首页 > 最新文献

Journal of Functional Biomaterials最新文献

英文 中文
Biomaterial Scaffolds for Periodontal Tissue Engineering. 用于牙周组织工程的生物材料支架。
IF 5 3区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-20 DOI: 10.3390/jfb15080233
Huanhuan Chen, Guangying Song, Tianmin Xu, Chenda Meng, Yunfan Zhang, Tianyi Xin, Tingting Yu, Yifan Lin, Bing Han

Advanced periodontitis poses a significant threat to oral health, causing extensive damage and loss of both hard and soft periodontal tissues. While traditional therapies such as scaling and root planing can effectively halt the disease's progression, they often fail to fully restore the original architecture and function of periodontal tissues due to the limited capacity for spontaneous regeneration. To address this challenge, periodontal tissue engineering has emerged as a promising approach. This technology centers on the utilization of biomaterial scaffolds, which function as three-dimensional (3D) templates or frameworks, supporting and guiding the regeneration of periodontal tissues, including the periodontal ligament, cementum, alveolar bone, and gingival tissue. These scaffolds mimic the extracellular matrix (ECM) of native periodontal tissues, aiming to foster cell attachment, proliferation, differentiation, and, ultimately, the formation of new, functional periodontal structures. Despite the inherent challenges associated with preclinical testing, the intensification of research on biomaterial scaffolds, coupled with the continuous advancement of fabrication technology, leads us to anticipate a significant expansion in their application for periodontal tissue regeneration. This review comprehensively covers the recent advancements in biomaterial scaffolds engineered specifically for periodontal tissue regeneration, aiming to provide insights into the current state of the field and potential directions for future research.

晚期牙周炎对口腔健康构成严重威胁,会造成牙周软硬组织的广泛损伤和丧失。虽然洗牙和根面平整等传统疗法可以有效阻止疾病的发展,但由于牙周组织的自发再生能力有限,这些疗法往往无法完全恢复牙周组织的原有结构和功能。为了应对这一挑战,牙周组织工程成为一种前景广阔的方法。这项技术的核心是利用生物材料支架,作为三维(3D)模板或框架,支持和引导牙周组织(包括牙周韧带、骨水泥、牙槽骨和牙龈组织)的再生。这些支架模拟原生牙周组织的细胞外基质(ECM),旨在促进细胞附着、增殖、分化,并最终形成新的功能性牙周结构。尽管临床前测试存在固有的挑战,但随着生物材料支架研究的深入,以及制造技术的不断进步,我们预计生物材料支架在牙周组织再生中的应用将大大扩展。这篇综述全面介绍了专为牙周组织再生而设计的生物材料支架的最新进展,旨在深入探讨该领域的现状和未来研究的潜在方向。
{"title":"Biomaterial Scaffolds for Periodontal Tissue Engineering.","authors":"Huanhuan Chen, Guangying Song, Tianmin Xu, Chenda Meng, Yunfan Zhang, Tianyi Xin, Tingting Yu, Yifan Lin, Bing Han","doi":"10.3390/jfb15080233","DOIUrl":"10.3390/jfb15080233","url":null,"abstract":"<p><p>Advanced periodontitis poses a significant threat to oral health, causing extensive damage and loss of both hard and soft periodontal tissues. While traditional therapies such as scaling and root planing can effectively halt the disease's progression, they often fail to fully restore the original architecture and function of periodontal tissues due to the limited capacity for spontaneous regeneration. To address this challenge, periodontal tissue engineering has emerged as a promising approach. This technology centers on the utilization of biomaterial scaffolds, which function as three-dimensional (3D) templates or frameworks, supporting and guiding the regeneration of periodontal tissues, including the periodontal ligament, cementum, alveolar bone, and gingival tissue. These scaffolds mimic the extracellular matrix (ECM) of native periodontal tissues, aiming to foster cell attachment, proliferation, differentiation, and, ultimately, the formation of new, functional periodontal structures. Despite the inherent challenges associated with preclinical testing, the intensification of research on biomaterial scaffolds, coupled with the continuous advancement of fabrication technology, leads us to anticipate a significant expansion in their application for periodontal tissue regeneration. This review comprehensively covers the recent advancements in biomaterial scaffolds engineered specifically for periodontal tissue regeneration, aiming to provide insights into the current state of the field and potential directions for future research.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 8","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355167/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Evaluation of the Cytocompatibility of Endodontic Bioceramics in Human Periodontal-Ligament-Derived Cells. 评估牙髓生物陶瓷在人类牙周韧带衍生细胞中的细胞相容性。
IF 5 3区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-19 DOI: 10.3390/jfb15080231
Asuka Aka, Takashi Matsuura, Atsutoshi Yoshimura

The present study evaluated the cytocompatibility of three endodontic bioceramics in human periodontal-ligament-derived cells (hPDLCs): MTA Repair HP (HP), MTA Flow White (F), and Nishika Canal Sealer BG multi (BG). In addition, we also evaluated the effect of the powder-liquid (paste) ratio of F and BG on cytocompatibility. Discs of endodontic bioceramics (diameter = 8 mm, thickness = 1 mm) were prepared with HP, F, and BG. hPDLCs obtained from extracted teeth and cultured for three to five passages were used in the experiment. The prepared discs were placed at the bottom of a 48-well plate, seeded with hPDLCs at 100,000 cells/well, cultured for 7 or 28 days, and subjected to a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay. hPDLCs cultured without any discs were used as a negative control (NC) group. Discs made of F or BG mixed in three different consistencies were also used in this experiment. The absorbance values at days 7 and 28 were high in the order of HP > NC > BG > F. Furthermore, F or BG with higher consistency showed higher absorbance values. MTA Repair HP had the highest cytocompatibility among the three materials. Furthermore, it also showed that higher consistency improved cytocompatibility.

