首页 > 最新文献

Microelectronic Engineering最新文献

英文 中文
Simulations of X-ray focusing by zone plates in rotationally symmetric optical field utilizing the matrix-free Finite Difference Beam Propagation Method 利用无矩阵有限差分光束传播法模拟旋转对称光场中区板聚焦 X 射线的过程
IF 2.6 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-19 DOI: 10.1016/j.mee.2024.112278
Hao Quan, Xujie Tong, Qingxin Wu, Qiucheng Chen, Yifang Chen
We present the use of a finite difference method based on Crank-Nicholson scheme and recurrence scheme for computationally efficient simulation of the X-ray propagation through a zone plate. By introducing boundary and central conditions and by avoiding large matrix operations, the method achieves considerable speed, little memory occupation and low background noise. Accommodating refractive index profiles of arbitrary shape, it can be applied to assist optimizing X-ray zone plates and understanding focusing mechanism.
我们介绍了一种基于 Crank-Nicholson 方案和递推方案的有限差分法,用于高效计算模拟 X 射线在区块板上的传播。通过引入边界条件和中心条件以及避免大型矩阵运算,该方法实现了相当快的速度、较少的内存占用和较低的背景噪声。该方法适用于任意形状的折射率剖面,可用于协助优化 X 射线区板和了解聚焦机制。
{"title":"Simulations of X-ray focusing by zone plates in rotationally symmetric optical field utilizing the matrix-free Finite Difference Beam Propagation Method","authors":"Hao Quan,&nbsp;Xujie Tong,&nbsp;Qingxin Wu,&nbsp;Qiucheng Chen,&nbsp;Yifang Chen","doi":"10.1016/j.mee.2024.112278","DOIUrl":"10.1016/j.mee.2024.112278","url":null,"abstract":"<div><div>We present the use of a finite difference method based on Crank-Nicholson scheme and recurrence scheme for computationally efficient simulation of the X-ray propagation through a zone plate. By introducing boundary and central conditions and by avoiding large matrix operations, the method achieves considerable speed, little memory occupation and low background noise. Accommodating refractive index profiles of arbitrary shape, it can be applied to assist optimizing X-ray zone plates and understanding focusing mechanism.</div></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"295 ","pages":"Article 112278"},"PeriodicalIF":2.6,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electron trapping in HfO2 layer deposited over a HF last treated silicon substrate 沉积在经过高频最后处理的硅衬底上的二氧化铪层中的电子陷阱
IF 2.6 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-09 DOI: 10.1016/j.mee.2024.112277
L. Sambuco Salomone , M.V. Cassani , M. Garcia-Inza , S. Carbonetto , E. Redin , F. Campabadal , A. Faigón
Electron trapping in HfO2-based MOS structures was studied through pulsed capacitance-voltage (C-V) technique. 10 nm HfO2 layer was deposited by atomic layer deposition over a HF last treated Si substrate. The C-V curves were observed to shift to positive voltages driven by the positive applied voltage along the pulses, consistent with electron trapping due to tunneling transitions between the substrate and pre-existing defects within the oxide and the subsequent lattice relaxation through electron-phonon interaction. The dependences of the voltage shift for a given capacitance value (ΔVC) with stress bias and time, allowed to distinguish two mechanisms. An initial trapping process occurs for times shorter than the microsecond, probably associated with a thin non-stoichiometric SiOx interfacial layer, which is followed by a trapping process that starts after tens of μs and progressively slowed down, associated with traps within the HfO2 layer. Numerical simulations yield for the HfO2 traps an energy of 1.3 eV below the conduction band edge, decreasing exponentially with the distance from the Si interface with a characteristic length of 1.7 nm; and phonon and relaxation energies of 50 meV and 1 eV, respectively. These physical parameters are consistent with previous reports of electron trapping in HfO2 layers deposited on a controlled interfacial layer, suggesting that trapping properties of defects inside the HfO2 layer are insensitive to the treatment of the Si surface before HfO2 deposition. On the other hand, the observed large initial trapping suggests that the non-controlled SiOx interfacial region is more defective than a controlled one.
通过脉冲电容-电压(C-V)技术研究了基于 HfO2 的 MOS 结构中的电子捕获。在经过高频最后处理的硅基底上通过原子层沉积沉积了 10 nm 的 HfO2 层。在脉冲正向施加电压的驱动下,C-V 曲线向正电压方向移动,这与基底和氧化物内部预先存在的缺陷之间的隧道转换导致的电子捕获以及随后通过电子-声子相互作用产生的晶格弛豫是一致的。在给定电容值(ΔVC)下,电压偏移与应力偏置和时间的关系可以区分两种机制。最初的捕获过程发生在短于微秒的时间内,可能与薄的非化学计量 SiOx 界面层有关;随后的捕获过程在几十微秒后开始,并逐渐减慢,与 HfO2 层内的捕获有关。数值模拟结果显示,HfO2 陷阱的能量低于导带边缘 1.3 eV,随着与硅界面距离的增加呈指数递减,特征长度为 1.7 nm;声子能量和弛豫能量分别为 50 meV 和 1 eV。这些物理参数与之前关于沉积在受控界面层上的 HfO2 层中电子捕获的报道一致,表明 HfO2 层内缺陷的捕获特性对 HfO2 沉积前硅表面的处理不敏感。另一方面,观察到的大量初始捕获表明,非受控氧化硅界面区比受控界面区缺陷更大。
