首页 > 最新文献

Global Ecology and Biogeography最新文献

英文 中文
Salinity plays a limited role in determining rates of size evolution in fishes globally across multiple scales 盐度在决定全球多种尺度鱼类体型进化速度方面的作用有限
IF 6.3 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-07-19 DOI: 10.1111/geb.13883
John T. Clarke, Robert B. Davis
<div> <section> <h3> Aim</h3> <p>Substantial progress has been made to map biodiversity and its drivers across the planet at multiple scales, yet studies that quantify the evolutionary processes that underpin this biodiversity, and test their drivers at multiple scales, are comparatively rare. Studying most fish species, we quantify rates of body size evolution to test the role of fundamental salinity habitats in shaping rates of evolution at multiple scales. We also determine how four additional factors shape evolutionary rates.</p> </section> <section> <h3> Location</h3> <p>Global.</p> </section> <section> <h3> Time Period</h3> <p>Extant species.</p> </section> <section> <h3> Major Taxa Studied</h3> <p>Actinopterygii.</p> </section> <section> <h3> Methods</h3> <p>In up to 1710 comparisons studying over 27,000 species, we compare rates of body size evolution among five salinity habits using 13 metrics. The comparisons span a molecular tree, 100 supertrees, and 10 scales of observation to test for robust patterns and reveal how patterns change with scale. Then, three approaches assess the role of three non-salinity factors on rates, and an alternative habitat scheme tests if lakes influence evolutionary rates.</p> </section> <section> <h3> Results</h3> <p>Rates of size evolution rarely differ consistently between salinity habitats; rate patterns are highly clade- and scale dependent. One exception is freshwater-brackish fishes, which possess among the highest size rates of any salinity, showing higher rates than euryhaline fishes in most groupings studied at most scales, and versus marine, freshwater and marine–brackish habitats at numerous scales. Additionally, species richness had the greatest potential to predict phenotypic rates, followed by branch duration, then absolute values of body size. Lacustrine environments were consistently associated with high rates of size evolution.</p> </section> <section> <h3> Main Conclusions</h3> <p>We reveal the rate patterns that underpin global body size diversity for fishes, identifying factors that play a limited role in shaping rates of size evolution, such as salinity, and those such as species richness, age and lake environments that consistently shape evolutionary rates across half of vertebrate divers
目的在绘制地球上多种尺度的生物多样性及其驱动因素的地图方面已经取得了长足的进步,然而量化支撑这种生物多样性的进化过程并在多种尺度上检验其驱动因素的研究却相对罕见。通过研究大多数鱼类物种,我们量化了体型进化的速率,以检验基本盐度生境在塑造多尺度进化速率中的作用。我们还确定了另外四个影响进化速率的因素。方法在对超过 27,000 个物种进行的多达 1710 项比较中,我们使用 13 个指标对五种盐度习性之间的体型进化速率进行了比较。这些比较跨越了一棵分子树、100棵超分子树和10种观察尺度,以检验是否存在稳健的模式,并揭示模式是如何随尺度变化的。然后,采用三种方法评估了三种非盐度因素对进化率的作用,并采用另一种生境方案检验了湖泊是否影响进化率。结果不同盐度生境之间的体型进化率很少有一致的差异;进化率模式高度依赖于支系和尺度。淡水-沼泽鱼类是一个例外,它们的体型进化率是所有盐度中最高的,在大多数尺度下,淡水-沼泽鱼类的体型进化率高于所研究的大多数鱼类群,在许多尺度下,淡水-沼泽鱼类的体型进化率高于海洋鱼类、淡水鱼类和海洋-沼泽栖息地鱼类。此外,物种丰富度最有可能预测表型率,其次是分支持续时间,然后是体型的绝对值。主要结论 我们揭示了支撑全球鱼类体型多样性的速率模式,确定了在影响体型进化速率方面作用有限的因素(如盐度),以及那些始终影响一半脊椎动物多样性进化速率的因素(如物种丰富度、年龄和湖泊环境)。
{"title":"Salinity plays a limited role in determining rates of size evolution in fishes globally across multiple scales","authors":"John T. Clarke,&nbsp;Robert B. Davis","doi":"10.1111/geb.13883","DOIUrl":"10.1111/geb.13883","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Aim&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Substantial progress has been made to map biodiversity and its drivers across the planet at multiple scales, yet studies that quantify the evolutionary processes that underpin this biodiversity, and test their drivers at multiple scales, are comparatively rare. Studying most fish species, we quantify rates of body size evolution to test the role of fundamental salinity habitats in shaping rates of evolution at multiple scales. We also determine how four additional factors shape evolutionary rates.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Location&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Global.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Time Period&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Extant species.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Major Taxa Studied&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Actinopterygii.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Methods&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;In up to 1710 comparisons studying over 27,000 species, we compare rates of body size evolution among five salinity habits using 13 metrics. The comparisons span a molecular tree, 100 supertrees, and 10 scales of observation to test for robust patterns and reveal how patterns change with scale. Then, three approaches assess the role of three non-salinity factors on rates, and an alternative habitat scheme tests if lakes influence evolutionary rates.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Results&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Rates of size evolution rarely differ consistently between salinity habitats; rate patterns are highly clade- and scale dependent. One exception is freshwater-brackish fishes, which possess among the highest size rates of any salinity, showing higher rates than euryhaline fishes in most groupings studied at most scales, and versus marine, freshwater and marine–brackish habitats at numerous scales. Additionally, species richness had the greatest potential to predict phenotypic rates, followed by branch duration, then absolute values of body size. Lacustrine environments were consistently associated with high rates of size evolution.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Main Conclusions&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;We reveal the rate patterns that underpin global body size diversity for fishes, identifying factors that play a limited role in shaping rates of size evolution, such as salinity, and those such as species richness, age and lake environments that consistently shape evolutionary rates across half of vertebrate divers","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 9","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13883","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141732622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dominance and rarity in tree communities across the globe: Patterns, predictors and threats 全球树木群落的优势和稀有性:模式、预测因素和威胁
IF 6.3 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-07-17 DOI: 10.1111/geb.13889
