analyzed using micro-CT and quantitative morphometric analysis. This pilot study demonstrates significant microstructural qualitative and quantitative intra-group differences in the scapular and mandibular experimental bone samples harvested from the various anatomical regions. The revealed microstructural similarity of the human scapular and mandibular bone samples, to a certain extent, supports the stated hypothesis and, thus, allows us to suggest the human scapula as an alternative off-the-shelf allogeneic scaffold for mandibular reconstruction and bone tissue engineering applications.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 12","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678577/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142895056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The reparative regeneration of jawbone defects poses a significant challenge within the field of dentistry. Despite being the gold standard, autogenous bone materials are not without drawbacks, including a heightened risk of postoperative infections. Consequently, the development of innovative materials that can surpass the osteogenic capabilities of autologous bone has emerged as a pivotal area of research. Methods: Mesenchymal stem cells (MSCs), known for their multilineage differentiation potential, were isolated from human umbilical cords and transfected with miR-181a. The osteogenic differentiation of miR-181a/MSC was investigated. Then, physicochemical properties of miR-181a/MSC-loaded nano-hydroxyapatite (nHAC) scaffolds were characterized, and their efficacy and underlying mechanism in rat calvarial defect repair were explored. Results: miR-181a overexpression in MSCs significantly promoted osteogenic differentiation, as evidenced by increased alkaline phosphatase activity and expression of osteogenic markers. The miR-181a/MSC-loaded nHAC scaffolds exhibited favorable bioactivity and accelerated bone tissue repair and collagen secretion in vivo. Mechanistic studies reveal that miR-181a directly targeted the TP53/SLC7A11 pathway, inhibiting ferroptosis and enhancing the osteogenic capacity of MSCs. Conclusions: The study demonstrates that miR-181a/MSC-loaded nHAC scaffolds significantly enhance the repair of bone defects by promoting osteogenic differentiation and inhibiting ferroptosis. These findings provide novel insights into the molecular mechanisms regulating MSC osteogenesis and offer a promising therapeutic strategy for bone defect repair.
{"title":"miR-181a/MSC-Loaded Nano-Hydroxyapatite/Collagen Accelerated Bone Defect Repair in Rats by Targeting Ferroptosis Pathway.","authors":"Xiongjun Xu, Junming Feng, Tianze Lin, Runheng Liu, Zhuofan Chen","doi":"10.3390/jfb15120385","DOIUrl":"10.3390/jfb15120385","url":null,"abstract":"<p><p><b>Background</b>: The reparative regeneration of jawbone defects poses a significant challenge within the field of dentistry. Despite being the gold standard, autogenous bone materials are not without drawbacks, including a heightened risk of postoperative infections. Consequently, the development of innovative materials that can surpass the osteogenic capabilities of autologous bone has emerged as a pivotal area of research. <b>Methods</b>: Mesenchymal stem cells (MSCs), known for their multilineage differentiation potential, were isolated from human umbilical cords and transfected with miR-181a. The osteogenic differentiation of miR-181a/MSC was investigated. Then, physicochemical properties of miR-181a/MSC-loaded nano-hydroxyapatite (nHAC) scaffolds were characterized, and their efficacy and underlying mechanism in rat calvarial defect repair were explored. <b>Results</b>: miR-181a overexpression in MSCs significantly promoted osteogenic differentiation, as evidenced by increased alkaline phosphatase activity and expression of osteogenic markers. The miR-181a/MSC-loaded nHAC scaffolds exhibited favorable bioactivity and accelerated bone tissue repair and collagen secretion in vivo. Mechanistic studies reveal that miR-181a directly targeted the TP53/SLC7A11 pathway, inhibiting ferroptosis and enhancing the osteogenic capacity of MSCs. <b>Conclusions</b>: The study demonstrates that miR-181a/MSC-loaded nHAC scaffolds significantly enhance the repair of bone defects by promoting osteogenic differentiation and inhibiting ferroptosis. These findings provide novel insights into the molecular mechanisms regulating MSC osteogenesis and offer a promising therapeutic strategy for bone defect repair.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 12","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677460/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142895086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Iosif-Aliodor Timofticiuc, Serban Dragosloveanu, Ana Caruntu, Andreea-Elena Scheau, Ioana Anca Badarau, Nicolae Dragos Garofil, Andreea Cristiana Didilescu, Constantin Caruntu, Cristian Scheau
With the development of 3D bioprinting and the creation of innovative biocompatible materials, several new approaches have brought advantages to patients and surgical teams. Increasingly more bone defects are now treated using 3D-bioprinted prostheses and implementing new solutions relies on the ability of engineers and medical teams to identify methods of anchoring 3D-printed prostheses and to reveal the potential influence of bioactive materials on surrounding tissues. In this paper, we described why limb salvage surgery based on 3D bioprinting is a reliable and effective alternative to amputations, and why this approach is considered the new standard in modern medicine. The preliminary results of 3D bioprinting in one of the most challenging fields in surgery are promising for the future of machine-based medicine, but also for the possibility of replacing various parts from the human body with bioactive-based constructs. In addition, besides the materials and constructs that are already tested and applied in the human body, we also reviewed bioactive materials undergoing in vitro or in vivo testing with great potential for human applications in the near future. Also, we explored the recent advancements in clinically available 3D-bioprinted constructs and their relevance in this field.