{"title":"Electron trapping in HfO2 layer deposited over a HF last treated silicon substrate","authors":"L. Sambuco Salomone ,&nbsp;M.V. Cassani ,&nbsp;M. Garcia-Inza ,&nbsp;S. Carbonetto ,&nbsp;E. Redin ,&nbsp;F. Campabadal ,&nbsp;A. Faigón","doi":"10.1016/j.mee.2024.112277","DOIUrl":"10.1016/j.mee.2024.112277","url":null,"abstract":"<div><div>Electron trapping in HfO<sub>2</sub>-based MOS structures was studied through pulsed capacitance-voltage (C-V) technique. 10 nm HfO<sub>2</sub> layer was deposited by atomic layer deposition over a HF last treated Si substrate. The C-V curves were observed to shift to positive voltages driven by the positive applied voltage along the pulses, consistent with electron trapping due to tunneling transitions between the substrate and pre-existing defects within the oxide and the subsequent lattice relaxation through electron-phonon interaction. The dependences of the voltage shift for a given capacitance value (<em>ΔV</em><sub><em>C</em></sub>) with stress bias and time, allowed to distinguish two mechanisms. An initial trapping process occurs for times shorter than the microsecond, probably associated with a thin non-stoichiometric SiO<sub>x</sub> interfacial layer, which is followed by a trapping process that starts after tens of μs and progressively slowed down, associated with traps within the HfO<sub>2</sub> layer. Numerical simulations yield for the HfO<sub>2</sub> traps an energy of 1.3 eV below the conduction band edge, decreasing exponentially with the distance from the Si interface with a characteristic length of 1.7 nm; and phonon and relaxation energies of 50 meV and 1 eV, respectively. These physical parameters are consistent with previous reports of electron trapping in HfO<sub>2</sub> layers deposited on a controlled interfacial layer, suggesting that trapping properties of defects inside the HfO<sub>2</sub> layer are insensitive to the treatment of the Si surface before HfO<sub>2</sub> deposition. On the other hand, the observed large initial trapping suggests that the non-controlled SiO<sub>x</sub> interfacial region is more defective than a controlled one.</div></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"295 ","pages":"Article 112277"},"PeriodicalIF":2.6,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142442774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of Superlattice Ferroelectric-Metal Field-effect Transistor for triple-level cell 3D NAND flash 为三级单元 3D NAND 闪存设计超晶格铁电-金属场效应晶体管
IF 2.6 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-09-24 DOI: 10.1016/j.mee.2024.112276
Sola Woo , Gihun Choe , Asif Islam Khan , Suman Datta , Shimeng Yu
Superlattice ferroelectric-metal field-effect transistor (SL-FeMFET) based three-dimensional NAND architecture (3D NAND) is investigated for triple-level cell (TLC) operations. The SL-FeMFET shows a novel approach for designing the gate-stack using a superlattice of ferroelectric/dielectric/ferroelectric for achieving large memory window ∼3.48 V with program/erase voltage ±7 V for 3D NAND architecture. By TCAD modeling, we demonstrate TLC operation of SL-FeMFET with improving memory window and alleviating variability caused by floating metal layer in FeMFET structure. In addition, as the vertical gate stack increases from 256-layer to 512-layer, the read-out current with worst cases in seven read operations for TLC sensing are examined using page buffer circuit for sensing operation. The simulation results suggest that SL-FeMFET based 3D NAND architecture can operate 512-layer with sufficient sense margin for TLC operation.
研究了基于超晶格铁电-金属场效应晶体管(SL-FeMFET)的三维 NAND 架构(3D NAND),用于三电平单元(TLC)操作。SL-FeMFET 展示了一种使用铁电/介电/铁电超晶格设计栅极堆栈的新方法,可实现 3D NAND 架构的大内存窗口 ∼ 3.48 V,程序/擦除电压为 ±7 V。通过 TCAD 建模,我们演示了 SL-FeMFET 的 TLC 运行,改善了存储器窗口,并减轻了 FeMFET 结构中浮动金属层引起的变化。此外,当垂直栅极堆叠从 256 层增加到 512 层时,我们使用页面缓冲电路对 TLC 检测的读出电流和 7 次读取操作中的最坏情况进行了研究。仿真结果表明,基于 SL-FeMFET 的 3D NAND 架构可以在 512 层上运行,并为 TLC 运行提供足够的感应裕量。