Iris Hordijk, Lalasia Bialic-Murphy, Thomas Lauber, Devin Routh, Lourens Poorter, Malin C. Rivers, Hans ter Steege, Jingjing Liang, Peter B. Reich, Sergio de-Miguel, Gert-Jan Nabuurs, Javier G. P. Gamarra, Han Y. H. Chen, Mo Zhou, Susan K. Wiser, Hans Pretzsch, Alain Paquette, Nicolas Picard, Bruno Hérault, Jean-Francois Bastin, Giorgio Alberti, Meinrad Abegg, Yves C. Adou Yao, Angelica M. Almeyda Zambrano, Braulio V. Alvarado, Esteban Alvarez-Davila, Patricia Alvarez-Loayza, Luciana F. Alves, Christian Ammer, Clara Antón-Fernández, Alejandro Araujo-Murakami, Luzmila Arroyo, Valerio Avitabile, Gerardo A. Aymard Corredor, Timothy Baker, Olaf Banki, Jorcely Barroso, Meredith L. Bastian, Luca Birigazzi, Philippe Birnbaum, Robert Bitariho, Pascal Boeckx, Frans Bongers, Olivier Bouriaud, Pedro H. S. Brancalion, Susanne Brandl, Roel Brienen, Eben N. Broadbent, Helge Bruelheide, Filippo Bussotti, Roberto Cazzolla Gatti, Ricardo G. Cesar, Goran Cesljar, Robin Chazdon, Chelsea Chisholm, Emil Cienciala, Connie J. Clark, David B. Clar, Gabriel Colletta, David Coomes, Fernando Cornejo Valverde, Jose J. Corral-Rivas, Philip Crim, Jonathan Cumming, Selvadurai Dayanandan, André L. de Gasper, Mathieu Decuyper, Géraldine Derroire, Ben DeVries, Ilija Djordjevic, Amaral Iêda, Aurélie Dourdain, Jiri Dolezal, Nestor Laurier Engone Obiang, Brian Enquist, Teresa Eyre, Adandé Belarmain Fandohan, Tom M. Fayle, Leandro V. Ferreira, Ted R. Feldpausch, Leena Finér, Markus Fischer, Christine Fletcher, Lorenzo Frizzera, Damiano Gianelle, Henry B. Glick, David Harris, Andrew Hector, Andreas Hemp, Geerten Hengeveld, John Herbohn, Annika Hillers, Eurídice N. Honorio Coronado, Cang Hui, Hyunkook Cho, Thomas Ibanez, Ilbin Jung, Nobuo Imai, Andrzej M. Jagodzinski, Bogdan Jaroszewicz, Vivian Johannsen, Carlos A. Joly, Tommaso Jucker, Viktor Karminov, Kuswata Kartawinata, Elizabeth Kearsley, David Kenfack, Deborah Kennard, Sebastian Kepfer-Rojas, Gunnar Keppel, Mohammed Latif Khan, Timothy Killeen, Hyun Seok Kim, Kanehiro Kitayama, Michael Köhl, Henn Korjus, Florian Kraxner, Diana Laarmann, Mait Lang, Simon Lewis, Huicui Lu, Natalia Lukina, Brian Maitner, Yadvinder Malhi, Eric Marcon, Beatriz Schwantes Marimon, Ben Hur Marimon-Junior, Andrew Robert Marshall, Emanuel Martin, Olga Martynenko, Jorge A. Meave, Omar Melo-Cruz, Casimiro Mendoza, Cory Merow, Stanislaw Miscicki, Abel Monteagudo Mendoza, Vanessa Moreno, Sharif A. Mukul, Philip Mundhenk, Maria G. Nava-Miranda, David Neill, Victor Neldner, Radovan Nevenic, Michael Ngugi, Pascal A. Niklaus, Jacek Oleksyn, Petr Ontikov, Edgar Ortiz-Malavasi, Yude Pan, Alexander Parada-Gutierrez, Elena Parfenova, Minjee Park, Marc Parren, Narayanaswamy Parthasarathy, Pablo L. Peri, Sebastian Pfautsch, Oliver L. Phillips, Maria Teresa Piedade, Daniel Piotto, Nigel C. A. Pitman, Irina Polo, Axel Dalberg Poulsen, John R. Poulsen, Freddy Ramirez Arevalo, Zorayda Restrepo-Correa, Mirco Rodeghiero, Samir Rolim, Anand Roopsind, Francesco Rovero, Ervan Rutishauser, Purabi Saikia, Christian Salas-Eljatib, Peter Schall, Dmitry Schepaschenko, Michael Scherer-Lorenzen, Bernhard Schmid, Jochen Schöngart, Eric B. Searle, Vladimír Seben, Josep M. Serra-Diaz, Douglas Sheil, Anatoly Shvidenko, Javier Silva-Espejo, Marcos Silveira, James Singh, Plinio Sist, Ferry Slik, Bonaventure Sonké, Alexandre F. Souza, Krzysztof Stereńczak, Jens-Christian Svenning, Miroslav Svoboda, Ben Swanepoel, Natalia Targhetta, Nadja Tchebakova, Raquel Thomas, Elena Tikhonova, Peter Umunay, Vladimir Usoltsev, Renato Valencia, Fernando Valladares, Fons van der Plas, Tran Van Do, Michael E. Van Nuland, Rodolfo Vasquez Martinez, Hans Verbeeck, Helder Viana, Alexander C. Vibrans, Simone Vieira, Klaus von Gadow, Hua-Feng Wang, James Watson, Gijsbert D. A. Werner, Florian Wittmann, Verginia Wortel, Roderick Zagt, Tomasz Zawila-Niedzwiecki, Chunyu Zhang, Xiuhai Zhao, Zhi-Xin Zhu, Irie Casimir Zo-Bi, Daniel S. Maynard, Thomas W. Crowther
<div> <section> <h3> Aim</h3> <p>Ecological and anthropogenic factors shift the abundances of dominant and rare tree species within local forest communities, thus affecting species composition and ecosystem functioning. To inform forest and conservation management it is important to understand the drivers of dominance and rarity in local tree communities. We answer the following research questions: (1) What are the patterns of dominance and rarity in tree communities? (2) Which ecological and anthropogenic factors predict these patterns? And (3) what is the extinction risk of locally dominant and rare tree species?</p> </section> <section> <h3> Location</h3> <p>Global.</p> </section> <section> <h3> Time period</h3> <p>1990–2017.</p> </section> <section> <h3> Major taxa studied</h3> <p>Trees.</p> </section> <section> <h3> Methods</h3> <p>We used 1.2 million forest plots and quantified local tree dominance as the relative plot basal area of the single most dominant species and local rarity as the percentage of species that contribute together to the least 10% of plot basal area. We mapped global community dominance and rarity using machine learning models and evaluated the ecological and anthropogenic predictors with linear models. Extinction risk, for example threatened status, of geographically widespread dominant and rare species was evaluated.</p> </section> <section> <h3> Results</h3> <p>Community dominance and rarity show contrasting latitudinal trends, with boreal forests having high levels of dominance and tropical forests having high levels of rarity. Increasing annual precipitation reduces community dominance, probably because precipitation is related to an increase in tree density and richness. Additionally, stand age is positively related to community dominance, due to stem diameter increase of the most dominant species. Surprisingly, we find that locally dominant and rare species, which are geographically widespread in our data, have an equally high rate of elevated extinction due to declining populations through large-scale land degradation.</p> </section> <section> <h3> Main conclusions</h3> <p>By linking patterns and predictors of community dominance and rarity to extinction risk, our results suggest that also widespread species shoul
目的生态和人为因素会改变当地森林群落中优势树种和稀有树种的数量,从而影响物种组成和生态系统功能。为了给森林和保护管理提供信息,了解当地树木群落中优势和稀有树种的驱动因素非常重要。我们将回答以下研究问题:(1)树木群落的优势和稀有性模式是什么?(2)哪些生态和人为因素可以预测这些模式?方法我们使用了 120 万块森林小块,并将当地树木优势度量化为单一最优势物种的相对小块基底面积,将当地稀有度量化为合计占小块基底面积至少 10%的物种的百分比。我们利用机器学习模型绘制了全球群落优势度和稀有度图,并利用线性模型评估了生态和人为预测因子。结果群落优势度和稀有度呈现出截然不同的纬度趋势,北方森林的优势度高,而热带森林的稀有度高。年降水量的增加降低了群落优势度,这可能是因为降水量与树木密度和丰富度的增加有关。此外,林分年龄与群落优势度呈正相关,这是因为最优势物种的茎直径增加了。主要结论通过将群落优势度和稀有度的模式和预测因素与灭绝风险联系起来,我们的研究结果表明,在大规模管理和保护实践中也应考虑到分布广泛的物种。
{"title":"Dominance and rarity in tree communities across the globe: Patterns, predictors and threats","authors":"Iris Hordijk,&nbsp;Lalasia Bialic-Murphy,&nbsp;Thomas Lauber,&nbsp;Devin Routh,&nbsp;Lourens Poorter,&nbsp;Malin C. Rivers,&nbsp;Hans ter Steege,&nbsp;Jingjing Liang,&nbsp;Peter B. Reich,&nbsp;Sergio de-Miguel,&nbsp;Gert-Jan Nabuurs,&nbsp;Javier G. P. Gamarra,&nbsp;Han Y. H. Chen,&nbsp;Mo Zhou,&nbsp;Susan K. Wiser,&nbsp;Hans Pretzsch,&nbsp;Alain Paquette,&nbsp;Nicolas Picard,&nbsp;Bruno Hérault,&nbsp;Jean-Francois Bastin,&nbsp;Giorgio Alberti,&nbsp;Meinrad Abegg,&nbsp;Yves C. Adou Yao,&nbsp;Angelica M. Almeyda Zambrano,&nbsp;Braulio V. Alvarado,&nbsp;Esteban Alvarez-Davila,&nbsp;Patricia Alvarez-Loayza,&nbsp;Luciana F. Alves,&nbsp;Christian Ammer,&nbsp;Clara Antón-Fernández,&nbsp;Alejandro Araujo-Murakami,&nbsp;Luzmila Arroyo,&nbsp;Valerio Avitabile,&nbsp;Gerardo A. Aymard Corredor,&nbsp;Timothy Baker,&nbsp;Olaf Banki,&nbsp;Jorcely Barroso,&nbsp;Meredith L. Bastian,&nbsp;Luca Birigazzi,&nbsp;Philippe Birnbaum,&nbsp;Robert Bitariho,&nbsp;Pascal Boeckx,&nbsp;Frans Bongers,&nbsp;Olivier Bouriaud,&nbsp;Pedro H. S. Brancalion,&nbsp;Susanne Brandl,&nbsp;Roel Brienen,&nbsp;Eben N. Broadbent,&nbsp;Helge