首页 > 最新文献

2016 IEEE International Electron Devices Meeting (IEDM)最新文献

英文 中文
Prospects of ultra-thin nanowire gated 2D-FETs for next-generation CMOS technology 用于下一代CMOS技术的超薄纳米线门控2d - fet的前景
Pub Date : 2016-12-01 DOI: 10.1109/IEDM.2016.7838419
W. Cao, W. Liu, K. Banerjee
Although 2D semiconductor based FETs have been predicted to be very promising for the ultimate scaling (sub-10 nm nodes) of CMOS technology [1],[2], they face two major challenges in the pathway to commercialization. One is the growth of ultra-thin and high-quality gate dielectrics (preferably high-k) on top of the pristine surfaces of 2D semiconductors, which is a fundamentally difficult task. The other involves formation of ultra-short channel/gate using advanced lithography techniques, which are, however, usually expensive and/or of low yield. Using synthesized ultra-thin core/shell nanowire to gate the 2D semiconductors could be a promising approach, which not only facilitates a lithography-free ultra-short channel formation with relative ease, but also avoids the direct growth of dielectrics on 2D materials, which can help preserve the pristine nature of the 2D channel and its outstanding properties. In this work, aided by rigorous quantum simulations, we attempt to understand and optimize this nonconventional FET structure, guided by a prototype demonstration of this device. It is found that this unique FET structure offers 2D semiconductors a promising platform, in terms of manufacturability and device performance, for next-generation CMOS technology.
尽管基于二维半导体的场效应管被预测为CMOS技术的最终缩放(低于10纳米节点)非常有前途[1],[2],但它们在商业化道路上面临两个主要挑战。一个是在二维半导体的原始表面上生长超薄和高质量的栅极电介质(最好是高k),这从根本上来说是一项艰巨的任务。另一种方法是使用先进的光刻技术形成超短通道/栅极,然而,这种技术通常昂贵且/或产量低。利用合成的超薄核/壳纳米线对二维半导体进行栅极可能是一种很有前途的方法,它不仅可以相对容易地形成无光刻的超短通道,而且可以避免在二维材料上直接生长介电体,这有助于保持二维通道的原始性质及其出色的性能。在这项工作中,在严格的量子模拟的帮助下,我们试图理解和优化这种非常规的场效应管结构,并以该器件的原型演示为指导。研究发现,就可制造性和器件性能而言,这种独特的场效应管结构为下一代CMOS技术提供了一个有前途的2D半导体平台。
{"title":"Prospects of ultra-thin nanowire gated 2D-FETs for next-generation CMOS technology","authors":"W. Cao, W. Liu, K. Banerjee","doi":"10.1109/IEDM.2016.7838419","DOIUrl":"https://doi.org/10.1109/IEDM.2016.7838419","url":null,"abstract":"Although 2D semiconductor based FETs have been predicted to be very promising for the ultimate scaling (sub-10 nm nodes) of CMOS technology [1],[2], they face two major challenges in the pathway to commercialization. One is the growth of ultra-thin and high-quality gate dielectrics (preferably high-k) on top of the pristine surfaces of 2D semiconductors, which is a fundamentally difficult task. The other involves formation of ultra-short channel/gate using advanced lithography techniques, which are, however, usually expensive and/or of low yield. Using synthesized ultra-thin core/shell nanowire to gate the 2D semiconductors could be a promising approach, which not only facilitates a lithography-free ultra-short channel formation with relative ease, but also avoids the direct growth of dielectrics on 2D materials, which can help preserve the pristine nature of the 2D channel and its outstanding properties. In this work, aided by rigorous quantum simulations, we attempt to understand and optimize this nonconventional FET structure, guided by a prototype demonstration of this device. It is found that this unique FET structure offers 2D semiconductors a promising platform, in terms of manufacturability and device performance, for next-generation CMOS technology.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116804663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
A 7nm FinFET technology featuring EUV patterning and dual strained high mobility channels 一种7nm FinFET技术,具有EUV图形和双应变高迁移率通道
Pub Date : 2016-12-01 DOI: 10.1109/IEDM.2016.7838334
R. Xie, P. Montanini, K. Akarvardar, N. Tripathi, B. Haran, S. Johnson, T. Hook, B. Hamieh, D. Corliss, J. Wang, Xin He Miao, J. Sporre, J. Fronheiser, N. Loubet, M. Sung, S. Sieg, S. Mochizuki, C. Prindle, S. Seo, A. Greene, J. Shearer, A. Labonté, S. Fan, L. Liebmann, R. Chao, A. Arceo, K. Chung, K. Cheon, P. Adusumilli, H. Amanapu, Z. Bi, J. Cha, H. Chen, R. Conti, R. Galatage, O. Gluschenkov, V. Kamineni, K. Kim, C. Lee, F. Lie, Z. Liu, S. Mehta, E. Miller, H. Niimi, C. Niu, C. Park, D. Park, M. Raymond, B. Sahu, M. Sankarapandian, S. Siddiqui, R. Southwick, L. Sun, C. Surisetty, S. Tsai, S. Whang, P. Xu, Y. Xu, C. Yeh, P. Zeitzoff, J. Zhang, J. Li, J. Demarest, J. Arnold, D. Canaperi, D. Dunn, N. Felix, D. Gupta, H. Jagannathan, S. Kanakasabapathy, W. Kleemeier, C. Labelle, M. Mottura, P. Oldiges, S. Skordas, T. Standaert, T. Yamashita, M. Colburn, M. Na, V. Paruchuri, S. Lian, R. Divakaruni, T. Gow, S. Lee, A. Knorr, H. Bu, M. Khare
We present a 7nm technology with the tightest contacted poly pitch (CPP) of 44/48nm and metallization pitch of 36nm ever reported in FinFET technology. To overcome optical lithography limits, Extreme Ultraviolet Lithography (EUV) has been introduced for multiple critical levels for the first time. Dual strained channels have been also implemented to enhance mobility for high performance applications.