{"title":"Design of Superlattice Ferroelectric-Metal Field-effect Transistor for triple-level cell 3D NAND flash","authors":"Sola Woo ,&nbsp;Gihun Choe ,&nbsp;Asif Islam Khan ,&nbsp;Suman Datta ,&nbsp;Shimeng Yu","doi":"10.1016/j.mee.2024.112276","DOIUrl":"10.1016/j.mee.2024.112276","url":null,"abstract":"<div><div>Superlattice ferroelectric-metal field-effect transistor (SL-FeMFET) based three-dimensional NAND architecture (3D NAND) is investigated for triple-level cell (TLC) operations. The SL-FeMFET shows a novel approach for designing the gate-stack using a superlattice of ferroelectric/dielectric/ferroelectric for achieving large memory window ∼3.48 V with program/erase voltage ±7 V for 3D NAND architecture. By TCAD modeling, we demonstrate TLC operation of SL-FeMFET with improving memory window and alleviating variability caused by floating metal layer in FeMFET structure. In addition, as the vertical gate stack increases from 256-layer to 512-layer, the read-out current with worst cases in seven read operations for TLC sensing are examined using page buffer circuit for sensing operation. The simulation results suggest that SL-FeMFET based 3D NAND architecture can operate 512-layer with sufficient sense margin for TLC operation.</div></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"295 ","pages":"Article 112276"},"PeriodicalIF":2.6,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142318864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing dose parameters for enhanced maskless lithography in MoS2-based devices 优化剂量参数以增强基于 MoS2 器件的无掩模光刻技术
IF 2.6 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-09-19 DOI: 10.1016/j.mee.2024.112275
Hyun Min Park, Hyeon Woo Park, Muhammad Suleman, Minwook Kim, Sunil Kumar, Yongho Seo
Maskless lithography simplifies the fabrication process and reduces costs compared to electron beam (E-beam) lithography, making it a more efficient choice for patterning nano-devices. Maskless lithography presents a promising avenue for expediting device fabrication by eliminating the need for masks. This technique can streamline the production of basic electronic devices, offering an efficient and low-cost alternative to traditional lithographic methods, like E-beam lithography. This study utilized a 405 nm photodiode to achieve pattern-writing with a minimum linewidth of 1 μm. Exploring optimal parameters includes adjustments in beam intensity, scan speed, and step size. Maskless lithography was applied to 2D transition metal dichalcogenides (TMDCs) material, MoS2, to investigate their electrical transport characteristics. The fabricated device exhibits an ON/OFF ratio of ∼1.7 × 106 and a mobility of ∼0.833 cm2/V·s, indicating a high switching efficiency. The results demonstrate optimized maskless lithography's potential for swift and cost-effective fabrication, offering intermediate-resolution patterning capabilities.
与电子束(E-beam)光刻法相比,无掩膜光刻法简化了制造过程并降低了成本,使其成为纳米器件图案化的更有效选择。无掩模光刻技术无需掩模,为加快器件制造提供了一条大有可为的途径。这种技术可以简化基本电子器件的生产,为电子束光刻等传统光刻方法提供了一种高效、低成本的替代方法。这项研究利用 405 纳米光电二极管实现了最小线宽为 1 微米的图案刻写。探索最佳参数包括调整光束强度、扫描速度和步长。无掩模光刻技术应用于二维过渡金属二卤化物(TMDCs)材料 MoS2,以研究其电传输特性。制备的器件的导通/关断比为 1.7 × 106,迁移率为 0.833 cm2/V-s,显示出很高的开关效率。这些结果表明,优化的无掩模光刻技术具有快速、经济地制造器件的潜力,并能提供中等分辨率的图案化能力。
{"title":"Optimizing dose parameters for enhanced maskless lithography in MoS2-based devices","authors":"Hyun Min Park,&nbsp;Hyeon Woo Park,&nbsp;Muhammad Suleman,&nbsp;Minwook Kim,&nbsp;Sunil Kumar,&nbsp;Yongho Seo","doi":"10.1016/j.mee.2024.112275","DOIUrl":"10.1016/j.mee.2024.112275","url":null,"abstract":"<div><div>Maskless lithography simplifies the fabrication process and reduces costs compared to electron beam (<em>E</em>-beam) lithography, making it a more efficient choice for patterning nano-devices. Maskless lithography presents a promising avenue for expediting device fabrication by eliminating the need for masks. This technique can streamline the production of basic electronic devices, offering an efficient and low-cost alternative to traditional lithographic methods, like <em>E</em>-beam lithography. This study utilized a 405 nm photodiode to achieve pattern-writing with a minimum linewidth of 1 μm. Exploring optimal parameters includes adjustments in beam intensity, scan speed, and step size. Maskless lithography was applied to 2D transition metal dichalcogenides (TMDCs) material, MoS<sub>2</sub>, to investigate their electrical transport characteristics. The fabricated device exhibits an ON/OFF ratio of ∼1.7 × 10<sup>6</sup> and a mobility of ∼0.833 cm<sup>2</sup>/V·s, indicating a high switching efficiency. The results demonstrate optimized maskless lithography's potential for swift and cost-effective fabrication, offering intermediate-resolution patterning capabilities.</div></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"295 ","pages":"Article 112275"},"PeriodicalIF":2.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High density nanofluidic channels by self-sealing for metallic nanoparticles detection 用于金属纳米粒子检测的自密封高密度纳米流体通道
IF 2.6 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-09-10 DOI: 10.1016/j.mee.2024.112264
Wentao Yuan , Qingxin Wu , Shuoqiu Tian , Jinyu Guo , Kangping Liu , Yifang Chen