Bruelheide,&nbsp;Filippo Bussotti,&nbsp;Roberto Cazzolla Gatti,&nbsp;Ricardo G. Cesar,&nbsp;Goran Cesljar,&nbsp;Robin Chazdon,&nbsp;Chelsea Chisholm,&nbsp;Emil Cienciala,&nbsp;Connie J. Clark,&nbsp;David B. Clar,&nbsp;Gabriel Colletta,&nbsp;David Coomes,&nbsp;Fernando Cornejo Valverde,&nbsp;Jose J. Corral-Rivas,&nbsp;Philip Crim,&nbsp;Jonathan Cumming,&nbsp;Selvadurai Dayanandan,&nbsp;André L. de Gasper,&nbsp;Mathieu Decuyper,&nbsp;Géraldine Derroire,&nbsp;Ben DeVries,&nbsp;Ilija Djordjevic,&nbsp;Amaral Iêda,&nbsp;Aurélie Dourdain,&nbsp;Jiri Dolezal,&nbsp;Nestor Laurier Engone Obiang,&nbsp;Brian Enquist,&nbsp;Teresa Eyre,&nbsp;Adandé Belarmain Fandohan,&nbsp;Tom M. Fayle,&nbsp;Leandro V. Ferreira,&nbsp;Ted R. Feldpausch,&nbsp;Leena Finér,&nbsp;Markus Fischer,&nbsp;Christine Fletcher,&nbsp;Lorenzo Frizzera,&nbsp;Damiano Gianelle,&nbsp;Henry B. Glick,&nbsp;David Harris,&nbsp;Andrew Hector,&nbsp;Andreas Hemp,&nbsp;Geerten Hengeveld,&nbsp;John Herbohn,&nbsp;Annika Hillers,&nbsp;Eurídice N. Honorio Coronado,&nbsp;Cang Hui,&nbsp;Hyunkook Cho,&nbsp;Thomas Ibanez,&nbsp;Ilbin Jung,&nbsp;Nobuo Imai,&nbsp;Andrzej M. Jagodzinski,&nbsp;Bogdan Jaroszewicz,&nbsp;Vivian Johannsen,&nbsp;Carlos A. Joly,&nbsp;Tommaso Jucker,&nbsp;Viktor Karminov,&nbsp;Kuswata Kartawinata,&nbsp;Elizabeth Kearsley,&nbsp;David Kenfack,&nbsp;Deborah Kennard,&nbsp;Sebastian Kepfer-Rojas,&nbsp;Gunnar Keppel,&nbsp;Mohammed Latif Khan,&nbsp;Timothy Killeen,&nbsp;Hyun Seok Kim,&nbsp;Kanehiro Kitayama,&nbsp;Michael Köhl,&nbsp;Henn Korjus,&nbsp;Florian Kraxner,&nbsp;Diana Laarmann,&nbsp;Mait Lang,&nbsp;Simon Lewis,&nbsp;Huicui Lu,&nbsp;Natalia Lukina,&nbsp;Brian Maitner,&nbsp;Yadvinder Malhi,&nbsp;Eric Marcon,&nbsp;Beatriz Schwantes Marimon,&nbsp;Ben Hur Marimon-Junior,&nbsp;Andrew Robert Marshall,&nbsp;Emanuel Martin,&nbsp;Olga Martynenko,&nbsp;Jorge A. Meave,&nbsp;Omar Melo-Cruz,&nbsp;Casimiro Mendoza,&nbsp;Cory Merow,&nbsp;Stanislaw Miscicki,&nbsp;Abel Monteagudo Mendoza,&nbsp;Vanessa Moreno,&nbsp;Sharif A. Mukul,&nbsp;Philip Mundhenk,&nbsp;Maria G. Nava-Miranda,&nbsp;David Neill,&nbsp;Victor Neldner,&nbsp;Radovan Nevenic,&nbsp;Michael Ngugi,&nbsp;Pascal A. Niklaus,&nbsp;Jacek Oleksyn,&nbsp;Petr Ontikov,&nbsp;Edgar Ortiz-Malavasi,&nbsp;Yude Pan,&nbsp;Alexander Parada-Gutierrez,&nbsp;Elena Parfenova,&nbsp;Minjee Park,&nbsp;Marc Parren,&nbsp;Narayanaswamy Parthasarathy,&nbsp;Pablo L. Peri,&nbsp;Sebastian Pfautsch,&nbsp;Oliver L. Phillips,&nbsp;Maria Teresa Piedade,&nbsp;Daniel Piotto,&nbsp;Nigel C. A. Pitman,&nbsp;Irina Polo,&nbsp;Axel Dalberg Poulsen,&nbsp;John R. Poulsen,&nbsp;Freddy Ramirez Arevalo,&nbsp;Zorayda Restrepo-Correa,&nbsp;Mirco Rodeghiero,&nbsp;Samir Rolim,&nbsp;Anand Roopsind,&nbsp;Francesco Rovero,&nbsp;Ervan Rutishauser,&nbsp;Purabi Saikia,&nbsp;Christian Salas-Eljatib,&nbsp;Peter Schall,&nbsp;Dmitry Schepaschenko,&nbsp;Michael Scherer-Lorenzen,&nbsp;Bernhard Schmid,&nbsp;Jochen Schöngart,&nbsp;Eric B. Searle,&nbsp;Vladimír Seben,&nbsp;Josep M. Serra-Diaz,&nbsp;Douglas Sheil,&nbsp;Anatoly Shvidenko,&nbsp;Javier Silva-Espejo,&nbsp;Marcos Silveira,&nbsp;James Singh,&nbsp;Plinio Sist,&nbsp;Ferry Slik,&nbsp;Bonaventure Sonké,&nbsp;Alexandre F. Souza,&nbsp;Krzysztof Stereńczak,&nbsp;Jens-Christian Svenning,&nbsp;Miroslav Svoboda,&nbsp;Ben Swanepoel,&nbsp;Natalia Targhetta,&nbsp;Nadja Tchebakova,&nbsp;Raquel Thomas,&nbsp;Elena Tikhonova,&nbsp;Peter Umunay,&nbsp;Vladimir Usoltsev,&nbsp;Renato Valencia,&nbsp;Fernando Valladares,&nbsp;Fons van der Plas,&nbsp;Tran Van Do,&nbsp;Michael E. Van Nuland,&nbsp;Rodolfo Vasquez Martinez,&nbsp;Hans Verbeeck,&nbsp;Helder Viana,&nbsp;Alexander C. Vibrans,&nbsp;Simone Vieira,&nbsp;Klaus von Gadow,&nbsp;Hua-Feng Wang,&nbsp;James Watson,&nbsp;Gijsbert D. A. Werner,&nbsp;Florian Wittmann,&nbsp;Verginia Wortel,&nbsp;Roderick Zagt,&nbsp;Tomasz Zawila-Niedzwiecki,&nbsp;Chunyu Zhang,&nbsp;Xiuhai Zhao,&nbsp;Zhi-Xin Zhu,&nbsp;Irie Casimir Zo-Bi,&nbsp;Daniel S. Maynard,&nbsp;Thomas W. Crowther","doi":"10.1111/geb.13889","DOIUrl":"10.1111/geb.13889","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Aim&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Ecological and anthropogenic factors shift the abundances of dominant and rare tree species within local forest communities, thus affecting species composition and ecosystem functioning. To inform forest and conservation management it is important to understand the drivers of dominance and rarity in local tree communities. We answer the following research questions: (1) What are the patterns of dominance and rarity in tree communities? (2) Which ecological and anthropogenic factors predict these patterns? And (3) what is the extinction risk of locally dominant and rare tree species?&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Location&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Global.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Time period&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;1990–2017.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Major taxa studied&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Trees.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Methods&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;We used 1.2 million forest plots and quantified local tree dominance as the relative plot basal area of the single most dominant species and local rarity as the percentage of species that contribute together to the least 10% of plot basal area. We mapped global community dominance and rarity using machine learning models and evaluated the ecological and anthropogenic predictors with linear models. Extinction risk, for example threatened status, of geographically widespread dominant and rare species was evaluated.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Results&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Community dominance and rarity show contrasting latitudinal trends, with boreal forests having high levels of dominance and tropical forests having high levels of rarity. Increasing annual precipitation reduces community dominance, probably because precipitation is related to an increase in tree density and richness. Additionally, stand age is positively related to community dominance, due to stem diameter increase of the most dominant species. Surprisingly, we find that locally dominant and rare species, which are geographically widespread in our data, have an equally high rate of elevated extinction due to declining populations through large-scale land degradation.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Main conclusions&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;By linking patterns and predictors of community dominance and rarity to extinction risk, our results suggest that also widespread species shoul","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 10","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13889","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141726118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disentangling ecological drivers of interspecific achromatic plumage variation in birds 厘清鸟类种间消色差羽色变异的生态驱动因素
IF 6.3 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-07-14 DOI: 10.1111/geb.13892
Su Wu, Kai Zhang, Bin Wang, Pinjia Que, Biao Yang, Yu Xu