我们提出了一种7nm技术,该技术具有FinFET技术中最紧密的接触聚间距(CPP)为44/48nm,金属化间距为36nm。为了克服光学光刻技术的局限性,首次在多个临界水平上引入了极紫外光刻技术。双应变通道也已实现,以提高高性能应用的移动性。
{"title":"A 7nm FinFET technology featuring EUV patterning and dual strained high mobility channels","authors":"R. Xie, P. Montanini, K. Akarvardar, N. Tripathi, B. Haran, S. Johnson, T. Hook, B. Hamieh, D. Corliss, J. Wang, Xin He Miao, J. Sporre, J. Fronheiser, N. Loubet, M. Sung, S. Sieg, S. Mochizuki, C. Prindle, S. Seo, A. Greene, J. Shearer, A. Labonté, S. Fan, L. Liebmann, R. Chao, A. Arceo, K. Chung, K. Cheon, P. Adusumilli, H. Amanapu, Z. Bi, J. Cha, H. Chen, R. Conti, R. Galatage, O. Gluschenkov, V. Kamineni, K. Kim, C. Lee, F. Lie, Z. Liu, S. Mehta, E. Miller, H. Niimi, C. Niu, C. Park, D. Park, M. Raymond, B. Sahu, M. Sankarapandian, S. Siddiqui, R. Southwick, L. Sun, C. Surisetty, S. Tsai, S. Whang, P. Xu, Y. Xu, C. Yeh, P. Zeitzoff, J. Zhang, J. Li, J. Demarest, J. Arnold, D. Canaperi, D. Dunn, N. Felix, D. Gupta, H. Jagannathan, S. Kanakasabapathy, W. Kleemeier, C. Labelle, M. Mottura, P. Oldiges, S. Skordas, T. Standaert, T. Yamashita, M. Colburn, M. Na, V. Paruchuri, S. Lian, R. Divakaruni, T. Gow, S. Lee, A. Knorr, H. Bu, M. Khare","doi":"10.1109/IEDM.2016.7838334","DOIUrl":"https://doi.org/10.1109/IEDM.2016.7838334","url":null,"abstract":"We present a 7nm technology with the tightest contacted poly pitch (CPP) of 44/48nm and metallization pitch of 36nm ever reported in FinFET technology. To overcome optical lithography limits, Extreme Ultraviolet Lithography (EUV) has been introduced for multiple critical levels for the first time. Dual strained channels have been also implemented to enhance mobility for high performance applications.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132261908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 92
32-bit Processor core at 5-nm technology: Analysis of transistor and interconnect impact on VLSI system performance 5nm技术的32位处理器核心:晶体管和互连对VLSI系统性能的影响分析
Pub Date : 2016-12-01 DOI: 10.1109/IEDM.2016.7838498
Chi-Shuen Lee, B. Cline, Saurabh Sinha, G. Yeric, H. Wong
A 32-bit commercial processor core is implemented at 5-nm design rules to study transistor and interconnect technology options and the impact of increasing interconnect resistance on system performance. Insights obtained are: 1) The major benefit of downscaling FET gate length is reducing MEOL parasitics instead of the intrinsic gate capacitance. 2) 2D-material-based FETs can achieve ∼2∗ better core-level energy-delay-product in theory compared to the projected Si FinFET; contact resistivity <6∗10−8 Ω-μm2 is required for 2D-FETs to match the core performance using Si FinFET. 3) Signal routing optimization can mitigate the impact of BEOL resistance such it contributes to 15%–35% of the total delay at the cost of using more cells and vias, which is not manifest if a ring oscillator with fixed wire load is used without performing full place-and-route. 4) Thinning Cu diffusion barrier can improve system performance up to 11% and alleviate BEOL variation impact.