本研究评估了三种牙髓生物陶瓷在人牙周韧带衍生细胞(hPDLCs)中的细胞相容性:MTA Repair HP (HP)、MTA Flow White (F) 和 Nishika Canal Sealer BG multi (BG)。此外,我们还评估了 F 和 BG 的粉液(糊状)比例对细胞相容性的影响。使用 HP、F 和 BG 制备牙髓生物陶瓷圆片(直径 = 8 毫米,厚度 = 1 毫米)。将制备好的圆片置于 48 孔板的底部,以每孔 100,000 个细胞的数量接种 hPDLCs,培养 7 天或 28 天,然后进行 3-[4,5-二甲基噻唑-2-基]-2,5-二苯基四唑溴化物检测。本实验还使用了由 F 或 BG 混合制成的三种不同浓度的圆片。第 7 天和第 28 天的吸光度值依次为 HP > NC > BG > F。在三种材料中,MTA 修复 HP 的细胞相容性最高。此外,研究还表明,稠度越高,细胞相容性越好。
{"title":"An Evaluation of the Cytocompatibility of Endodontic Bioceramics in Human Periodontal-Ligament-Derived Cells.","authors":"Asuka Aka, Takashi Matsuura, Atsutoshi Yoshimura","doi":"10.3390/jfb15080231","DOIUrl":"10.3390/jfb15080231","url":null,"abstract":"<p><p>The present study evaluated the cytocompatibility of three endodontic bioceramics in human periodontal-ligament-derived cells (hPDLCs): MTA Repair HP (HP), MTA Flow White (F), and Nishika Canal Sealer BG multi (BG). In addition, we also evaluated the effect of the powder-liquid (paste) ratio of F and BG on cytocompatibility. Discs of endodontic bioceramics (diameter = 8 mm, thickness = 1 mm) were prepared with HP, F, and BG. hPDLCs obtained from extracted teeth and cultured for three to five passages were used in the experiment. The prepared discs were placed at the bottom of a 48-well plate, seeded with hPDLCs at 100,000 cells/well, cultured for 7 or 28 days, and subjected to a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay. hPDLCs cultured without any discs were used as a negative control (NC) group. Discs made of F or BG mixed in three different consistencies were also used in this experiment. The absorbance values at days 7 and 28 were high in the order of HP > NC > BG > F. Furthermore, F or BG with higher consistency showed higher absorbance values. MTA Repair HP had the highest cytocompatibility among the three materials. Furthermore, it also showed that higher consistency improved cytocompatibility.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 8","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355906/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surgery Combined with Local Implantation of Doxorubicin-Functionalized Hydroxyapatite Halts Tumor Growth and Prevents Bone Destruction in an Aggressive Osteosarcoma. 手术结合局部植入多柔比星功能化羟磷灰石可阻止肿瘤生长并防止侵袭性骨肉瘤的骨质破坏。
IF 5 3区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-19 DOI: 10.3390/jfb15080232
Yang Liu, Tova Corbascio, Jintian Huang, Jacob Engellau, Lars Lidgren, Magnus Tägil, Deepak Bushan Raina

Osteosarcoma treatment comprises pre-surgical chemotherapy followed by radical surgery and further chemotherapy cycles, but the prognosis has been far from satisfactory. No new drugs or treatment modalities have been developed for clinical use in the last four decades. We describe a nano-hydroxyapatite (HA)-based local drug delivery platform for the delivery of doxorubicin (DOX), a cornerstone drug in osteosarcoma treatment. The efficacy of the developed drug delivery system was evaluated in an orthotopic human osteosarcoma xenograft in the proximal tibia of mice. After tumor development, the tumor was surgically resected and the void filled with the following: (1) No treatment (G1); (2) nHA only (G2); (3) DOX-loaded nHA (G3). In-vivo tumor response was assessed by evaluating the tumor-induced osteolysis at 2 weeks using micro-CT followed by in-vivo PET-CT at 3 weeks and ex-vivo micro-CT and histology. Micro-CT imaging revealed complete destruction of the tibial metaphysis in groups G1 and G2, while the metaphysis was protected from osteolysis in G3. PET-CT imaging using 18F-FDG revealed high metabolic activity in the tumors in G1 and G2, which was significantly reduced in G3. Using histology, we were able to verify that local DOX delivery reduced the bone destruction and the tumor burden compared with G1 and G2. No off-target toxicity in the vital organs could be observed in any of the treatment groups histologically. This study describes a novel local drug adjuvant delivery approach that could potentially improve the prognosis for patients responding poorly to the current osteosarcoma treatment.