Aim

Understanding the ecological determinants of interspecific achromatic (light-to-dark) plumage variation in birds is crucial yet challenging due to the complex interplay of climatic, habitat-related, and morphological influences. This study aimed to disentangle the effects of temperature, precipitation, habitat openness, body mass and hand-wing index (HWI, a widely used single-parameter proxy for the extent to which a species relies on flight) on shaping achromatic plumage variation among bird species.

Location

Global.

Time Period

Contemporary.

Major Taxa Studied

Birds.

Methods

Based on data from over 8000 sessile bird species globally, we employed phylogenetic linear regressions to account for achromatic plumage colour in relation to temperature, precipitation, habitat openness, body mass and HWI, while correcting for phylogenetic non-independence between species. Furthermore, we conducted phylogenetic path analyses to decompose direct from indirect effects.

Results

We found that temperature, precipitation, habitat openness and body mass exerted separate but interactive effects on the variation in achromatic colour across species. Species inhabiting cold, wet or densely vegetated environments were darker coloured, while smaller species were lighter. Darker plumage was more strongly related to higher precipitation in colder regions for nocturnal species. For diurnal species, darker plumage was more closely associated with higher precipitation in more open habitats, whereas lighter plumage was more linked to lower mass in denser habitats. Noteworthy was the identification of a substantial correlation between achromatic colour and HWI. Diurnal species that are more aerial were lighter. Conversely, nocturnal flyers, especially females, tended to be darker.

Main Conclusions

The findings highlight the multifaceted nature of plumage coloration evolution, with adaptations for thermal efficiency, crypsis, signalling, waterproofing or protection against bacteria. However, the variable relative importance of these factors among groups emphasizes the significance of each factor in different contexts.

目的:由于气候、栖息地和形态等因素的复杂影响,了解鸟类种间消色(明暗)羽色变化的生态决定因素至关重要,但也极具挑战性。本研究旨在厘清气温、降水、栖息地开阔度、体重和手翅指数(HWI,一种被广泛使用的代表物种依赖飞行程度的单一参数)对形成鸟类物种间消色差羽色差异的影响。研究的主要类群鸟类。方法基于全球 8000 多种无梗鸟类的数据,我们采用系统发育线性回归的方法来解释消色羽色与温度、降水、栖息地开放度、体重和 HWI 的关系,同时纠正物种间系统发育的非独立性。结果我们发现,温度、降水、栖息地开阔度和体重对不同物种的消色差产生了单独但交互的影响。栖息在寒冷、潮湿或植被茂密环境中的物种羽色较深,而体型较小的物种羽色较浅。对于夜行性物种来说,羽色较深与寒冷地区降水量较高的关系更为密切。对于昼伏夜出的物种来说,在较为开阔的栖息地,深色羽色与较高的降水量关系更为密切,而在较为密集的栖息地,浅色羽色与较低的质量关系更为密切。值得注意的是,消色差与 HWI 之间存在很大的相关性。昼伏夜出的物种中,空中活动较多的个体羽色较浅。主要结论这些发现突出了羽色进化的多面性,包括对热效率、隐身、信号、防水或抵御细菌的适应。然而,这些因素在不同群体中的相对重要性各不相同,这强调了每个因素在不同情况下的重要性。
{"title":"Disentangling ecological drivers of interspecific achromatic plumage variation in birds","authors":"Su Wu,&nbsp;Kai Zhang,&nbsp;Bin Wang,&nbsp;Pinjia Que,&nbsp;Biao Yang,&nbsp;Yu Xu","doi":"10.1111/geb.13892","DOIUrl":"10.1111/geb.13892","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>Understanding the ecological determinants of interspecific achromatic (light-to-dark) plumage variation in birds is crucial yet challenging due to the complex interplay of climatic, habitat-related, and morphological influences. This study aimed to disentangle the effects of temperature, precipitation, habitat openness, body mass and hand-wing index (HWI, a widely used single-parameter proxy for the extent to which a species relies on flight) on shaping achromatic plumage variation among bird species.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Global.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Time Period</h3>\u0000 \u0000 <p>Contemporary.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Major Taxa Studied</h3>\u0000 \u0000 <p>Birds.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>Based on data from over 8000 sessile bird species globally, we employed phylogenetic linear regressions to account for achromatic plumage colour in relation to temperature, precipitation, habitat openness, body mass and HWI, while correcting for phylogenetic non-independence between species. Furthermore, we conducted phylogenetic path analyses to decompose direct from indirect effects.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>We found that temperature, precipitation, habitat openness and body mass exerted separate but interactive effects on the variation in achromatic colour across species. Species inhabiting cold, wet or densely vegetated environments were darker coloured, while smaller species were lighter. Darker plumage was more strongly related to higher precipitation in colder regions for nocturnal species. For diurnal species, darker plumage was more closely associated with higher precipitation in more open habitats, whereas lighter plumage was more linked to lower mass in denser habitats. Noteworthy was the identification of a substantial correlation between achromatic colour and HWI. Diurnal species that are more aerial were lighter. Conversely, nocturnal flyers, especially females, tended to be darker.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Conclusions</h3>\u0000 \u0000 <p>The findings highlight the multifaceted nature of plumage coloration evolution, with adaptations for thermal efficiency, crypsis, signalling, waterproofing or protection against bacteria. However, the variable relative importance of these factors among groups emphasizes the significance of each factor in different contexts.</p>\u0000 </section>\u0000 </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 10","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141618294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Climate and ecosystem type affect the correlated evolution of body size and trophic position in fishes 气候和生态系统类型影响鱼类体型和营养位置的相关演变
IF 6.3 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-07-07 DOI: 10.1111/geb.13891
Guilherme Dalponti, Adriano Caliman, Josef C. Uyeda, Rafael D. Guariento