High density nanofluidic channels were successfully fabricated by a novel process, nicknamed as self-sealing process, for the detection of metal nanoparticles dispersed in water using color changes excited by polarized electromagnetic waves. The permittivities of aqueous solutions with various concentrations of metal nanoparticles were calculated by a corrected plasma model. Systematic simulations using finite difference time domain method were carried out in investigating the detection capabilities of the nanofluidic channels for silver, beryllium and copper nanoparticles in water. The pronounced color shifts indicates that the channels possess high sensitivity in the metal nanoparticles detection. The designed nanofluidic channels were then fabricated by a direct flood deposition of a silica film on a pre-replicated hydrogen silsesquioxan (HSQ) grating using electron beam lithography (EBL). The self-sealing technique possesses advantages in simplified processing, encapsulation free and potential of multi-layer nanochannels.

通过一种昵称为 "自密封工艺 "的新工艺成功制造了高密度纳米流体通道,用于利用偏振电磁波激发的颜色变化检测分散在水中的金属纳米颗粒。采用修正等离子体模型计算了含有不同浓度金属纳米颗粒的水溶液的介电常数。在研究纳米流体通道对水中银、铍和铜纳米粒子的检测能力时,使用有限差分时域法进行了系统模拟。明显的颜色偏移表明,纳米流体通道在金属纳米颗粒检测方面具有很高的灵敏度。然后,利用电子束光刻(EBL)技术,在预先复制的氢硅烷基二氧杂环丁烷(HSQ)光栅上直接淹没沉积二氧化硅薄膜,从而制造出设计的纳米流体通道。自密封技术具有简化加工、无封装和多层纳米通道潜力等优点。
{"title":"High density nanofluidic channels by self-sealing for metallic nanoparticles detection","authors":"Wentao Yuan ,&nbsp;Qingxin Wu ,&nbsp;Shuoqiu Tian ,&nbsp;Jinyu Guo ,&nbsp;Kangping Liu ,&nbsp;Yifang Chen","doi":"10.1016/j.mee.2024.112264","DOIUrl":"10.1016/j.mee.2024.112264","url":null,"abstract":"<div><p>High density nanofluidic channels were successfully fabricated by a novel process, nicknamed as self-sealing process, for the detection of metal nanoparticles dispersed in water using color changes excited by polarized electromagnetic waves. The permittivities of aqueous solutions with various concentrations of metal nanoparticles were calculated by a corrected plasma model. Systematic simulations using finite difference time domain method were carried out in investigating the detection capabilities of the nanofluidic channels for silver, beryllium and copper nanoparticles in water. The pronounced color shifts indicates that the channels possess high sensitivity in the metal nanoparticles detection. The designed nanofluidic channels were then fabricated by a direct flood deposition of a silica film on a pre-replicated hydrogen silsesquioxan (HSQ) grating using electron beam lithography (EBL). The self-sealing technique possesses advantages in simplified processing, encapsulation free and potential of multi-layer nanochannels.</p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"294 ","pages":"Article 112264"},"PeriodicalIF":2.6,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167931724001333/pdfft?md5=7919c785cd0adb4939d756d37e60990d&pid=1-s2.0-S0167931724001333-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Etch of nano-TSV with smooth sidewall and excellent selection ratio for backside power delivery network 蚀刻出具有光滑侧壁和优异选择率的纳米 TSV,用于背面输电网络
IF 2.6 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-09-05 DOI: 10.1016/j.mee.2024.112265
Yang Wang , Ziyu Liu , Yabin Sun , Lin Chen , Qingqing Sun

Backside Power Delivery Network (BSPDN) is a crucial technology for integrated circuits at sub-3 nm technology nodes. The primary challenge resides in utilizing nano through silicon via (nano-TSV) to establish connections between the backside power network and buried power rails, thereby facilitating transistor powering. The key technology is to ensure a smooth sidewall morphology and prevent damage to buried power rails (BPR) due to over-etching. In this study, non-Bosch and Bosch techniques are compared using simulation. The results demonstrate that while the non-Bosch technique yields smooth sidewalls, it inevitably leads to over-etching, whereas Bosch effectively avoids over-etching. The etching of scallop-free nano-TSV is achieved by optimizing the Bosch process, which involves the use of inductively coupled plasma (ICP). Finally, metal filling of nano-TSV is successfully achieved. Thus, the nano-TSV etching method is established as viable for BSPDN.