骨肉瘤的治疗包括术前化疗、根治性手术和进一步的化疗周期,但预后一直不尽如人意。在过去的四十年里,还没有新的药物或治疗方法被开发出来用于临床。我们介绍了一种基于纳米羟基磷灰石(HA)的局部给药平台,用于给药骨肉瘤治疗的基础药物多柔比星(DOX)。研究人员在小鼠胫骨近端人骨肉瘤异种移植中评估了所开发的给药系统的疗效。肿瘤发生后,通过手术切除肿瘤,并用以下方法填充空隙:(1) 无治疗(G1);(2) 仅 nHA(G2);(3) 含 DOX 的 nHA(G3)。体内肿瘤反应的评估是在 2 周时使用显微 CT 评估肿瘤诱导的骨溶解,然后在 3 周时进行体内 PET-CT、体外显微 CT 和组织学检查。显微 CT 成像显示,G1 组和 G2 组的胫骨干骺端完全破坏,而 G3 组的干骺端受到保护,没有发生骨溶解。使用 18F-FDG 进行的 PET-CT 成像显示,G1 和 G2 组肿瘤的代谢活性较高,而 G3 组的代谢活性则明显降低。通过组织学检查,我们证实与 G1 和 G2 相比,局部 DOX 给药减少了骨破坏和肿瘤负荷。从组织学角度来看,所有治疗组均未观察到重要器官的脱靶毒性。这项研究描述了一种新型的局部药物辅助给药方法,它有可能改善目前骨肉瘤治疗效果不佳患者的预后。
{"title":"Surgery Combined with Local Implantation of Doxorubicin-Functionalized Hydroxyapatite Halts Tumor Growth and Prevents Bone Destruction in an Aggressive Osteosarcoma.","authors":"Yang Liu, Tova Corbascio, Jintian Huang, Jacob Engellau, Lars Lidgren, Magnus Tägil, Deepak Bushan Raina","doi":"10.3390/jfb15080232","DOIUrl":"10.3390/jfb15080232","url":null,"abstract":"<p><p>Osteosarcoma treatment comprises pre-surgical chemotherapy followed by radical surgery and further chemotherapy cycles, but the prognosis has been far from satisfactory. No new drugs or treatment modalities have been developed for clinical use in the last four decades. We describe a nano-hydroxyapatite (HA)-based local drug delivery platform for the delivery of doxorubicin (DOX), a cornerstone drug in osteosarcoma treatment. The efficacy of the developed drug delivery system was evaluated in an orthotopic human osteosarcoma xenograft in the proximal tibia of mice. After tumor development, the tumor was surgically resected and the void filled with the following: (1) No treatment (G1); (2) nHA only (G2); (3) DOX-loaded nHA (G3). In-vivo tumor response was assessed by evaluating the tumor-induced osteolysis at 2 weeks using micro-CT followed by in-vivo PET-CT at 3 weeks and ex-vivo micro-CT and histology. Micro-CT imaging revealed complete destruction of the tibial metaphysis in groups G1 and G2, while the metaphysis was protected from osteolysis in G3. PET-CT imaging using <sup>18</sup>F-FDG revealed high metabolic activity in the tumors in G1 and G2, which was significantly reduced in G3. Using histology, we were able to verify that local DOX delivery reduced the bone destruction and the tumor burden compared with G1 and G2. No off-target toxicity in the vital organs could be observed in any of the treatment groups histologically. This study describes a novel local drug adjuvant delivery approach that could potentially improve the prognosis for patients responding poorly to the current osteosarcoma treatment.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 8","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355297/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell Proliferation, Chondrogenic Differentiation, and Cartilaginous Tissue Formation in Recombinant Silk Fibroin with Basic Fibroblast Growth Factor Binding Peptide. 含有碱性成纤维细胞生长因子结合肽的重组蚕丝纤维素的细胞增殖、软骨分化和软骨组织形成
IF 5 3区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-17 DOI: 10.3390/jfb15080230
Manabu Yamada, Arata Nakajima, Kayo Sakurai, Yasushi Tamada, Koichi Nakagawa

Regeneration of articular cartilage remains a challenge for patients who have undergone cartilage injury, osteochondritis dissecans and osteoarthritis. Here, we describe a new recombinant silk fibroin with basic fibroblast growth factor (bFGF) binding peptide, which has a genetically introduced sequence PLLQATLGGGS, named P7. In this study, we cultured a human mesenchymal cell line derived from bone marrow, UE6E7-16, in wild-type fibroin sponge (FS) and recombinant silk fibroin sponge with P7 peptide (P7 FS). We compared cell proliferation, chondrogenic differentiation and cartilaginous tissue formation between the two types of sponge. After stimulation with bFGF at 3 ng/mL, P7 FS showed significantly higher cell growth (1.2-fold) and higher cellular DNA content (5.6-fold) than did wild-type FS. To promote chondrogenic differentiation, cells were cultured in the presence of TGF-β at 10 ng/mL for 28 days. Immunostaining of P7 FS showed SOX9-positive cells comparable to wild-type FS. Alcian-Blue staining of P7 FS also showed cartilaginous tissue formation equivalent to wild-type FS. A significant increase in cell proliferation in P7 FS implies future clinical application of this transgenic fibroin for regeneration of articular cartilage. To produce cartilaginous tissue efficiently, transgenic fibroin sponges and culture conditions must be improved. Such changes should include the selection of growth factors involved in chondrogenic differentiation and cartilage formation.