<div> <section> <h3> Aim</h3> <p>The relationship between body size and trophic position (BS–TP) typically exhibits a positive correlation in aquatic foodwebs, but the strength of this relationship is contingent on ecosystem type and climate. Different hypotheses have been proposed to elucidate climate and ecosystem type effects on the BS–TP relationship for ray-finned fish. However, our understanding of whether such a relationship evolved in a correlated fashion, spanning various climates and ecosystem types, remains limited.</p> </section> <section> <h3> Location</h3> <p>Temperate and tropical marine and freshwater ecosystems.</p> </section> <section> <h3> Time Period</h3> <p>Present to millions of years ago.</p> </section> <section> <h3> Major Taxa Studied</h3> <p>Ray-finned fish.</p> </section> <section> <h3> Methods</h3> <p>We used a phylogenetic tree and TP and BS data of more than a thousand freshwater and marine ray-finned fishes, from distinct climates and ecosystems, to investigate patterns on macroevolutionary time scales of the evolutionary correlation of BS and TP. As part of our investigation, we also ran analyses excluding herbivores and detritivores from the dataset, then further focusing solely on carnivores.</p> </section> <section> <h3> Results</h3> <p>We found distinct patterns of the BS–TP evolutionary correlation for different climates and ecosystems. The evolutionary correlation between BS and TP was significant for all ecosystem type–climate combinations, except for tropical freshwater ecosystems. The results remained consistent even after accounting for phylogenetic uncertainty and when excluding herbivores and detritivores from the analysis.</p> </section> <section> <h3> Main Conclusions</h3> <p>We found a weaker evolutionary correlation between BS and TP in tropical freshwater ecosystems. These findings are consistent with the stronger BS–TP relationship between extant taxa in temperate climates compared to the tropics, illustrating how evolutionary dynamics might have influenced the trophic structure of fish and contributed to shaping macroecological patterns of the BS–TP relationship. Our findings suggest that limitations that hinder evolutionary integration between BS and TP might be primarily attributed to energetic constraints imposed by temperature and the availability of C-rich food resources at the base of the foodweb.</p> </section> </d
目的在水生食物网中,体型与营养位置(BS-TP)的关系通常呈正相关,但这种关系的强度取决于生态系统类型和气候。为了阐明气候和生态系统类型对魟鳍鱼类体型-营养位置关系的影响,人们提出了不同的假设。地点温带和热带海洋及淡水生态系统时间段现在到数百万年前。研究的主要类群鳐形目鱼类。方法我们利用来自不同气候和生态系统的千余种淡水和海洋鳐形目鱼类的系统发生树、TP 和 BS 数据,研究了 BS 和 TP 进化相关性在宏观进化时间尺度上的模式。作为研究的一部分,我们还进行了分析,排除了数据集中的食草动物和食腐动物,然后进一步只关注食肉动物。除热带淡水生态系统外,BS 和 TP 之间的进化相关性在所有生态系统类型-气候组合中都很显著。即使考虑了系统发育的不确定性,并将食草动物和食腐动物排除在分析之外,结果仍然是一致的。这些发现与温带气候中现存类群之间较热带地区更强的 BS-TP 关系相一致,说明了进化动态如何影响了鱼类的营养结构,并促成了 BS-TP 关系的宏观生态模式的形成。我们的研究结果表明,阻碍 BS 与 TP 之间进化整合的限制因素可能主要归因于温度和食物网底部富含 C 的食物资源的可用性所造成的能量限制。
{"title":"Climate and ecosystem type affect the correlated evolution of body size and trophic position in fishes","authors":"Guilherme Dalponti,&nbsp;Adriano Caliman,&nbsp;Josef C. Uyeda,&nbsp;Rafael D. Guariento","doi":"10.1111/geb.13891","DOIUrl":"10.1111/geb.13891","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Aim&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;The relationship between body size and trophic position (BS–TP) typically exhibits a positive correlation in aquatic foodwebs, but the strength of this relationship is contingent on ecosystem type and climate. Different hypotheses have been proposed to elucidate climate and ecosystem type effects on the BS–TP relationship for ray-finned fish. However, our understanding of whether such a relationship evolved in a correlated fashion, spanning various climates and ecosystem types, remains limited.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Location&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Temperate and tropical marine and freshwater ecosystems.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Time Period&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Present to millions of years ago.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Major Taxa Studied&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Ray-finned fish.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Methods&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;We used a phylogenetic tree and TP and BS data of more than a thousand freshwater and marine ray-finned fishes, from distinct climates and ecosystems, to investigate patterns on macroevolutionary time scales of the evolutionary correlation of BS and TP. As part of our investigation, we also ran analyses excluding herbivores and detritivores from the dataset, then further focusing solely on carnivores.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Results&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;We found distinct patterns of the BS–TP evolutionary correlation for different climates and ecosystems. The evolutionary correlation between BS and TP was significant for all ecosystem type–climate combinations, except for tropical freshwater ecosystems. The results remained consistent even after accounting for phylogenetic uncertainty and when excluding herbivores and detritivores from the analysis.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Main Conclusions&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;We found a weaker evolutionary correlation between BS and TP in tropical freshwater ecosystems. These findings are consistent with the stronger BS–TP relationship between extant taxa in temperate climates compared to the tropics, illustrating how evolutionary dynamics might have influenced the trophic structure of fish and contributed to shaping macroecological patterns of the BS–TP relationship. Our findings suggest that limitations that hinder evolutionary integration between BS and TP might be primarily attributed to energetic constraints imposed by temperature and the availability of C-rich food resources at the base of the foodweb.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 &lt;/d","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 10","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141561311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Challenges in estimating species' age from phylogenetic trees 从系统发育树估计物种年龄的挑战
IF 6.3 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-07-04 DOI: 10.1111/geb.13890
Carlos Calderón del Cid, Torsten Hauffe, Juan D. Carrillo, Michael R. May, Rachel C. M. Warnock, Daniele Silvestro

