Pub Date : 2024-01-11DOI: 10.1109/JMEMS.2023.3349299
Tongkai Gu;Sitong Yan;Lanlan Wang;Yasheng Chang;Hongzhong Liu
High-quality optical observation through traditional microscopes faces significant challenges due to their low spatial sampling and the limited ability to respond only to the light intensity characteristics of optoelectronic devices. This limitation results in an inability to measure other critical optical information during imaging, such as phase, angle, polarization, and coherence. In response to these challenges, light field microscope (LFM) as a powerful imaging technique is capable of measuring samples with unprecedented depth and detail. LFM overcomes the limitations of conventional microscope methods by capturing both spatial and angular information of light rays. To further demonstrate these capabilities, the LFM based on microlens arrays is constructed here. These arrays are fabricated using advanced techniques such as laser lithography, microimprinting, and self-assembly technology. Using light field imaging, image segmentation methods, and deep learning fusion, the imaging quality is nearly doubled, significantly enhancing the quality of observations. LFM based on microlens arrays offers great promise for improving the quality of imaging observations in the field of microsope. [2023-0167]
{"title":"High-Quality Light Field Microscope Imaging Based on Microlens Arrays","authors":"Tongkai Gu;Sitong Yan;Lanlan Wang;Yasheng Chang;Hongzhong Liu","doi":"10.1109/JMEMS.2023.3349299","DOIUrl":"10.1109/JMEMS.2023.3349299","url":null,"abstract":"High-quality optical observation through traditional microscopes faces significant challenges due to their low spatial sampling and the limited ability to respond only to the light intensity characteristics of optoelectronic devices. This limitation results in an inability to measure other critical optical information during imaging, such as phase, angle, polarization, and coherence. In response to these challenges, light field microscope (LFM) as a powerful imaging technique is capable of measuring samples with unprecedented depth and detail. LFM overcomes the limitations of conventional microscope methods by capturing both spatial and angular information of light rays. To further demonstrate these capabilities, the LFM based on microlens arrays is constructed here. These arrays are fabricated using advanced techniques such as laser lithography, microimprinting, and self-assembly technology. Using light field imaging, image segmentation methods, and deep learning fusion, the imaging quality is nearly doubled, significantly enhancing the quality of observations. LFM based on microlens arrays offers great promise for improving the quality of imaging observations in the field of microsope. [2023-0167]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 2","pages":"296-303"},"PeriodicalIF":2.7,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139950741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-09DOI: 10.1109/JMEMS.2023.3348792
Tianyu Yang;Yu Chen;Binglei Zhang;Binlei Cao;Xiaoshi Li;Kaisheng Zhang;Jiangbo He;Wei Su
The piezoelectric thin-film traveling-wave micro-motor based on the microelectromechanical systems (MEMS) process has the advantages of compact size, easy integration and batch production. However, the piezoelectric thin-film micro-motor still exits a serious shortcoming of very small output torque. This paper proposes a novel lead zirconate titanate (PZT) piezoelectric thin-film motor with stator teeth to improve the output torque. Firstly, theoretical analysis and finite element simulations were performed to determine the design parameters of the stator teeth. The device preparation is completed by combining with wafer-scale MEMS fabrication techniques, in which the base Si layer of PZT-SOI wafer is thinned and etched to form the stator tooth structure based on the deep reactive ion etching (DRIE) process. Finally, the performance testing results showed that the novel motor achieved a large output torque of $39.4 mu text{N}cdot text{m}$