对于软骨损伤、骨软骨炎和骨关节炎患者来说,关节软骨的再生仍然是一项挑战。在此,我们描述了一种含有碱性成纤维细胞生长因子(bFGF)结合肽的新型重组丝纤维蛋白,其基因序列为 PLLQATLGGGS,命名为 P7。在这项研究中,我们用野生型海绵纤维素(FS)和含有 P7 肽的重组海绵丝纤维素(P7 FS)培养了一种来源于骨髓的人类间充质细胞系 UE6E7-16。我们比较了两种海绵的细胞增殖、软骨分化和软骨组织形成情况。在 3 纳克/毫升的 bFGF 刺激下,P7 FS 的细胞生长速度(1.2 倍)和细胞 DNA 含量(5.6 倍)明显高于野生型 FS。为促进软骨分化,细胞在10 ng/mL的TGF-β存在下培养28天。P7 FS的免疫染色显示SOX9阳性细胞与野生型FS相当。P7 FS的Alcian-Blue染色也显示软骨组织的形成与野生型FS相当。P7 FS的细胞增殖明显增加,这意味着这种转基因纤维蛋白未来可用于关节软骨再生的临床应用。为了有效地生产软骨组织,必须改进转基因纤维蛋白海绵和培养条件。这些改变应包括选择参与软骨分化和软骨形成的生长因子。
{"title":"Cell Proliferation, Chondrogenic Differentiation, and Cartilaginous Tissue Formation in Recombinant Silk Fibroin with Basic Fibroblast Growth Factor Binding Peptide.","authors":"Manabu Yamada, Arata Nakajima, Kayo Sakurai, Yasushi Tamada, Koichi Nakagawa","doi":"10.3390/jfb15080230","DOIUrl":"10.3390/jfb15080230","url":null,"abstract":"<p><p>Regeneration of articular cartilage remains a challenge for patients who have undergone cartilage injury, osteochondritis dissecans and osteoarthritis. Here, we describe a new recombinant silk fibroin with basic fibroblast growth factor (bFGF) binding peptide, which has a genetically introduced sequence PLLQATLGGGS, named P7. In this study, we cultured a human mesenchymal cell line derived from bone marrow, UE6E7-16, in wild-type fibroin sponge (FS) and recombinant silk fibroin sponge with P7 peptide (P7 FS). We compared cell proliferation, chondrogenic differentiation and cartilaginous tissue formation between the two types of sponge. After stimulation with bFGF at 3 ng/mL, P7 FS showed significantly higher cell growth (1.2-fold) and higher cellular DNA content (5.6-fold) than did wild-type FS. To promote chondrogenic differentiation, cells were cultured in the presence of TGF-β at 10 ng/mL for 28 days. Immunostaining of P7 FS showed SOX9-positive cells comparable to wild-type FS. Alcian-Blue staining of P7 FS also showed cartilaginous tissue formation equivalent to wild-type FS. A significant increase in cell proliferation in P7 FS implies future clinical application of this transgenic fibroin for regeneration of articular cartilage. To produce cartilaginous tissue efficiently, transgenic fibroin sponges and culture conditions must be improved. Such changes should include the selection of growth factors involved in chondrogenic differentiation and cartilage formation.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 8","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355749/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of Optical Properties and Fracture Loads of Multilayer Monolithic Zirconia Crowns with Different Yttria Levels. 不同钇含量的多层整体氧化锆冠的光学特性和断裂载荷比较
IF 5 3区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-16 DOI: 10.3390/jfb15080228
Chien-Ming Kang, Tzu-Yu Peng, Yan-An Wu, Chi-Fei Hsieh, Miao-Ching Chi, Hsuan-Yu Wu, Zih-Chan Lin

Multilayer monolithic zirconia, which incorporates polychromatic layers that mimic natural tooth gradients, offers enhanced aesthetics and functionality while reducing debonding risks and improving fabrication efficiency. However, uncertainties remain regarding the fracture characteristics of multilayer monolithic zirconia crowns under occlusal loading, whether composed of uniform or combined yttria levels. The current study investigated how variations in yttria levels and thicknesses affected the optical properties and fracture loads of multilayer monolithic zirconia. Samples of multilayer monolithic zirconia in the Vita A1 shade were used, while employing 3Y (SZ) and 4Y + 5Y (AZ) yttria levels. The optical properties, including the color difference (ΔEWS) and translucency parameters (TP00), were measured using a digital colorimeter. The fracture loads were analyzed using a universal testing machine, and fractured surfaces were examined under a stereomicroscope. Statistical analyses assessed the impacts of the yttria levels and sample thicknesses on the optical properties. The ΔEWS values of SZ ranged 3.6 to 4.0, while for AZ, ΔEWS at 0.5 mm was 3.9 and <2.6 for other thicknesses. The TP00 values decreased with an increased thickness, with AZ generally exhibiting greater translucency than SZ. In the fracture load investigations, SZ (>1600 N) generally exceeded AZ (>1260 N), with fracture loads notably increasing with thickness, particularly for premolars (SZ > 3270 N, AZ > 2257 N). SZ predominantly exhibited partial and complete fractures, whereas AZ showed fewer non-fracture categorizations. Complete fractures began with dense, irregular cracks that extended outward to reveal smooth surfaces, while premolars subjected to higher loads exhibited concentric ripple-like structures. Partial fractures revealed radial textures indicative of areas of stress concentration. In summary, higher yttria levels were correlated with increased translucency, while variations in the fracture loads primarily stemmed from differences in the tooth position or thickness. Overall, multilayer monolithic zirconia incorporating combined yttria levels of 4Y + 5Y (AZ) offered high translucency, precise color matching, and substantial fracture resistance, rendering it highly suitable for aesthetic and functional dental applications.