Aim

Species age, the elapsed time since origination, can give insight into how species longevity might influence eco-evolutionary dynamics, which has been hypothesized to influence extinction risk. Traditionally, species' ages have been estimated from fossil records. However, numerous studies have recently used the branch lengths of time-calibrated phylogenies as estimates of the ages of extant species. This approach poses problems because phylogenetic trees only contain direct information about species identity at the tips and not along the branches. Here, we show that incomplete taxon sampling, extinction and different assumptions about speciation modes can significantly alter the relationship between true species age and phylogenetic branch lengths, leading to high error rates. We found that these biases can lead to erroneous interpretations of eco-evolutionary patterns derived from comparing phylogenetic age and other traits, such as extinction risk.

Innovation

For bifurcating speciation, the default assumption in most analyses of species age, we propose a probabilistic approach based on the properties of a birth–death process to improve the estimation of species ages. Our approach can reduce the error by one order of magnitude under cases of high extinction and a high percentage of unsampled extant species.

Main conclusion

Our results call for caution in interpreting the relationship between phylogenetic ages and eco-evolutionary traits, as this can lead to biased and erroneous conclusions. We show that, under the assumption of bifurcating speciation, we can obtain unbiased approximations of species age by combining information from branch lengths with the expectations of a birth–death process.

目的物种年龄是指物种自起源以来所经历的时间,它可以让人们了解物种的寿命如何影响生态进化动态,而生态进化动态被认为会影响物种灭绝的风险。传统上,物种的年龄是根据化石记录估算的。然而,最近有许多研究利用时间校准系统发生的分支长度来估计现存物种的年龄。这种方法存在一些问题,因为系统发生树只包含顶端物种身份的直接信息,而不包含分支的信息。在这里,我们展示了不完整的分类群取样、物种灭绝以及对物种演化模式的不同假设都会显著改变真实物种年龄与系统发育分支长度之间的关系,从而导致较高的误差率。我们发现,这些偏差会导致通过比较系统发育年龄和其他特征(如灭绝风险)而得出的生态进化模式的错误解释。对于大多数物种年龄分析中默认的分叉模式,我们提出了一种基于出生-死亡过程性质的概率方法,以改进物种年龄的估计。在物种高度灭绝和现存物种未取样比例较高的情况下,我们的方法可以将误差降低一个数量级。主要结论我们的研究结果要求在解释系统发育年龄与生态进化特征之间的关系时要谨慎,因为这可能会导致结论的偏差和错误。我们的研究结果表明,在物种分叉的假设条件下,我们可以通过将分支长度的信息与出生-死亡过程的预期结合起来,获得无偏的物种年龄近似值。
{"title":"Challenges in estimating species' age from phylogenetic trees","authors":"Carlos Calderón del Cid,&nbsp;Torsten Hauffe,&nbsp;Juan D. Carrillo,&nbsp;Michael R. May,&nbsp;Rachel C. M. Warnock,&nbsp;Daniele Silvestro","doi":"10.1111/geb.13890","DOIUrl":"10.1111/geb.13890","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>Species age, the elapsed time since origination, can give insight into how species longevity might influence eco-evolutionary dynamics, which has been hypothesized to influence extinction risk. Traditionally, species' ages have been estimated from fossil records. However, numerous studies have recently used the branch lengths of time-calibrated phylogenies as estimates of the ages of extant species. This approach poses problems because phylogenetic trees only contain direct information about species identity at the tips and not along the branches. Here, we show that incomplete taxon sampling, extinction and different assumptions about speciation modes can significantly alter the relationship between true species age and phylogenetic branch lengths, leading to high error rates. We found that these biases can lead to erroneous interpretations of eco-evolutionary patterns derived from comparing phylogenetic age and other traits, such as extinction risk.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Innovation</h3>\u0000 \u0000 <p>For bifurcating speciation, the default assumption in most analyses of species age, we propose a probabilistic approach based on the properties of a birth–death process to improve the estimation of species ages. Our approach can reduce the error by one order of magnitude under cases of high extinction and a high percentage of unsampled extant species.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main conclusion</h3>\u0000 \u0000 <p>Our results call for caution in interpreting the relationship between phylogenetic ages and eco-evolutionary traits, as this can lead to biased and erroneous conclusions. We show that, under the assumption of bifurcating speciation, we can obtain unbiased approximations of species age by combining information from branch lengths with the expectations of a birth–death process.</p>\u0000 </section>\u0000 </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 10","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13890","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141546042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leaf area predicts conspecific spatial aggregation of woody species 叶面积可预测木本物种的同种空间聚集情况
IF 6.3 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-06-28 DOI: 10.1111/geb.13887
Jingjing Xi, Guolin C. Li, Min Wang, Stavros D. Veresoglou
<div> <section> <h3> Aim</h3> <p>Addressing how woody plant species are distributed in space can reveal inconspicuous drivers that structure plant communities. The spatial structure of conspecifics varies not only at local scales across co-existing plant species but also at larger biogeographical scales with climatic parameters and habitat properties. The possibility that biogeographical drivers shape the spatial structure of plants, however, has not received sufficient attention.</p> </section> <section> <h3> Location</h3> <p>Global synthesis.</p> </section> <section> <h3> Time Period</h3> <p>1997–2022.</p> </section> <section> <h3> Major Taxa Studied</h3> <p>Woody angiosperms and conifers.</p> </section> <section> <h3> Methods</h3> <p>We carried out a quantitative synthesis to capture the interplay between local scale and larger scale drivers. We modelled conspecific spatial aggregation as a binary response through logistic models and Ripley's <i>L</i> statistics and the distance at which the point process was least random with mixed effects linear models. Our predictors covered a range of plant traits, climatic predictors and descriptors of the habitat.</p> </section> <section> <h3> Results</h3> <p>We hypothesized that plant traits, when summarized by local scale predictors, exceed in importance biogeographical drivers in determining the spatial structure of conspecifics across woody systems. This was only the case in relation to the frequency with which we observed aggregated distributions. The probability of observing spatial aggregation and the intensity of it was higher for plant species with large leaves but further depended on climatic parameters and mycorrhiza.</p> </section> <section> <h3> Main Conclusions</h3> <p>Compared to climate variables, plant traits perform poorly in explaining the spatial structure of woody plant species, even though leaf area is a decisive plant trait that is related to whether we observe homogenous spatial aggregation and its intensity. Despite the limited variance explained by our models, we found that the spatial structure of woody plants is subject to consistent biogeographical constraints and that these exceed beyond descriptors of individual species, which we captured here through leaf area.</p>
目的研究木本植物物种在空间中的分布情况可以揭示构建植物群落的不起眼的驱动因素。同种植物的空间结构不仅在共存植物物种的局部尺度上存在差异,而且在更大的生物地理尺度上也会随着气候参数和生境特性的变化而变化。然而,生物地理驱动因素塑造植物空间结构的可能性尚未得到足够重视。方法我们进行了定量综合研究,以捕捉局部尺度和更大尺度驱动因素之间的相互作用。我们通过 Logistic 模型和 Ripley's L 统计法将同种空间聚集模拟为二元响应,并通过混合效应线性模型模拟了点过程的最小随机距离。我们的预测因子包括一系列植物性状、气候预测因子和栖息地描述因子。结果我们假设,如果用局部尺度的预测因子来概括,植物性状在决定整个木本系统中同种植物空间结构方面的重要性超过生物地理驱动因素。但这只与我们观察到聚集分布的频率有关。主要结论与气候变量相比,植物性状在解释木本植物物种的空间结构方面表现较差,尽管叶面积是植物性状的决定性因素,与我们是否观察到同种空间聚集及其强度有关。尽管我们的模型解释的方差有限,但我们发现木本植物的空间结构受到一致的生物地理学限制,而且这些限制超出了单个物种的描述,我们在这里通过叶面积捕捉到了这些限制。
{"title":"Leaf area predicts conspecific spatial aggregation of woody species","authors":"Jingjing Xi,&nbsp;Guolin C. Li,&nbsp;Min Wang,&nbsp;Stavros D. Veresoglou","doi":"10.1111/geb.13887","DOIUrl":"10.1111/geb.13887","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Aim&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Addressing how woody plant species are distributed in space can reveal inconspicuous drivers that structure plant communities. The spatial structure of conspecifics varies not only at local scales across co-existing plant species but also at larger biogeographical scales with climatic parameters and habitat properties. The possibility that biogeographical drivers shape the spatial structure of plants, however, has not received sufficient attention.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Location&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Global synthesis.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Time Period&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;1997–2022.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Major Taxa Studied&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Woody angiosperms and conifers.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Methods&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;We carried out a quantitative synthesis to capture the interplay between local scale and larger scale drivers. We modelled conspecific spatial aggregation as a binary response through logistic models and Ripley's &lt;i&gt;L&lt;/i&gt; statistics and the distance at which the point process was least random with mixed effects linear models. Our predictors covered a range of plant traits, climatic predictors and descriptors of the habitat.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Results&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;We hypothesized that plant traits, when summarized by local scale predictors, exceed in importance biogeographical drivers in determining the spatial structure of conspecifics across woody systems. This was only the case in relation to the frequency with which we observed aggregated distributions. The probability of observing spatial aggregation and the intensity of it was higher for plant species with large leaves but further depended on climatic parameters and mycorrhiza.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Main Conclusions&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Compared to climate variables, plant traits perform poorly in explaining the spatial structure of woody plant species, even though leaf area is a decisive plant trait that is related to whether we observe homogenous spatial aggregation and its intensity. Despite the limited variance explained by our models, we found that the spatial structure of woody plants is subject to consistent biogeographical constraints and that these exceed beyond descriptors of individual species, which we captured here through leaf area.&lt;/p&gt;\u0000 ","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 10","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13887","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141462973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controlled experiments fail to capture plant phenological response to chilling temperature 对照实验未能捕捉到植物对寒冷温度的物候反应
IF 6.3 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-06-28 DOI: 10.1111/geb.13888
Huanjiong Wang, Shaozhi Lin, Junhu Dai, Quansheng Ge

Aim

Controlled experiments are increasingly important for investigating how and to what degree plant phenology responds to global climate change. Current experiments underline that chilling and forcing temperatures are two major environmental cues shaping the budburst date of temperate species, but whether experiments could reflect the observed responses to chilling has rarely been examined.

Location

Europe and North America.

Time periods

1951–2021.

Major taxa studied

Temperate trees and shrubs.

Methods

Using an experimental database of budburst dates for 50 species derived from previous literature and observational data of the same species at 12,579 stations in Europe and 1469 stations in the USA, we compared the response of forcing requirement (FR) of the budburst date to chilling accumulation (CA) between observations and experiments using a common measure of FR and CA.

Results

The median, variance and probability distribution of CA-FR curves differed significantly between experiments and observations in most cases. The distinction in chilling effects between experiments and observations could be attributed to the difference in thermal space, heat stress, genetic variation among provenances, different forcing treatments adopted and plant materials used in the experiments.

Main conclusions

Our results suggest that the uncertainty of phenological models based solely on the experimental data needs to be re-evaluated when predicting future spring phenological responses across broad spatial scales.