背面电源传输网络(BSPDN)是 3 纳米以下技术节点集成电路的一项关键技术。主要挑战在于利用纳米硅通孔(nano-TSV)在背面电源网络和埋入式电源轨之间建立连接,从而促进晶体管供电。关键技术是确保侧壁形态平滑,防止因过度蚀刻而损坏埋入式电源轨(BPR)。在这项研究中,通过模拟对非博世技术和博世技术进行了比较。结果表明,虽然非博世技术能产生光滑的侧壁,但不可避免地会导致过蚀刻,而博世技术则能有效避免过蚀刻。通过优化博世工艺(包括使用电感耦合等离子体 (ICP)),实现了无扇贝纳米 TSV 的蚀刻。最后,成功实现了纳米 TSV 的金属填充。因此,纳米 TSV 蚀刻方法在 BSPDN 中是可行的。
{"title":"Etch of nano-TSV with smooth sidewall and excellent selection ratio for backside power delivery network","authors":"Yang Wang ,&nbsp;Ziyu Liu ,&nbsp;Yabin Sun ,&nbsp;Lin Chen ,&nbsp;Qingqing Sun","doi":"10.1016/j.mee.2024.112265","DOIUrl":"10.1016/j.mee.2024.112265","url":null,"abstract":"<div><p>Backside Power Delivery Network (BSPDN) is a crucial technology for integrated circuits at sub-3 nm technology nodes. The primary challenge resides in utilizing nano through silicon via (nano-TSV) to establish connections between the backside power network and buried power rails, thereby facilitating transistor powering. The key technology is to ensure a smooth sidewall morphology and prevent damage to buried power rails (BPR) due to over-etching. In this study, non-Bosch and Bosch techniques are compared using simulation. The results demonstrate that while the non-Bosch technique yields smooth sidewalls, it inevitably leads to over-etching, whereas Bosch effectively avoids over-etching. The etching of scallop-free nano-TSV is achieved by optimizing the Bosch process, which involves the use of inductively coupled plasma (ICP). Finally, metal filling of nano-TSV is successfully achieved. Thus, the nano-TSV etching method is established as viable for BSPDN.</p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"295 ","pages":"Article 112265"},"PeriodicalIF":2.6,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142266227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of an emulator of the sustainable energy harvesting pad system on a bike lane for charging lithium batteries 在自行车道上开发用于锂电池充电的可持续能量收集垫系统模拟器
IF 2.6 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-23 DOI: 10.1016/j.mee.2024.112262
Kazi Meharajul Kabir, Shuza Binzaid

In response to the urgent imperative of combating global warming and advancing sustainable energy solutions, an innovative approach has emerged, capitalizing on bicycles and road bike lane infrastructure. This solution integrates a Smart Lithium Battery Charging System with a Sustainable Energy Harvesting Pad (SEHP) designed for cyclists. The SEHP harnesses piezoelectric energy from mechanical vibrations and kinetic energy from lightweight vehicles. It produces clean, renewable electricity as an alternative to traditional power sources. Comprehensive assessments of the SEHP's energy generation performance at various proficiency levels have revealed impressive capabilities. An electronic emulator system is developed to support academic and research communities, simulating scenarios on bike lanes to efficiently charge 36.36 Wh lithium batteries at various cycling proficiency levels. The study involved specific circuit design, seamless integration with the custom Smart Lithium Battery Charging System, and optimization using Microcontroller hardware and software solutions. Practical prototypes verified the emulator's functionality and real-world applicability, making it an authentic replica of the SEHP's outcomes. This innovative technology enhances our understanding of SEHP and enables comparative analysis against other energy sources, contributing to a more sustainable future.

为了应对全球变暖和推进可持续能源解决方案的紧迫性,一种利用自行车和道路自行车道基础设施的创新方法应运而生。该解决方案将智能锂电池充电系统与专为骑车人设计的可持续能源收集垫(SEHP)集成在一起。SEHP 利用机械振动产生的压电能量和轻型车辆产生的动能。它能产生清洁、可再生的电力,作为传统电源的替代品。对 SEHP 在不同熟练程度下的发电性能进行的综合评估显示,其性能令人印象深刻。为支持学术界和研究界,我们开发了一个电子模拟系统,模拟自行车道上的各种情况,在不同的骑行熟练程度下为 36.36 Wh 锂电池高效充电。研究涉及具体的电路设计、与定制智能锂电池充电系统的无缝集成,以及使用微控制器硬件和软件解决方案进行优化。实际原型验证了仿真器的功能和实际应用性,使其成为 SEHP 成果的真实复制品。这项创新技术增强了我们对 SEHP 的了解,并可与其他能源进行比较分析,从而为实现更加可持续的未来做出贡献。
{"title":"Development of an emulator of the sustainable energy harvesting pad system on a bike lane for charging lithium batteries","authors":"Kazi Meharajul Kabir,&nbsp;Shuza Binzaid","doi":"10.1016/j.mee.2024.112262","DOIUrl":"10.1016/j.mee.2024.112262","url":null,"abstract":"<div><p>In response to the urgent imperative of combating global warming and advancing sustainable energy solutions, an innovative approach has emerged, capitalizing on bicycles and road bike lane infrastructure. This solution integrates a Smart Lithium Battery Charging System with a Sustainable Energy Harvesting Pad (SEHP) designed for cyclists. The SEHP harnesses piezoelectric energy from mechanical vibrations and kinetic energy from lightweight vehicles. It produces clean, renewable electricity as an alternative to traditional power sources. Comprehensive assessments of the SEHP's energy generation performance at various proficiency levels have revealed impressive capabilities. An electronic emulator system is developed to support academic and research communities, simulating scenarios on bike lanes to efficiently charge 36.36 Wh lithium batteries at various cycling proficiency levels. The study involved specific circuit design, seamless integration with the custom Smart Lithium Battery Charging System, and optimization using Microcontroller hardware and software solutions. Practical prototypes verified the emulator's functionality and real-world applicability, making it an authentic replica of the SEHP's outcomes. This innovative technology enhances our understanding of SEHP and enables comparative analysis against other energy sources, contributing to a more sustainable future.</p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"294 ","pages":"Article 112262"},"PeriodicalIF":2.6,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142076794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wide scan angle multibeam conformal antenna array with novel feeding for mm-wave 5G applications 采用新型馈电的宽扫描角多波束共形天线阵列,适用于毫米波 5G 应用
IF 2.6 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-22 DOI: 10.1016/j.mee.2024.112261
Amir Mohsen Ahmadi Najafabadi , Faruk Ballipinar , Melih Can Tasdelen , Abdulkadir Uzun , Murat Kaya Yapici , Anja Skrivervik , Ibrahim Tekin