多层整体氧化锆包含模仿天然牙齿梯度的多色层,可提高美观度和功能性,同时降低脱粘风险并提高制造效率。然而,多层整体氧化锆冠在咬合负荷下的断裂特性仍存在不确定性,不管是由均匀的钇层还是组合的钇层组成。本研究调查了钇含量和厚度的变化如何影响多层整体氧化锆的光学特性和断裂载荷。研究使用了 Vita A1 色调的多层整体氧化锆样品,同时采用了 3Y (SZ) 和 4Y + 5Y (AZ) 两种钇含量。光学特性,包括色差(ΔEWS)和半透明参数(TP00),是用数字色差计测量的。使用万能试验机分析了断裂载荷,并在体视显微镜下检查了断裂表面。统计分析评估了钇含量和样品厚度对光学特性的影响。SZ 的 ΔEWS 值介于 3.6 到 4.0 之间,而对于 AZ,0.5 毫米处的ΔEWS 值为 3.9,TP00 值随着厚度的增加而降低,AZ 通常比 SZ 表现出更高的半透明度。在断裂荷载调查中,SZ(>1600 N)通常超过 AZ(>1260 N),断裂荷载随着厚度的增加而显著增加,尤其是前磨牙(SZ > 3270 N,AZ > 2257 N)。SZ 主要表现为部分和完全断裂,而 AZ 则表现为较少的非断裂分类。完全断裂以密集的不规则裂纹开始,裂纹向外延伸,露出光滑的表面,而承受较高载荷的前臼齿则表现出同心波纹状结构。部分断裂显示出径向纹理,表明存在应力集中区域。总之,钇含量越高,半透明度越高,而断裂载荷的变化主要源于牙齿位置或厚度的不同。总之,钇含量为 4Y + 5Y(AZ)的多层整体氧化锆具有高透光性、精确的配色和强大的抗断裂性,因此非常适合美学和功能性牙科应用。
{"title":"Comparison of Optical Properties and Fracture Loads of Multilayer Monolithic Zirconia Crowns with Different Yttria Levels.","authors":"Chien-Ming Kang, Tzu-Yu Peng, Yan-An Wu, Chi-Fei Hsieh, Miao-Ching Chi, Hsuan-Yu Wu, Zih-Chan Lin","doi":"10.3390/jfb15080228","DOIUrl":"10.3390/jfb15080228","url":null,"abstract":"<p><p>Multilayer monolithic zirconia, which incorporates polychromatic layers that mimic natural tooth gradients, offers enhanced aesthetics and functionality while reducing debonding risks and improving fabrication efficiency. However, uncertainties remain regarding the fracture characteristics of multilayer monolithic zirconia crowns under occlusal loading, whether composed of uniform or combined yttria levels. The current study investigated how variations in yttria levels and thicknesses affected the optical properties and fracture loads of multilayer monolithic zirconia. Samples of multilayer monolithic zirconia in the Vita A1 shade were used, while employing 3Y (SZ) and 4Y + 5Y (AZ) yttria levels. The optical properties, including the color difference (Δ<i>E<sub>WS</sub></i>) and translucency parameters (<i>TP</i><sub>00</sub>), were measured using a digital colorimeter. The fracture loads were analyzed using a universal testing machine, and fractured surfaces were examined under a stereomicroscope. Statistical analyses assessed the impacts of the yttria levels and sample thicknesses on the optical properties. The Δ<i>E<sub>WS</sub></i> values of SZ ranged 3.6 to 4.0, while for AZ, Δ<i>E<sub>WS</sub></i> at 0.5 mm was 3.9 and <2.6 for other thicknesses. The <i>TP</i><sub>00</sub> values decreased with an increased thickness, with AZ generally exhibiting greater translucency than SZ. In the fracture load investigations, SZ (>1600 N) generally exceeded AZ (>1260 N), with fracture loads notably increasing with thickness, particularly for premolars (SZ > 3270 N, AZ > 2257 N). SZ predominantly exhibited partial and complete fractures, whereas AZ showed fewer non-fracture categorizations. Complete fractures began with dense, irregular cracks that extended outward to reveal smooth surfaces, while premolars subjected to higher loads exhibited concentric ripple-like structures. Partial fractures revealed radial textures indicative of areas of stress concentration. In summary, higher yttria levels were correlated with increased translucency, while variations in the fracture loads primarily stemmed from differences in the tooth position or thickness. Overall, multilayer monolithic zirconia incorporating combined yttria levels of 4Y + 5Y (AZ) offered high translucency, precise color matching, and substantial fracture resistance, rendering it highly suitable for aesthetic and functional dental applications.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 8","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355162/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mannan-Decorated Lipid Calcium Phosphate Nanoparticle Vaccine Increased the Antitumor Immune Response by Modulating the Tumor Microenvironment. 甘露醛脂质磷酸钙纳米粒子疫苗通过调节肿瘤微环境增加抗肿瘤免疫反应
IF 5 3区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-16 DOI: 10.3390/jfb15080229
Liusheng Wu, Lei Yang, Xinye Qian, Wang Hu, Shuang Wang, Jun Yan

With the rapid development of tumor immunotherapy, nanoparticle vaccines have attracted much attention as potential therapeutic strategies. A systematic review and analysis must be carried out to investigate the effect of mannose modification on the immune response to nanoparticles in regulating the tumor microenvironment, as well as to explore its potential clinical application in tumor therapy. Despite the potential advantages of nanoparticle vaccines in immunotherapy, achieving an effective immune response in the tumor microenvironment remains a challenge. Tumor immune escape and the overexpression of immunosuppressive factors limit its clinical application. Therefore, our review explored how to intervene in the immunosuppressive mechanism in the tumor microenvironment through the use of mannan-decorated lipid calcium phosphate nanoparticle vaccines to improve the efficacy of immunotherapy in patients with tumors and to provide new ideas and strategies for the field of tumor therapy.

随着肿瘤免疫疗法的迅速发展,纳米颗粒疫苗作为一种潜在的治疗策略备受关注。要研究甘露糖修饰对纳米粒子调节肿瘤微环境的免疫反应的影响,并探索其在肿瘤治疗中的潜在临床应用,必须进行系统的综述和分析。尽管纳米粒子疫苗在免疫治疗中具有潜在优势,但在肿瘤微环境中实现有效的免疫应答仍然是一项挑战。肿瘤免疫逃逸和免疫抑制因子的过度表达限制了其临床应用。因此,我们的综述探讨了如何通过使用甘露聚糖装饰的脂质磷酸钙纳米粒子疫苗来干预肿瘤微环境中的免疫抑制机制,从而提高肿瘤患者的免疫治疗效果,为肿瘤治疗领域提供新的思路和策略。
{"title":"Mannan-Decorated Lipid Calcium Phosphate Nanoparticle Vaccine Increased the Antitumor Immune Response by Modulating the Tumor Microenvironment.","authors":"Liusheng Wu, Lei Yang, Xinye Qian, Wang Hu, Shuang Wang, Jun Yan","doi":"10.3390/jfb15080229","DOIUrl":"10.3390/jfb15080229","url":null,"abstract":"<p><p>With the rapid development of tumor immunotherapy, nanoparticle vaccines have attracted much attention as potential therapeutic strategies. A systematic review and analysis must be carried out to investigate the effect of mannose modification on the immune response to nanoparticles in regulating the tumor microenvironment, as well as to explore its potential clinical application in tumor therapy. Despite the potential advantages of nanoparticle vaccines in immunotherapy, achieving an effective immune response in the tumor microenvironment remains a challenge. Tumor immune escape and the overexpression of immunosuppressive factors limit its clinical application. Therefore, our review explored how to intervene in the immunosuppressive mechanism in the tumor microenvironment through the use of mannan-decorated lipid calcium phosphate nanoparticle vaccines to improve the efficacy of immunotherapy in patients with tumors and to provide new ideas and strategies for the field of tumor therapy.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 8","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355305/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancements in Nanoporous Materials for Biomedical Imaging and Diagnostics. 用于生物医学成像和诊断的纳米多孔材料的进展。
IF 5 3区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-14 DOI: 10.3390/jfb15080226
Nargish Parvin, Vineet Kumar, Tapas Kumar Mandal, Sang Woo Joo