目的对照实验对于研究植物物候如何以及在多大程度上响应全球气候变化越来越重要。目前的实验强调,寒冷和强迫温度是影响温带物种萌芽日期的两个主要环境因素,但实验是否能反映观察到的对寒冷的反应却很少有人研究。方法利用从以往文献中获得的 50 个物种的萌芽期实验数据库以及欧洲 12,579 个观测站和美国 1469 个观测站的相同物种的观测数据,采用通用的萌芽期强迫要求(FR)和冷冻累积(CA)测量方法,比较了观测和实验之间萌芽期强迫要求对冷冻累积(CA)的响应。主要结论我们的研究结果表明,在预测未来广泛空间尺度上的春季物候反应时,需要重新评估仅基于实验数据的物候模型的不确定性。
{"title":"Controlled experiments fail to capture plant phenological response to chilling temperature","authors":"Huanjiong Wang,&nbsp;Shaozhi Lin,&nbsp;Junhu Dai,&nbsp;Quansheng Ge","doi":"10.1111/geb.13888","DOIUrl":"10.1111/geb.13888","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>Controlled experiments are increasingly important for investigating how and to what degree plant phenology responds to global climate change. Current experiments underline that chilling and forcing temperatures are two major environmental cues shaping the budburst date of temperate species, but whether experiments could reflect the observed responses to chilling has rarely been examined.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Europe and North America.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Time periods</h3>\u0000 \u0000 <p>1951–2021.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Major taxa studied</h3>\u0000 \u0000 <p>Temperate trees and shrubs.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>Using an experimental database of budburst dates for 50 species derived from previous literature and observational data of the same species at 12,579 stations in Europe and 1469 stations in the USA, we compared the response of forcing requirement (FR) of the budburst date to chilling accumulation (CA) between observations and experiments using a common measure of FR and CA.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The median, variance and probability distribution of CA-FR curves differed significantly between experiments and observations in most cases. The distinction in chilling effects between experiments and observations could be attributed to the difference in thermal space, heat stress, genetic variation among provenances, different forcing treatments adopted and plant materials used in the experiments.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main conclusions</h3>\u0000 \u0000 <p>Our results suggest that the uncertainty of phenological models based solely on the experimental data needs to be re-evaluated when predicting future spring phenological responses across broad spatial scales.</p>\u0000 </section>\u0000 </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 10","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141462865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dispersal, glacial refugia and temperature shape biogeographical patterns in European freshwater biodiversity 欧洲淡水生物多样性的生物地理格局由散布、冰川避难所和温度决定
IF 6.3 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-06-27 DOI: 10.1111/geb.13886
Daniela Cortés-Guzmán, James Sinclair, Christian Hof, Jan B. Kalusche, Peter Haase
<div> <section> <h3> Aim</h3> <p>Temperature is regarded as an important driver of broad-scale biodiversity patterns. However, less is known of the role of dispersal in shaping broad-scale species and trait distributions, particularly given that species had to disperse out of glacial refugia after the Last Glacial Maximum (LGM). Here, we used a unique dataset describing the distributions of freshwater fauna combined with trait information to evaluate biodiversity relationships to distance to glacial refugia and temperature.</p> </section> <section> <h3> Location</h3> <p>Twenty-five biogeographical regions across Europe.</p> </section> <section> <h3> Time Period</h3> <p>Data from species occurrence were gathered in 1978.</p> </section> <section> <h3> Major Taxa Studied</h3> <p>A total of 2816 freshwater invertebrate species and 230 freshwater fish species.</p> </section> <section> <h3> Methods</h3> <p>Using the occurrence of invertebrate and fish species in the biogeographical regions, and publicly available trait information, we analysed patterns in diversity indices (i.e. species richness, trait richness and trait redundancy), trait distribution and species and trait <i>β</i>-diversity, and their relationship to distance to known glacial refugia and regional temperature.</p> </section> <section> <h3> Results</h3> <p>We show that distributions of European invertebrate and fish species and traits are primarily explained by distance to refugia and its covarying effect with temperature (i.e. refugia tend to be warmer). Specifically, species and trait richness were higher in regions proximate to refugia and lower in distant regions. Additionally, communities in colder and distant regions exhibited reduced niche dimensions and slower life histories, suggesting increased vulnerability to environmental change.</p> </section> <section> <h3> Main Conclusions</h3> <p>Species more distant from their refugia were characterized by higher dispersal capacities. Accordingly, since the LGM, only a subset of species was able to colonize distant regions, while many species have spatial ranges constrained by their dispersal capacity, increasing their potential for extinction under ongoing climate change. Therefore, additional conservation measures considering species'
目的温度被认为是大尺度生物多样性模式的重要驱动因素。然而,人们对物种扩散在形成大尺度物种和性状分布中的作用知之甚少,特别是考虑到物种在末次冰川极盛时期(LGM)后必须从冰川避难所扩散出去。在此,我们利用描述淡水动物分布的独特数据集,结合性状信息,评估生物多样性与冰川避难所距离和温度的关系。研究的主要分类群共有 2816 种淡水无脊椎动物和 230 种淡水鱼类。方法利用无脊椎动物和鱼类物种在生物地理区域的出现情况以及可公开获得的性状信息,我们分析了多样性指数(即物种丰富度、性状丰富度和性状冗余度)、性状分布以及物种和性状β多样性的模式,以及它们与已知冰川避难所的距离和区域温度的关系。结果我们发现,欧洲无脊椎动物和鱼类物种和性状的分布主要是由与避难所的距离及其与温度的协变效应(即避难所往往更热)来解释的。具体而言,靠近避难所的地区物种和性状丰富度较高,而远离避难所的地区物种和性状丰富度较低。此外,寒冷和偏远地区的群落表现出较低的生态位维度和较慢的生活史,这表明它们更容易受到环境变化的影响。因此,自远古时期以来,只有一部分物种能够在遥远的地区定居,而许多物种的空间分布范围受到其扩散能力的限制,这增加了它们在持续气候变化中灭绝的可能性。因此,需要采取更多考虑物种扩散能力的保护措施。
{"title":"Dispersal, glacial refugia and temperature shape biogeographical patterns in European freshwater biodiversity","authors":"Daniela Cortés-Guzmán,&nbsp;James Sinclair,&nbsp;Christian Hof,&nbsp;Jan B. Kalusche,&nbsp;Peter Haase","doi":"10.1111/geb.13886","DOIUrl":"10.1111/geb.13886","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Aim&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Temperature is regarded as an important driver of broad-scale biodiversity patterns. However, less is known of the role of dispersal in shaping broad-scale species and trait distributions, particularly given that species had to disperse out of glacial refugia after the Last Glacial Maximum (LGM). Here, we used a unique dataset describing the distributions of freshwater fauna combined with trait information to evaluate biodiversity relationships to distance to glacial refugia and temperature.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Location&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Twenty-five biogeographical regions across Europe.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Time Period&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Data from species occurrence were gathered in 1978.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Major Taxa Studied&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;A total of 2816 freshwater invertebrate species and 230 freshwater fish species.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Methods&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Using the occurrence of invertebrate and fish species in the biogeographical regions, and publicly available trait information, we analysed patterns in diversity indices (i.e. species richness, trait richness and trait redundancy), trait distribution and species and trait &lt;i&gt;β&lt;/i&gt;-diversity, and their relationship to distance to known glacial refugia and regional temperature.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Results&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;We show that distributions of European invertebrate and fish species and traits are primarily explained by distance to refugia and its covarying effect with temperature (i.e. refugia tend to be warmer). Specifically, species and trait richness were higher in regions proximate to refugia and lower in distant regions. Additionally, communities in colder and distant regions exhibited reduced niche dimensions and slower life histories, suggesting increased vulnerability to environmental change.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Main Conclusions&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Species more distant from their refugia were characterized by higher dispersal capacities. Accordingly, since the LGM, only a subset of species was able to colonize distant regions, while many species have spatial ranges constrained by their dispersal capacity, increasing their potential for extinction under ongoing climate change. Therefore, additional conservation measures considering species'","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 9","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13886","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141462266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A global assessment of nested patterns in insular mammal assemblages 海岛哺乳动物群落嵌套模式的全球评估
IF 6.3 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-06-27 DOI: 10.1111/geb.13885
Virginie Millien, Chengxiu Zhan, Yanxia Li, Jiang Wang, Yanping Wang

Aim

A nested pattern (nestedness) in species composition is a frequent signature of insular communities. However, it remains unclear whether the drivers of nestedness are consistent across multiple island systems. Here, we investigated the pattern and drivers of taxonomic, functional and phylogenetic nestedness in terrestrial mammal assemblages from 10 distinct island systems (archipelagos).

Location

Global.

Time period

Contemporary.

Major taxa studied

Terrestrial mammals.

Methods

We compiled occurrence data and species traits of terrestrial mammals from 228 islands in 10 distinct island assemblages. We assembled a dataset of island biogeographic characteristics for each of these islands, including island area, isolation index and maximum elevation. For all 10 assemblages, we first tested for significant patterns of taxonomic, functional and phylogenetic nestedness. We then examined the associations between nestedness, island biogeographic characteristics and species traits.

Results

We detected significant patterns of taxonomic, functional or phylogenetic nestedness in mammal assemblages from all 10 archipelagos. Biogeographic characteristics of islands affecting the rate of extinction in island species, namely, island area and elevation, were significantly associated with the degree of nestedness in these assemblages. Traits associated with the extinction probability of a species, such as litter size, further drove the nested pattern in some assemblages.

Main conclusions

All analyses pointed to selective extinction as a main mechanism shaping the observed nested patterns in island mammal assemblages. From a conservation point of view, different management strategies should be implemented for mammal assemblages in these island systems by identifying the drivers of species extinction rates specific to each island system and species occurring on these islands.

