Pub Date : 2024-03-25DOI: 10.1109/JMEMS.2024.3377279
Rusong He;Lyuyan Wang;Zhenci Sun;Jiahao Zhao
This paper reports a novel bi-stable structure for a radio frequency micro-electro-mechanical system (RF MEMS) switch. The structure is activated by an in-plane electrostatic actuator and adopts the Inertial Generated Timing Sequence (IGTS) method to latch, allowing the switch to turn on and off with a simple pulse signal. This design eliminates the need for a complex external control circuit and enables the switch to maintain the ON state at zero power consumption. Furthermore, the electrode shape is designed to reduce the driving voltage, thereby lowering the power consumption of the boost circuit. To test and verify the functionality of the bi-stable mechanism, a coplanar waveguide (CPW), which is separated from the actuation structure to reduce interference between the DC drive signal and the RF transmitted signal, is employed. Fabricated using a silicon-on-glass process with two lithographic masks, the RF MEMS switch achieves bi-stability with a single pulse signal of 18V for latching and 14V for unlatching. The measured insertion loss and isolation at 6 GHz are −0.28 dB and −36.68 dB, respectively. This switch exhibits low pull-in voltage, low power consumption, and simple control, holding potential for future RF systems tailored to wireless applications with an emphasis on low power consumption and system simplicity. [2024-0008]
{"title":"An Approach to Near Zero Power Bi-Stable Driving With a Simple Pulse Signal for RF MEMS Switch","authors":"Rusong He;Lyuyan Wang;Zhenci Sun;Jiahao Zhao","doi":"10.1109/JMEMS.2024.3377279","DOIUrl":"10.1109/JMEMS.2024.3377279","url":null,"abstract":"This paper reports a novel bi-stable structure for a radio frequency micro-electro-mechanical system (RF MEMS) switch. The structure is activated by an in-plane electrostatic actuator and adopts the Inertial Generated Timing Sequence (IGTS) method to latch, allowing the switch to turn on and off with a simple pulse signal. This design eliminates the need for a complex external control circuit and enables the switch to maintain the ON state at zero power consumption. Furthermore, the electrode shape is designed to reduce the driving voltage, thereby lowering the power consumption of the boost circuit. To test and verify the functionality of the bi-stable mechanism, a coplanar waveguide (CPW), which is separated from the actuation structure to reduce interference between the DC drive signal and the RF transmitted signal, is employed. Fabricated using a silicon-on-glass process with two lithographic masks, the RF MEMS switch achieves bi-stability with a single pulse signal of 18V for latching and 14V for unlatching. The measured insertion loss and isolation at 6 GHz are −0.28 dB and −36.68 dB, respectively. This switch exhibits low pull-in voltage, low power consumption, and simple control, holding potential for future RF systems tailored to wireless applications with an emphasis on low power consumption and system simplicity. [2024-0008]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 3","pages":"322-332"},"PeriodicalIF":2.7,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140302795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-22DOI: 10.1109/JMEMS.2024.3377595
Bartosz Pruchnik;Tomasz Piasecki;Ewelina Gacka;Mateus G. Masteghin;David C. Cox;Teodor Gotszalk
In this article, we present a focused ion beam-induced deposition (FIBID) technique to improve the MEMS thermomechanical actuation efficiency by up to 3 orders of magnitude. During experiments, we investigated the thermomechanical actuation performance of silicon on insulator (SOI) cantilevers integrated in 4-sensors based array. The FIBID process was employed to add an extra layer with a different (and homogeneous) thermal expansion coefficient. The FIBID structures were deterministically deposited with the aid of a xenon-plasma focused ion beam (i.e., no stray species in the amorphous carbon pads). This approach enabled the enhancement of actuation efficiency without any changes in structure stiffness. In this way, an increase in the actuation deflection of 2 orders of magnitude was obtained, which was connected with reduction in the structure stiffness pointing to the enhanced force sensitivity.