{"title":"3D Bioprinting in Limb Salvage Surgery.","authors":"Iosif-Aliodor Timofticiuc, Serban Dragosloveanu, Ana Caruntu, Andreea-Elena Scheau, Ioana Anca Badarau, Nicolae Dragos Garofil, Andreea Cristiana Didilescu, Constantin Caruntu, Cristian Scheau","doi":"10.3390/jfb15120383","DOIUrl":"10.3390/jfb15120383","url":null,"abstract":"<p><p>With the development of 3D bioprinting and the creation of innovative biocompatible materials, several new approaches have brought advantages to patients and surgical teams. Increasingly more bone defects are now treated using 3D-bioprinted prostheses and implementing new solutions relies on the ability of engineers and medical teams to identify methods of anchoring 3D-printed prostheses and to reveal the potential influence of bioactive materials on surrounding tissues. In this paper, we described why limb salvage surgery based on 3D bioprinting is a reliable and effective alternative to amputations, and why this approach is considered the new standard in modern medicine. The preliminary results of 3D bioprinting in one of the most challenging fields in surgery are promising for the future of machine-based medicine, but also for the possibility of replacing various parts from the human body with bioactive-based constructs. In addition, besides the materials and constructs that are already tested and applied in the human body, we also reviewed bioactive materials undergoing in vitro or in vivo testing with great potential for human applications in the near future. Also, we explored the recent advancements in clinically available 3D-bioprinted constructs and their relevance in this field.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 12","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677104/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142895009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bone fractures are associated with hypoxia, but no longitudinal studies of perfusion measurements in human patients have been reported despite the clinical and research potential. In this longitudinal observational cohort study, the near-infrared spectroscopy (NIRS) device PortaMon was used to assess oxy-(O2Hb), deoxy-(HHb) and total (tHb) haemoglobin, as well as the differences between O2Hb and HHb (HbDiff) and the tissue saturation index (TSI) at three different depths in the fracture gap. Linear mixed effect models were fitted to analyse time effects. One-way ANOVAs were conducted to compare groups. The time points corresponding to minima were calculated via linear regression. In this study, 11 patients with tibial shaft fractures underwent longitudinal measurements. Additionally, 9 patients with diagnosed tibial shaft nonunion and 23 age-matched controls were measured once. In the longitudinal group, all fractures healed, and decreases in O2Hb and HbDiff (all p < 0.05) were observed, with minima occurring 19-21 days after fracture. O2Hb values in nonunion patients did not differ from the minima in longitudinally measured union patients, whereas differences in HHb and tHb were significant (all p < 0.05). Previously, the onset of hypoxia has been assumed to be much faster. The characteristic trajectories of the NIRS parameters O2Hb and HbDiff can be used to fulfil the need for a non-invasive method to monitor fracture healing. These results suggest that NIRS could supplement radiographs and clinical impressions in daily clinical practice and may enable earlier diagnosis of nonunion.
{"title":"Near-Infrared Spectroscopy Allows for Monitoring of Bone Fracture Healing via Changes in Oxygenation.","authors":"Cedric Nowicki, Bergita Ganse","doi":"10.3390/jfb15120384","DOIUrl":"10.3390/jfb15120384","url":null,"abstract":"<p><p>Bone fractures are associated with hypoxia, but no longitudinal studies of perfusion measurements in human patients have been reported despite the clinical and research potential. In this longitudinal observational cohort study, the near-infrared spectroscopy (NIRS) device PortaMon was used to assess oxy-(O<sub>2</sub>Hb), deoxy-(HHb) and total (tHb) haemoglobin, as well as the differences between O<sub>2</sub>Hb and HHb (Hb<sub>Diff</sub>) and the tissue saturation index (TSI) at three different depths in the fracture gap. Linear mixed effect models were fitted to analyse time effects. One-way ANOVAs were conducted to compare groups. The time points corresponding to minima were calculated via linear regression. In this study, 11 patients with tibial shaft fractures underwent longitudinal measurements. Additionally, 9 patients with diagnosed tibial shaft nonunion and 23 age-matched controls were measured once. In the longitudinal group, all fractures healed, and decreases in O<sub>2</sub>Hb and Hb<sub>Diff</sub> (all <i>p</i> < 0.05) were observed, with minima occurring 19-21 days after fracture. O<sub>2</sub>Hb values in nonunion patients did not differ from the minima in longitudinally measured union patients, whereas differences in HHb and tHb were significant (all <i>p</i> < 0.05). Previously, the onset of hypoxia has been assumed to be much faster. The characteristic trajectories of the NIRS parameters O<sub>2</sub>Hb and Hb<sub>Diff</sub> can be used to fulfil the need for a non-invasive method to monitor fracture healing. These results suggest that NIRS could supplement radiographs and clinical impressions in daily clinical practice and may enable earlier diagnosis of nonunion.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 12","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677907/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142895091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}