物种组成的嵌套模式(嵌套性)是岛屿群落的一个常见特征。然而,嵌套的驱动因素在多个岛屿系统中是否一致仍不清楚。在这里,我们研究了来自 10 个不同岛屿系统(群岛)的陆生哺乳动物群落的分类、功能和系统发育嵌套模式及其驱动因素。
{"title":"A global assessment of nested patterns in insular mammal assemblages","authors":"Virginie Millien,&nbsp;Chengxiu Zhan,&nbsp;Yanxia Li,&nbsp;Jiang Wang,&nbsp;Yanping Wang","doi":"10.1111/geb.13885","DOIUrl":"10.1111/geb.13885","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>A nested pattern (nestedness) in species composition is a frequent signature of insular communities. However, it remains unclear whether the drivers of nestedness are consistent across multiple island systems. Here, we investigated the pattern and drivers of taxonomic, functional and phylogenetic nestedness in terrestrial mammal assemblages from 10 distinct island systems (archipelagos).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Global.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Time period</h3>\u0000 \u0000 <p>Contemporary.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Major taxa studied</h3>\u0000 \u0000 <p>Terrestrial mammals.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We compiled occurrence data and species traits of terrestrial mammals from 228 islands in 10 distinct island assemblages. We assembled a dataset of island biogeographic characteristics for each of these islands, including island area, isolation index and maximum elevation. For all 10 assemblages, we first tested for significant patterns of taxonomic, functional and phylogenetic nestedness. We then examined the associations between nestedness, island biogeographic characteristics and species traits.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>We detected significant patterns of taxonomic, functional or phylogenetic nestedness in mammal assemblages from all 10 archipelagos. Biogeographic characteristics of islands affecting the rate of extinction in island species, namely, island area and elevation, were significantly associated with the degree of nestedness in these assemblages. Traits associated with the extinction probability of a species, such as litter size, further drove the nested pattern in some assemblages.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main conclusions</h3>\u0000 \u0000 <p>All analyses pointed to selective extinction as a main mechanism shaping the observed nested patterns in island mammal assemblages. From a conservation point of view, different management strategies should be implemented for mammal assemblages in these island systems by identifying the drivers of species extinction rates specific to each island system and species occurring on these islands.</p>\u0000 </section>\u0000 </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 9","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141462052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proximal microclimate: Moving beyond spatiotemporal resolution improves ecological predictions 近端小气候:超越时空分辨率,改善生态预测
IF 6.3 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-06-26 DOI: 10.1111/geb.13884
David H. Klinges, J. Alex Baecher, Jonas J. Lembrechts, Ilya M. D. Maclean, Jonathan Lenoir, Caroline Greiser, Michael Ashcroft, Luke J. Evans, Michael R. Kearney, Juha Aalto, Isabel C. Barrio, Pieter De Frenne, Joannès Guillemot, Kristoffer Hylander, Tommaso Jucker, Martin Kopecký, Miska Luoto, Martin Macek, Ivan Nijs, Josef Urban, Liesbeth van den Brink, Pieter Vangansbeke, Jonathan Von Oppen, Jan Wild, Julia Boike, Rafaella Canessa, Marcelo Nosetto, Alexey Rubtsov, Jhonatan Sallo-Bravo, Brett R. Scheffers
<div> <section> <h3> Aim</h3> <p>The scale of environmental data is often defined by their extent (spatial area, temporal duration) and resolution (grain size, temporal interval). Although describing climate data scale via these terms is appropriate for most meteorological applications, for ecology and biogeography, climate data of the same spatiotemporal resolution and extent may differ in their relevance to an organism. Here, we propose that climate proximity, or how well climate data represent the actual conditions that an organism is exposed to, is more important for ecological realism than the spatiotemporal resolution of the climate data.</p> </section> <section> <h3> Location</h3> <p>Temperature comparison in nine countries across four continents; ecological case studies in Alberta (Canada), Sabah (Malaysia) and North Carolina/Tennessee (USA).</p> </section> <section> <h3> Time Period</h3> <p>1960–2018.</p> </section> <section> <h3> Major Taxa Studied</h3> <p>Case studies with flies, mosquitoes and salamanders, but concepts relevant to all life on earth.</p> </section> <section> <h3> Methods</h3> <p>We compare the accuracy of two macroclimate data sources (ERA5 and WorldClim) and a novel microclimate model (<i>microclimf</i>) in predicting soil temperatures. We then use ERA5, WorldClim and <i>microclimf</i> to drive ecological models in three case studies: temporal (fly phenology), spatial (mosquito thermal suitability) and spatiotemporal (salamander range shifts) ecological responses.</p> </section> <section> <h3> Results</h3> <p>For predicting soil temperatures, <i>microclimf</i> had 24.9% and 16.4% lower absolute bias than ERA5 and WorldClim respectively. Across the case studies, we find that increasing proximity (from macroclimate to microclimate) yields a 247% improvement in performance of ecological models on average, compared to 18% and 9% improvements from increasing spatial resolution 20-fold, and temporal resolution 30-fold respectively.</p> </section> <section> <h3> Main Conclusions</h3> <p>We propose that increasing climate proximity, even if at the sacrifice of finer climate spatiotemporal resolution, may improve ecological predictions. We emphasize biophysically informed approaches, rather than generic formulations, when quantifying ecoclimatic relationships. Redefining the scale of climate through the lens of the organism itself helps reveal mechanisms underlying how cli
环境数据的尺度通常由其范围(空间面积、时间长度)和分辨率(粒度、时间间隔)来定义。虽然通过这些术语来描述气候数据的尺度适用于大多数气象应用,但对于生态学和生物地理学来说,具有相同时空分辨率和范围的气候数据在与生物体的相关性方面可能会有所不同。在此,我们建议,对于生态学的现实性而言,气候接近性(或气候数据对生物体所处实际条件的代表程度)比气候数据的时空分辨率更为重要。
{"title":"Proximal microclimate: Moving beyond spatiotemporal resolution improves ecological predictions","authors":"David H. Klinges,&nbsp;J. Alex Baecher,&nbsp;Jonas J. Lembrechts,&nbsp;Ilya M. D. Maclean,&nbsp;Jonathan Lenoir,&nbsp;Caroline Greiser,&nbsp;Michael Ashcroft,&nbsp;Luke J. Evans,&nbsp;Michael R. Kearney,&nbsp;Juha Aalto,&nbsp;Isabel C. Barrio,&nbsp;Pieter De Frenne,&nbsp;Joannès Guillemot,&nbsp;Kristoffer Hylander,&nbsp;Tommaso Jucker,&nbsp;Martin Kopecký,&nbsp;Miska Luoto,&nbsp;Martin Macek,&nbsp;Ivan Nijs,&nbsp;Josef Urban,&nbsp;Liesbeth van den Brink,&nbsp;Pieter Vangansbeke,&nbsp;Jonathan Von Oppen,&nbsp;Jan Wild,&nbsp;Julia Boike,&nbsp;Rafaella Canessa,&nbsp;Marcelo Nosetto,&nbsp;Alexey Rubtsov,&nbsp;Jhonatan Sallo-Bravo,&nbsp;Brett R. Scheffers","doi":"10.1111/geb.13884","DOIUrl":"10.1111/geb.13884","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Aim&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;The scale of environmental data is often defined by their extent (spatial area, temporal duration) and resolution (grain size, temporal interval). Although describing climate data scale via these terms is appropriate for most meteorological applications, for ecology and biogeography, climate data of the same spatiotemporal resolution and extent may differ in their relevance to an organism. Here, we propose that climate proximity, or how well climate data represent the actual conditions that an organism is exposed to, is more important for ecological realism than the spatiotemporal resolution of the climate data.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Location&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Temperature comparison in nine countries across four continents; ecological case studies in Alberta (Canada), Sabah (Malaysia) and North Carolina/Tennessee (USA).&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Time Period&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;1960–2018.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Major Taxa Studied&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Case studies with flies, mosquitoes and salamanders, but concepts relevant to all life on earth.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Methods&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;We compare the accuracy of two macroclimate data sources (ERA5 and WorldClim) and a novel microclimate model (&lt;i&gt;microclimf&lt;/i&gt;) in predicting soil temperatures. We then use ERA5, WorldClim and &lt;i&gt;microclimf&lt;/i&gt; to drive ecological models in three case studies: temporal (fly phenology), spatial (mosquito thermal suitability) and spatiotemporal (salamander range shifts) ecological responses.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Results&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;For predicting soil temperatures, &lt;i&gt;microclimf&lt;/i&gt; had 24.9% and 16.4% lower absolute bias than ERA5 and WorldClim respectively. Across the case studies, we find that increasing proximity (from macroclimate to microclimate) yields a 247% improvement in performance of ecological models on average, compared to 18% and 9% improvements from increasing spatial resolution 20-fold, and temporal resolution 30-fold respectively.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Main Conclusions&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;We propose that increasing climate proximity, even if at the sacrifice of finer climate spatiotemporal resolution, may improve ecological predictions. We emphasize biophysically informed approaches, rather than generic formulations, when quantifying ecoclimatic relationships. Redefining the scale of climate through the lens of the organism itself helps reveal mechanisms underlying how cli","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 9","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141462104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Global Ecology and Biogeography
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1