This paper presents a low-profile wide scan angle multibeam conformal antenna array system with a novel feeding network for 28 GHz mm-wave 5G applications. The proposed antenna system utilizes two conventional branch-line couplers as its beamforming network. A novel feeding technique is applied to generate 7 beams with these couplers that are usually capable of generating 2 beams. The proposed solution provides a wide scanning range with a minimum realized gain of 5 dBi from 90° to 90° owing to this feeding approach and the peculiar placement of the array elements on a 0.15 mm thick R-F775 bendable substrate. The generated beams at their steer direction have the minimum and maximum gain values of 6.5 dBi and 9.7 dBi, respectively. A low-cost PCB manufacturing technique based on soft lithography and wet etching is used. The system dimensions excluding extra connector sections are 67×15×3mm3. The proposed flexible design is suitable for lightweight 5G communication systems and handsets with its compact low-complexity beamforming network, and wide 180° continuous covering angle.

本文针对 28 GHz 毫米波 5G 应用,介绍了一种带有新型馈电网络的低剖面宽扫描角多波束共形天线阵列系统。拟议的天线系统采用两个传统的分支线耦合器作为波束成形网络。这些耦合器通常只能产生 2 个波束,而利用新型馈电技术可产生 7 个波束。由于采用了这种馈电方法,并在 0.15 毫米厚的 R-F775 可弯曲基板上布置了独特的阵列元件,因此所提出的解决方案扫描范围很宽,从 -90° 到 90° 的最小实现增益为 5 dBi。在转向方向上产生的波束的最小和最大增益值分别为 6.5 dBi 和 9.7 dBi。该系统采用了基于软光刻和湿法蚀刻的低成本印刷电路板制造技术。系统尺寸(不包括额外的连接器部分)为 67×15×3mm3。所提出的灵活设计适用于轻量级 5G 通信系统和手机,具有紧凑、低复杂度波束成形网络和宽 180° 连续覆盖角。
{"title":"Wide scan angle multibeam conformal antenna array with novel feeding for mm-wave 5G applications","authors":"Amir Mohsen Ahmadi Najafabadi ,&nbsp;Faruk Ballipinar ,&nbsp;Melih Can Tasdelen ,&nbsp;Abdulkadir Uzun ,&nbsp;Murat Kaya Yapici ,&nbsp;Anja Skrivervik ,&nbsp;Ibrahim Tekin","doi":"10.1016/j.mee.2024.112261","DOIUrl":"10.1016/j.mee.2024.112261","url":null,"abstract":"<div><p>This paper presents a low-profile wide scan angle multibeam conformal antenna array system with a novel feeding network for <span><math><mn>28</mn></math></span> GHz mm-wave 5G applications. The proposed antenna system utilizes two conventional branch-line couplers as its beamforming network. A novel feeding technique is applied to generate <span><math><mn>7</mn></math></span> beams with these couplers that are usually capable of generating <span><math><mn>2</mn></math></span> beams. The proposed solution provides a wide scanning range with a minimum realized gain of <span><math><mn>5</mn></math></span> dBi from <span><math><mo>−</mo><msup><mn>90</mn><mo>°</mo></msup></math></span> to <span><math><msup><mn>90</mn><mo>°</mo></msup></math></span> owing to this feeding approach and the peculiar placement of the array elements on a <span><math><mn>0.15</mn></math></span> mm thick R-F775 bendable substrate. The generated beams at their steer direction have the minimum and maximum gain values of <span><math><mn>6.5</mn></math></span> dBi and <span><math><mn>9.7</mn></math></span> dBi, respectively. A low-cost PCB manufacturing technique based on soft lithography and wet etching is used. The system dimensions excluding extra connector sections are <span><math><mn>67</mn><mo>×</mo><mn>15</mn><mo>×</mo><mn>3</mn><mspace></mspace><msup><mi>mm</mi><mn>3</mn></msup></math></span>. The proposed flexible design is suitable for lightweight 5G communication systems and handsets with its compact low-complexity beamforming network, and wide <span><math><msup><mn>180</mn><mo>°</mo></msup></math></span> continuous covering angle.</p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"294 ","pages":"Article 112261"},"PeriodicalIF":2.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142083477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of an ultra-clean sample heating stage for thermal desorption spectroscopy 开发用于热解吸光谱仪的超洁净样品加热台
IF 2.6 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-20 DOI: 10.1016/j.mee.2024.112257
Xiaoyu Zou, Matthew Fisher, Hugh Gotts

Control of surface molecular contamination (SMC) for components used in chemical vapor deposition (CVD), atomic layer deposition (ALD) and EUV photolithography is important to maintaining high yield and optimal tool operation at the latest process nodes in leading edge semiconductor manufacturing. High temperature thermal desorption spectroscopy (TDS) is a versatile tool for analyzing the cleanliness of surfaces, simulating thermal vacuum processes and studying the kinetics of desorption processes. A basic analysis of TD spectra allows for full characterization of volatile outgassing from surfaces, while detailed analysis can provide chemical information about the substrate surface.