This review explores the latest advancements in nanoporous materials and their applications in biomedical imaging and diagnostics. Nanoporous materials possess unique structural features, including high surface area, tunable pore size, and versatile surface chemistry, making them highly promising platforms for a range of biomedical applications. This review begins by providing an overview of the various types of nanoporous materials, including mesoporous silica nanoparticles, metal-organic frameworks, carbon-based materials, and nanoporous gold. The synthesis method for each material, their current research trends, and prospects are discussed in detail. Furthermore, this review delves into the functionalization and surface modification techniques employed to tailor nanoporous materials for specific biomedical imaging applications. This section covers chemical functionalization, bioconjugation strategies, and surface coating and encapsulation methods. Additionally, this review examines the diverse biomedical imaging techniques enabled by nanoporous materials, such as fluorescence imaging, magnetic resonance imaging (MRI), computed tomography (CT) imaging, ultrasound imaging, and multimodal imaging. The mechanisms underlying these imaging techniques, their diagnostic applications, and their efficacy in clinical settings are thoroughly explored. Through an extensive analysis of recent research findings and emerging trends, this review underscores the transformative potential of nanoporous materials in advancing biomedical imaging and diagnostics. The integration of interdisciplinary approaches, innovative synthesis techniques, and functionalization strategies offers promising avenues for the development of next-generation imaging agents and diagnostic tools with enhanced sensitivity, specificity, and biocompatibility.

这篇综述探讨了纳米多孔材料的最新进展及其在生物医学成像和诊断中的应用。纳米多孔材料具有独特的结构特征,包括高比表面积、可调孔径和多变的表面化学性质,使它们成为极具潜力的生物医学应用平台。本综述首先概述了各种类型的纳米多孔材料,包括介孔二氧化硅纳米颗粒、金属有机框架、碳基材料和纳米多孔金。详细讨论了每种材料的合成方法、当前的研究趋势和前景。此外,本综述还深入探讨了为特定生物医学成像应用定制纳米多孔材料所采用的功能化和表面改性技术。这一部分涵盖了化学功能化、生物共轭策略以及表面涂层和封装方法。此外,本综述还探讨了利用纳米多孔材料实现的各种生物医学成像技术,如荧光成像、磁共振成像(MRI)、计算机断层扫描(CT)成像、超声成像和多模态成像。该书深入探讨了这些成像技术的内在机制、诊断应用及其在临床环境中的功效。通过对最新研究成果和新兴趋势的广泛分析,本综述强调了纳米多孔材料在推动生物医学成像和诊断方面的变革潜力。跨学科方法、创新合成技术和功能化策略的整合为开发具有更高灵敏度、特异性和生物兼容性的下一代成像剂和诊断工具提供了广阔的前景。
{"title":"Advancements in Nanoporous Materials for Biomedical Imaging and Diagnostics.","authors":"Nargish Parvin, Vineet Kumar, Tapas Kumar Mandal, Sang Woo Joo","doi":"10.3390/jfb15080226","DOIUrl":"10.3390/jfb15080226","url":null,"abstract":"<p><p>This review explores the latest advancements in nanoporous materials and their applications in biomedical imaging and diagnostics. Nanoporous materials possess unique structural features, including high surface area, tunable pore size, and versatile surface chemistry, making them highly promising platforms for a range of biomedical applications. This review begins by providing an overview of the various types of nanoporous materials, including mesoporous silica nanoparticles, metal-organic frameworks, carbon-based materials, and nanoporous gold. The synthesis method for each material, their current research trends, and prospects are discussed in detail. Furthermore, this review delves into the functionalization and surface modification techniques employed to tailor nanoporous materials for specific biomedical imaging applications. This section covers chemical functionalization, bioconjugation strategies, and surface coating and encapsulation methods. Additionally, this review examines the diverse biomedical imaging techniques enabled by nanoporous materials, such as fluorescence imaging, magnetic resonance imaging (MRI), computed tomography (CT) imaging, ultrasound imaging, and multimodal imaging. The mechanisms underlying these imaging techniques, their diagnostic applications, and their efficacy in clinical settings are thoroughly explored. Through an extensive analysis of recent research findings and emerging trends, this review underscores the transformative potential of nanoporous materials in advancing biomedical imaging and diagnostics. The integration of interdisciplinary approaches, innovative synthesis techniques, and functionalization strategies offers promising avenues for the development of next-generation imaging agents and diagnostic tools with enhanced sensitivity, specificity, and biocompatibility.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 8","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355545/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanomaterials in Immunology: Bridging Innovative Approaches in Immune Modulation, Diagnostics, and Therapy. 免疫学中的纳米材料:免疫学中的纳米材料:免疫调节、诊断和治疗创新方法的桥梁。
IF 5 3区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-14 DOI: 10.3390/jfb15080225
George-Alexandru Croitoru, Diana-Cristina Pîrvulescu, Adelina-Gabriela Niculescu, Dragoș Epistatu, Marius Rădulescu, Alexandru Mihai Grumezescu, Carmen-Larisa Nicolae