{"title":"Improvement of MEMS Thermomechanical Actuation Efficiency by Focused Ion Beam-Induced Deposition","authors":"Bartosz Pruchnik;Tomasz Piasecki;Ewelina Gacka;Mateus G. Masteghin;David C. Cox;Teodor Gotszalk","doi":"10.1109/JMEMS.2024.3377595","DOIUrl":"10.1109/JMEMS.2024.3377595","url":null,"abstract":"In this article, we present a focused ion beam-induced deposition (FIBID) technique to improve the MEMS thermomechanical actuation efficiency by up to 3 orders of magnitude. During experiments, we investigated the thermomechanical actuation performance of silicon on insulator (SOI) cantilevers integrated in 4-sensors based array. The FIBID process was employed to add an extra layer with a different (and homogeneous) thermal expansion coefficient. The FIBID structures were deterministically deposited with the aid of a xenon-plasma focused ion beam (i.e., no stray species in the amorphous carbon pads). This approach enabled the enhancement of actuation efficiency without any changes in structure stiffness. In this way, an increase in the actuation deflection of 2 orders of magnitude was obtained, which was connected with reduction in the structure stiffness pointing to the enhanced force sensitivity.","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 3","pages":"362-368"},"PeriodicalIF":2.7,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140200592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nanoneedles are used for a variety of different biomedical applications such as intracellular injection/extraction and electrical recording. Combining these two capabilities in one device, however, remains challenging. We propose a novel method for fabricating fluidically connected arrays of hollow nanoneedles and characterize the resulting devices regarding their fluidic and electrochemical functionalities. The fabrication process relies solely on complementary metal-oxide-semiconductor (CMOS) compatible and scalable microsystems technology methods. Fluorescence microscopy is used to prove the successful transport of molecules through the passive nanoneedle chips. Electrochemical measurements of ion flows through these devices further confirm both the fluidic contact and the validity of an analytical model used to estimate the electrical resistance of the chips. In total, the presented work paves the way for monolithic integration of fluidic and electrical functionalities for intracellular contacting in a single device. This, in turn, can enable controlled, continuous drug delivery with simultaneous electrical recording on a highly scalable platform. [2023-0171]
{"title":"CMOS-Compatible Hollow Nanoneedles With Fluidic Connection","authors":"Noah Brechmann;Marvin Michel;Leon Doman;Andreas Albert;Karsten Seidl","doi":"10.1109/JMEMS.2024.3376991","DOIUrl":"10.1109/JMEMS.2024.3376991","url":null,"abstract":"Nanoneedles are used for a variety of different biomedical applications such as intracellular injection/extraction and electrical recording. Combining these two capabilities in one device, however, remains challenging. We propose a novel method for fabricating fluidically connected arrays of hollow nanoneedles and characterize the resulting devices regarding their fluidic and electrochemical functionalities. The fabrication process relies solely on complementary metal-oxide-semiconductor (CMOS) compatible and scalable microsystems technology methods. Fluorescence microscopy is used to prove the successful transport of molecules through the passive nanoneedle chips. Electrochemical measurements of ion flows through these devices further confirm both the fluidic contact and the validity of an analytical model used to estimate the electrical resistance of the chips. In total, the presented work paves the way for monolithic integration of fluidic and electrical functionalities for intracellular contacting in a single device. This, in turn, can enable controlled, continuous drug delivery with simultaneous electrical recording on a highly scalable platform. [2023-0171]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 3","pages":"342-349"},"PeriodicalIF":2.7,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10477994","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140200727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-21DOI: 10.1109/JMEMS.2024.3375363
Zhong-Wei Lin;Cheng-Yen Wu;Sheng-Shian Li
Operating micro-nanoscale sensors in conductive liquids faces challenges due to liquid damping and high feedthrough floor, leading to low signal-to-feedthrough ratio. This work presents an innovative feedthrough engineering technique for resonant sensors immersed in ionic liquids, eliminating the need of isolation layers or additional processing for the sensing device. By leveraging the feedthrough path through substrate, the proposed technique counteracts the feedthrough induced by the ionic liquid, and successfully resumes the desired motional signal of the sensor. A thin-film piezoelectric-on-silicon (TPoS) resonator and oscillator operated in ionic environment are introduced to demonstrate that this technique not only enables the measurement of resonant signals in conductive liquids but also offers suitable options regarding the mode shape and resonant frequency of the sensor in different ion concentration environments. Additionally, the cancellation phenomenon shows potential as a concentration detector for ionic liquids. The fundamental (5MHz) and higher (15MHz) frequency modes of the PZT-based resonator are thoroughly investigated. Measurements show that regardless of the frequency where it operates, the resonator features decent stopband rejection (SBR) of around 18~20dB using the cancellation approach, which is even better than operating in deionized water. When employed as an oscillator, the results indicate a remarkable frequency resolution of approximately 1.8 Hz for both fundamental and higher mode frequencies. These measurements highlight the improved resonant behavior and real-time sensing capability offered by the proposed technique in conductive liquids. Such MEMS resonant transducers using this engineered feedthrough cancellation mechanism would serve as crucial building blocks for chemical and biosensing applications. [2023-0194]
{"title":"Feedthrough Engineering to Enable Resonant Sensors Working in Conductive Medium for Bio Applications","authors":"Zhong-Wei Lin;Cheng-Yen Wu;Sheng-Shian Li","doi":"10.1109/JMEMS.2024.3375363","DOIUrl":"10.1109/JMEMS.2024.3375363","url":null,"abstract":"Operating micro-nanoscale sensors in conductive liquids faces challenges due to liquid damping and high feedthrough floor, leading to low signal-to-feedthrough ratio. This work presents an innovative feedthrough engineering technique for resonant sensors immersed in ionic liquids, eliminating the need of isolation layers or additional processing for the sensing device. By leveraging the feedthrough path through substrate, the proposed technique counteracts the feedthrough induced by the ionic liquid, and successfully resumes the desired motional signal of the sensor. A thin-film piezoelectric-on-silicon (TPoS) resonator and oscillator operated in ionic environment are introduced to demonstrate that this technique not only enables the measurement of resonant signals in conductive liquids but also offers suitable options regarding the mode shape and resonant frequency of the sensor in different ion concentration environments. Additionally, the cancellation phenomenon shows potential as a concentration detector for ionic liquids. The fundamental (5MHz) and higher (15MHz) frequency modes of the PZT-based resonator are thoroughly investigated. Measurements show that regardless of the frequency where it operates, the resonator features decent stopband rejection (SBR) of around 18~20dB using the cancellation approach, which is even better than operating in deionized water. When employed as an oscillator, the results indicate a remarkable frequency resolution of approximately 1.8 Hz for both fundamental and higher mode frequencies. These measurements highlight the improved resonant behavior and real-time sensing capability offered by the proposed technique in conductive liquids. Such MEMS resonant transducers using this engineered feedthrough cancellation mechanism would serve as crucial building blocks for chemical and biosensing applications. [2023-0194]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 3","pages":"333-341"},"PeriodicalIF":2.7,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140200584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}