In fundamental studies, TDS is often carried out from low temperatures to room temperature or for small samples. However, for microelectronics applications, high temperature studies of large (100 mm or greater) samples are of greater interest due to direct applications for cleanliness testing and thermal vacuum simulation. A limitation for TDS sensitivity is the outgassing of sample stage materials, particularly when analyzing gases that may be present in the chamber background such as water, CO and CO2. Typical sample stages are often tested only for total pressure or at room temperature.

In this study, we present a simple ultra-high vacuum (UHV) compatible sample heating stage for trace outgassing analysis of 100 mm samples at high temperatures. Simulation results are presented to support the feasibility of the concept. Experimental results verify the cleanliness of the stage via room temperature residual gas analysis (RGA) analysis and X-ray photoelectron spectroscopy (XPS) of stage components. Finally, use of this stage in a TDS analysis of a 100 mm Si witness wafer and comparison to room temperature RGA demonstrates operational capability.

The sample heating stage is both shown to be clean at high temperature and capable of analyzing 100 mm wafers to higher sensitivity than room temperature RGA for all m/z at the 1 × 10−9 mbar level. Despite its high performance, the heating stage is also easily produced by any laser machining service, greatly improving the accessibility of UHV science for all researchers.

控制用于化学气相沉积 (CVD)、原子层沉积 (ALD) 和 EUV 光刻技术的部件的表面分子污染 (SMC) 对于在尖端半导体制造的最新工艺节点上保持高产量和最佳工具操作非常重要。高温热解吸光谱(TDS)是分析表面清洁度、模拟热真空过程和研究解吸过程动力学的多功能工具。通过对 TD 光谱进行基本分析,可以全面了解表面挥发物的特性,而详细分析则可以提供基底表面的化学信息。然而,在微电子应用中,由于可直接用于清洁度测试和热真空模拟,对大型(100 毫米或更大)样品的高温研究更令人感兴趣。TDS 灵敏度的一个限制因素是样品台材料的放气,尤其是在分析可能存在于真空室背景中的气体(如水、一氧化碳和二氧化碳)时。在本研究中,我们介绍了一种简单的超高真空(UHV)兼容样品加热台,用于在高温下对 100 毫米样品进行痕量放气分析。模拟结果证明了这一概念的可行性。实验结果通过室温残余气体分析 (RGA) 分析和平台组件的 X 射线光电子能谱分析 (XPS) 验证了平台的清洁度。最后,将该平台用于 100 毫米硅见证晶片的 TDS 分析,并与室温 RGA 进行比较,证明了其操作能力。样品加热平台不仅在高温下清洁度高,而且在 1 × 10-9 毫巴水平的所有 m/z 分析灵敏度都高于室温 RGA。尽管性能很高,但任何激光加工服务机构都能轻松生产加热台,从而大大提高了超高真空科学对所有研究人员的普及程度。
{"title":"Development of an ultra-clean sample heating stage for thermal desorption spectroscopy","authors":"Xiaoyu Zou,&nbsp;Matthew Fisher,&nbsp;Hugh Gotts","doi":"10.1016/j.mee.2024.112257","DOIUrl":"10.1016/j.mee.2024.112257","url":null,"abstract":"<div><p>Control of surface molecular contamination (SMC) for components used in chemical vapor deposition (CVD), atomic layer deposition (ALD) and EUV photolithography is important to maintaining high yield and optimal tool operation at the latest process nodes in leading edge semiconductor manufacturing. High temperature thermal desorption spectroscopy (TDS) is a versatile tool for analyzing the cleanliness of surfaces, simulating thermal vacuum processes and studying the kinetics of desorption processes. A basic analysis of TD spectra allows for full characterization of volatile outgassing from surfaces, while detailed analysis can provide chemical information about the substrate surface.</p><p>In fundamental studies, TDS is often carried out from low temperatures to room temperature or for small samples. However, for microelectronics applications, high temperature studies of large (100 mm or greater) samples are of greater interest due to direct applications for cleanliness testing and thermal vacuum simulation. A limitation for TDS sensitivity is the outgassing of sample stage materials, particularly when analyzing gases that may be present in the chamber background such as water, CO and CO<sub>2</sub>. Typical sample stages are often tested only for total pressure or at room temperature.</p><p>In this study, we present a simple ultra-high vacuum (UHV) compatible sample heating stage for trace outgassing analysis of 100 mm samples at high temperatures. Simulation results are presented to support the feasibility of the concept. Experimental results verify the cleanliness of the stage via room temperature residual gas analysis (RGA) analysis and X-ray photoelectron spectroscopy (XPS) of stage components. Finally, use of this stage in a TDS analysis of a 100 mm Si witness wafer and comparison to room temperature RGA demonstrates operational capability.</p><p>The sample heating stage is both shown to be clean at high temperature and capable of analyzing 100 mm wafers to higher sensitivity than room temperature RGA for all <em>m</em>/<em>z</em> at the 1 × 10<sup>−9</sup> mbar level. Despite its high performance, the heating stage is also easily produced by any laser machining service, greatly improving the accessibility of UHV science for all researchers.</p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"294 ","pages":"Article 112257"},"PeriodicalIF":2.6,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142044453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanocomposite filled slots that enhance radiation of flexible nonagon antenna 增强柔性非四边形天线辐射的纳米复合材料填充槽
IF 2.6 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-20 DOI: 10.1016/j.mee.2024.112258
Abhilash S. Vasu , T.K. Sreeja , N.R. Lakshmi