The intersection of immunology and nanotechnology has provided significant advancements in biomedical research and clinical applications over the years. Immunology aims to understand the immune system's defense mechanisms against pathogens. Nanotechnology has demonstrated its potential to manipulate immune responses, as nanomaterials' properties can be modified for the desired application. Research has shown that nanomaterials can be applied in diagnostics, therapy, and vaccine development. In diagnostics, nanomaterials can be used for biosensor development, accurately detecting biomarkers even at very low concentrations. Therapeutically, nanomaterials can act as efficient carriers for delivering drugs, antigens, or genetic material directly to targeted cells or tissues. This targeted delivery improves therapeutic efficacy and reduces the adverse effects on healthy cells and tissues. In vaccine development, nanoparticles can improve vaccine durability and extend immune responses by effectively delivering adjuvants and antigens to immune cells. Despite these advancements, challenges regarding the safety, biocompatibility, and scalability of nanomaterials for clinical applications are still present. This review will cover the fundamental interactions between nanomaterials and the immune system, their potential applications in immunology, and their safety and biocompatibility concerns.

多年来,免疫学与纳米技术的交叉在生物医学研究和临床应用方面取得了重大进展。免疫学旨在了解免疫系统对病原体的防御机制。纳米技术已经证明了其操纵免疫反应的潜力,因为纳米材料的特性可以根据所需的应用进行改变。研究表明,纳米材料可用于诊断、治疗和疫苗开发。在诊断方面,纳米材料可用于开发生物传感器,即使在浓度很低的情况下也能准确检测生物标志物。在治疗方面,纳米材料可作为高效载体,将药物、抗原或遗传物质直接输送到目标细胞或组织。这种有针对性的递送提高了疗效,减少了对健康细胞和组织的不利影响。在疫苗开发中,纳米颗粒可通过有效地向免疫细胞输送佐剂和抗原,提高疫苗的耐久性并扩大免疫反应。尽管取得了这些进步,但纳米材料在安全性、生物相容性和临床应用的可扩展性方面仍然存在挑战。本综述将介绍纳米材料与免疫系统之间的基本相互作用、它们在免疫学中的潜在应用,以及它们的安全性和生物相容性问题。
{"title":"Nanomaterials in Immunology: Bridging Innovative Approaches in Immune Modulation, Diagnostics, and Therapy.","authors":"George-Alexandru Croitoru, Diana-Cristina Pîrvulescu, Adelina-Gabriela Niculescu, Dragoș Epistatu, Marius Rădulescu, Alexandru Mihai Grumezescu, Carmen-Larisa Nicolae","doi":"10.3390/jfb15080225","DOIUrl":"10.3390/jfb15080225","url":null,"abstract":"<p><p>The intersection of immunology and nanotechnology has provided significant advancements in biomedical research and clinical applications over the years. Immunology aims to understand the immune system's defense mechanisms against pathogens. Nanotechnology has demonstrated its potential to manipulate immune responses, as nanomaterials' properties can be modified for the desired application. Research has shown that nanomaterials can be applied in diagnostics, therapy, and vaccine development. In diagnostics, nanomaterials can be used for biosensor development, accurately detecting biomarkers even at very low concentrations. Therapeutically, nanomaterials can act as efficient carriers for delivering drugs, antigens, or genetic material directly to targeted cells or tissues. This targeted delivery improves therapeutic efficacy and reduces the adverse effects on healthy cells and tissues. In vaccine development, nanoparticles can improve vaccine durability and extend immune responses by effectively delivering adjuvants and antigens to immune cells. Despite these advancements, challenges regarding the safety, biocompatibility, and scalability of nanomaterials for clinical applications are still present. This review will cover the fundamental interactions between nanomaterials and the immune system, their potential applications in immunology, and their safety and biocompatibility concerns.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 8","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355198/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifunctional Iron Oxide Nanoparticles as Promising Magnetic Biomaterials in Drug Delivery: A Review. 多功能氧化铁纳米颗粒是药物输送领域前景广阔的磁性生物材料:综述。
IF 5 3区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-14 DOI: 10.3390/jfb15080227
Katja Vasić, Željko Knez, Maja Leitgeb

A wide range of applications using functionalized magnetic nanoparticles (MNPs) in biomedical applications, such as in biomedicine as well as in biotechnology, have been extensively expanding over the last years. Their potential is tremendous in delivery and targeting systems due to their advantages in biosubstance binding. By applying magnetic materials-based biomaterials to different organic polymers, highly advanced multifunctional bio-composites with high specificity, efficiency, and optimal bioavailability are designed and implemented in various bio-applications. In modern drug delivery, the importance of a successful therapy depends on the proper targeting of loaded bioactive components to specific sites in the body. MNPs are nanocarrier-based systems that are magnetically guided to specific regions using an external magnetic field. Therefore, MNPs are an excellent tool for different biomedical applications, in the form of imaging agents, sensors, drug delivery targets/vehicles, and diagnostic tools in managing disease therapy. A great contribution was made to improve engineering skills in surgical diagnosis, therapy, and treatment, while the advantages and applicability of MNPs have opened up a large scope of studies. This review highlights MNPs and their synthesis strategies, followed by surface functionalization techniques, which makes them promising magnetic biomaterials in biomedicine, with special emphasis on drug delivery. Mechanism of the delivery system with key factors affecting the drug delivery efficiency using MNPs are discussed, considering their toxicity and limitations as well.

功能化磁性纳米粒子(MNPs)在生物医学(如生物医药和生物技术)中的广泛应用在过去几年中得到了广泛拓展。由于其在生物物质结合方面的优势,它们在递送和靶向系统中具有巨大的潜力。通过将基于磁性材料的生物材料应用于不同的有机聚合物,设计出了具有高特异性、高效性和最佳生物利用度的先进多功能生物复合材料,并将其应用于各种生物应用中。在现代给药过程中,成功治疗的重要性取决于将负载的生物活性成分正确靶向到体内的特定部位。MNPs 是一种基于纳米载体的系统,可利用外部磁场将药物磁导至特定区域。因此,MNPs 是不同生物医学应用的绝佳工具,可用作成像剂、传感器、药物输送靶标/载体和疾病治疗诊断工具。MNPs 的优势和适用性开辟了广阔的研究空间,为提高外科诊断、治疗和治疗方面的工程技能做出了巨大贡献。本综述重点介绍了 MNPs 及其合成策略,以及表面功能化技术,这些技术使 MNPs 成为生物医学领域前景广阔的磁性生物材料,其中特别强调了药物递送。考虑到 MNPs 的毒性和局限性,还讨论了使用 MNPs 的给药系统机制以及影响给药效率的关键因素。
{"title":"Multifunctional Iron Oxide Nanoparticles as Promising Magnetic Biomaterials in Drug Delivery: A Review.","authors":"Katja Vasić, Željko Knez, Maja Leitgeb","doi":"10.3390/jfb15080227","DOIUrl":"10.3390/jfb15080227","url":null,"abstract":"<p><p>A wide range of applications using functionalized magnetic nanoparticles (MNPs) in biomedical applications, such as in biomedicine as well as in biotechnology, have been extensively expanding over the last years. Their potential is tremendous in delivery and targeting systems due to their advantages in biosubstance binding. By applying magnetic materials-based biomaterials to different organic polymers, highly advanced multifunctional bio-composites with high specificity, efficiency, and optimal bioavailability are designed and implemented in various bio-applications. In modern drug delivery, the importance of a successful therapy depends on the proper targeting of loaded bioactive components to specific sites in the body. MNPs are nanocarrier-based systems that are magnetically guided to specific regions using an external magnetic field. Therefore, MNPs are an excellent tool for different biomedical applications, in the form of imaging agents, sensors, drug delivery targets/vehicles, and diagnostic tools in managing disease therapy. A great contribution was made to improve engineering skills in surgical diagnosis, therapy, and treatment, while the advantages and applicability of MNPs have opened up a large scope of studies. This review highlights MNPs and their synthesis strategies, followed by surface functionalization techniques, which makes them promising magnetic biomaterials in biomedicine, with special emphasis on drug delivery. Mechanism of the delivery system with key factors affecting the drug delivery efficiency using MNPs are discussed, considering their toxicity and limitations as well.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 8","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355331/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Study of Zirconium Nitride Multilayer Coatings: Crystallinity, In Vitro Oxidation Behaviour and Tribological Properties Deposited via Sputtering and Arc Deposition. 氮化锆多层涂层的比较研究:通过溅射和电弧沉积沉积的结晶度、体外氧化行为和摩擦学特性。
IF 5 3区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-13 DOI: 10.3390/jfb15080223
Julius C Dohm, Susann Schmidt, Ana Laura Puente Reyna, Berna Richter, Antonio Santana, Thomas M Grupp

This study aims to evaluate and compare the properties of a biomedical clinically established zirconium nitride (ZrN) multilayer coating prepared using two different techniques: pulsed magnetron sputtering and cathodic arc deposition. The investigation focuses on the crystalline structure, grain size, in-vitro oxidation behaviour and tribological performance of these two coating techniques. Experimental findings demonstrate that the sputter deposition process resulted in a distinct crystalline structure and smaller grain size compared to the arc deposition process. Furthermore, in vitro oxidation caused oxygen to penetrate the surface of the sputtered ZrN top layer to a depth of 700 nm compared to 280 nm in the case of the arc-deposited coating. Finally, tribological testing revealed the improved wear rate of the ZrN multilayer coating applied by sputter deposition.

本研究旨在评估和比较使用脉冲磁控溅射和阴极电弧沉积两种不同技术制备的生物医学临床氮化锆(ZrN)多层涂层的性能。研究重点是这两种涂层技术的晶体结构、晶粒尺寸、体外氧化行为和摩擦学性能。实验结果表明,与电弧沉积工艺相比,溅射沉积工艺产生了独特的晶体结构和较小的晶粒尺寸。此外,体外氧化使氧气渗入溅射 ZrN 表层表面的深度达到 700 nm,而电弧沉积涂层的深度为 280 nm。最后,摩擦学测试表明,通过溅射沉积获得的 ZrN 多层涂层的磨损率有所提高。
{"title":"Comparative Study of Zirconium Nitride Multilayer Coatings: Crystallinity, In Vitro Oxidation Behaviour and Tribological Properties Deposited via Sputtering and Arc Deposition.","authors":"Julius C Dohm, Susann Schmidt, Ana Laura Puente Reyna, Berna Richter, Antonio Santana, Thomas M Grupp","doi":"10.3390/jfb15080223","DOIUrl":"10.3390/jfb15080223","url":null,"abstract":"<p><p>This study aims to evaluate and compare the properties of a biomedical clinically established zirconium nitride (ZrN) multilayer coating prepared using two different techniques: pulsed magnetron sputtering and cathodic arc deposition. The investigation focuses on the crystalline structure, grain size, in-vitro oxidation behaviour and tribological performance of these two coating techniques. Experimental findings demonstrate that the sputter deposition process resulted in a distinct crystalline structure and smaller grain size compared to the arc deposition process. Furthermore, in vitro oxidation caused oxygen to penetrate the surface of the sputtered ZrN top layer to a depth of 700 nm compared to 280 nm in the case of the arc-deposited coating. Finally, tribological testing revealed the improved wear rate of the ZrN multilayer coating applied by sputter deposition.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 8","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355231/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Functional Biomaterials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1