The new radiator incorporated with nanocomposites improve radiation characteristics of nonagon shaped antenna. The design comprise two nanocomposite materials loaded in slots that separately enhance lower and upper band radiation. The CPW antenna consists of nonagon shaped ring with heptagon radiating element that consists of inverted U and rigid shaped slots. The longer slot has been deliberately chosen to accommodate mid-frequency of two resonance frequencies and shorter slot isolates surface current distributed along radiating patch, left and right side. The Poly (3, 4 ethyelene dioxythiophene): Polystyrene Sulfonate-Silver nanowire (PEDOT:PSS-AgNW) nanocomposite filled in shorter slot improves gain, bandwidth and return loss of upper band, magnetite - Polyaniline (Fe3O4-PANI) filled in longer slot enhance lower band. The measured result proved to improve bandwidth, gain, radiation efficiency and polarization of lower, upper band. The flexible attributes of radiator studied extensively by wearable application by placing them on wrist and jeans. The fabricated antenna produce a bandwidth of 2.12–3.29 GHz in lower band, 4.51–6.00 GHz in upper band for 2.40/5.20/5.80 GHz WLAN, 2.50/5.50 GHz WiMAX, 2.40/4.90/5.20/5.50/5.80 GHz WiFi, 5G SUB-6 GHz and ISM bands.

采用纳米复合材料的新型辐射器改善了非菱形天线的辐射特性。该设计在槽中加入了两种纳米复合材料,可分别增强低频段和高频段的辐射。CPW 天线由带七角形辐射元件的非四边形环组成,七角形辐射元件由倒 U 形槽和刚性槽组成。特意选择较长的槽来适应两个共振频率的中频,而较短的槽则用于隔离沿辐射贴片左右两侧分布的表面电流。聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐-银纳米线(PEDOT:PSS-AgNW)纳米复合材料填充在较短的槽中,提高了高频段的增益、带宽和回波损耗;磁铁矿-聚苯胺(Fe3O4-PANI)填充在较长的槽中,提高了低频段的增益、带宽和回波损耗。测量结果证明,低频段和高频段的带宽、增益、辐射效率和极化都得到了改善。通过在手腕和牛仔裤上的可穿戴应用,对辐射器的柔性特性进行了广泛研究。制造的天线在低频段的带宽为 2.12-3.29 GHz,在高频段的带宽为 4.51-6.00 GHz,适用于 2.40/5.20/5.80 GHz WLAN、2.50/5.50 GHz WiMAX、2.40/4.90/5.20/5.50/5.80 GHz WiFi、5G SUB-6 GHz 和 ISM 频段。
{"title":"Nanocomposite filled slots that enhance radiation of flexible nonagon antenna","authors":"Abhilash S. Vasu ,&nbsp;T.K. Sreeja ,&nbsp;N.R. Lakshmi","doi":"10.1016/j.mee.2024.112258","DOIUrl":"10.1016/j.mee.2024.112258","url":null,"abstract":"<div><p>The new radiator incorporated with nanocomposites improve radiation characteristics of nonagon shaped antenna. The design comprise two nanocomposite materials loaded in slots that separately enhance lower and upper band radiation. The CPW antenna consists of nonagon shaped ring with heptagon radiating element that consists of inverted U and rigid shaped slots. The longer slot has been deliberately chosen to accommodate mid-frequency of two resonance frequencies and shorter slot isolates surface current distributed along radiating patch, left and right side. The Poly (3, 4 ethyelene dioxythiophene): Polystyrene Sulfonate-Silver nanowire (PEDOT:PSS-AgNW) nanocomposite filled in shorter slot improves gain, bandwidth and return loss of upper band, magnetite - Polyaniline (Fe<sub>3</sub>O<sub>4</sub>-PANI) filled in longer slot enhance lower band. The measured result proved to improve bandwidth, gain, radiation efficiency and polarization of lower, upper band. The flexible attributes of radiator studied extensively by wearable application by placing them on wrist and jeans. The fabricated antenna produce a bandwidth of 2.12–3.29 GHz in lower band, 4.51–6.00 GHz in upper band for 2.40/5.20/5.80 GHz WLAN, 2.50/5.50 GHz WiMAX, 2.40/4.90/5.20/5.50/5.80 GHz WiFi, 5G SUB-6 GHz and ISM bands.</p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"294 ","pages":"Article 112258"},"PeriodicalIF":2.6,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Microelectronic Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1