在5nm设计规则下实现32位商用处理器核心,以研究晶体管和互连技术选项以及增加互连电阻对系统性能的影响。获得的见解是:1)减小FET栅极长度的主要好处是减少MEOL寄生而不是固有栅极电容。2)基于2d材料的fet在理论上可以实现比投影Si FinFET更好的核心级能量延迟积(~ 2 *);接触电阻率<6∗10−8 Ω-μm2是2d - fet匹配使用Si FinFET的核心性能所必需的。3)信号路由优化可以减轻BEOL电阻的影响,因此它以使用更多的单元和过孔为代价贡献15%-35%的总延迟,如果使用固定导线负载的环形振荡器而不执行完整的放置和路由,则不会出现这种情况。4) Cu扩散障壁减薄可使系统性能提高11%,减轻BEOL变化的影响。
{"title":"32-bit Processor core at 5-nm technology: Analysis of transistor and interconnect impact on VLSI system performance","authors":"Chi-Shuen Lee, B. Cline, Saurabh Sinha, G. Yeric, H. Wong","doi":"10.1109/IEDM.2016.7838498","DOIUrl":"https://doi.org/10.1109/IEDM.2016.7838498","url":null,"abstract":"A 32-bit commercial processor core is implemented at 5-nm design rules to study transistor and interconnect technology options and the impact of increasing interconnect resistance on system performance. Insights obtained are: 1) The major benefit of downscaling FET gate length is reducing MEOL parasitics instead of the intrinsic gate capacitance. 2) 2D-material-based FETs can achieve ∼2∗ better core-level energy-delay-product in theory compared to the projected Si FinFET; contact resistivity <6∗10−8 Ω-μm2 is required for 2D-FETs to match the core performance using Si FinFET. 3) Signal routing optimization can mitigate the impact of BEOL resistance such it contributes to 15%–35% of the total delay at the cost of using more cells and vias, which is not manifest if a ring oscillator with fixed wire load is used without performing full place-and-route. 4) Thinning Cu diffusion barrier can improve system performance up to 11% and alleviate BEOL variation impact.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134615186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 27
Vertically stacked nanowire MOSFETs for sub-10nm nodes: Advanced topography, device, variability, and reliability simulations 用于亚10nm节点的垂直堆叠纳米线mosfet:先进的地形,器件,可变性和可靠性模拟
Pub Date : 2016-12-01 DOI: 10.1109/IEDM.2016.7838516
M. Karner, O. Baumgartner, Z. Stanojevic, F. Schanovsky, G. Strof, C. Kernstock, H. Karner, G. Rzepa, T. Grasset
Using an advanced simulation framework we analyze a recent sub-10 nm technology demonstration based on stacked nanowire transistors (NW-FETs). The study encompasses (i) topography simulation which realistically reproduces the fabricated device, (ii) device simulation based on the subband Boltzmann transport equation (iii) a comprehensive set of scattering models for the gate stack, (iv) physical models for time-zero variability and BTI device degradation. We find that (i) the fabrication process introduces parasitic capacitances not present in a comparable FinFET, (ii) the device performance is significantly affected by interface-charge-induced Coulomb scattering resulting in up to 50% reduction in drain current compared to an ideal device, (iii) device time-zero variability is increased due to a lower amount of dopant atoms per device, (iv) the device is more affected by BTI than a comparable FinFET. Using physics-based TCAD for technology path-finding and device optimization, we are able to point out critical improvements required for the stacked NW-FET to surpass current FinFET technology.
利用先进的仿真框架,我们分析了最近基于堆叠纳米线晶体管(nw - fet)的亚10纳米技术演示。该研究包括(i)真实再现制造器件的地形模拟,(ii)基于子带玻尔兹曼输运方程的器件模拟,(iii)栅极堆栈的综合散射模型,(iv)时间零变变性和BTI器件退化的物理模型。我们发现(i)制造过程引入了可比较的FinFET中不存在的寄生电容,(ii)与理想器件相比,器件性能受到界面电荷诱导的库仑散射的显著影响,导致漏极电流减少高达50%,(iii)由于每个器件的掺杂原子量较低,器件时间零可变性增加,(iv)器件受BTI的影响比可比较的FinFET更大。使用基于物理的TCAD进行技术寻径和器件优化,我们能够指出堆叠NW-FET超越当前FinFET技术所需的关键改进。
{"title":"Vertically stacked nanowire MOSFETs for sub-10nm nodes: Advanced topography, device, variability, and reliability simulations","authors":"M. Karner, O. Baumgartner, Z. Stanojevic, F. Schanovsky, G. Strof, C. Kernstock, H. Karner, G. Rzepa, T. Grasset","doi":"10.1109/IEDM.2016.7838516","DOIUrl":"https://doi.org/10.1109/IEDM.2016.7838516","url":null,"abstract":"Using an advanced simulation framework we analyze a recent sub-10 nm technology demonstration based on stacked nanowire transistors (NW-FETs). The study encompasses (i) topography simulation which realistically reproduces the fabricated device, (ii) device simulation based on the subband Boltzmann transport equation (iii) a comprehensive set of scattering models for the gate stack, (iv) physical models for time-zero variability and BTI device degradation. We find that (i) the fabrication process introduces parasitic capacitances not present in a comparable FinFET, (ii) the device performance is significantly affected by interface-charge-induced Coulomb scattering resulting in up to 50% reduction in drain current compared to an ideal device, (iii) device time-zero variability is increased due to a lower amount of dopant atoms per device, (iv) the device is more affected by BTI than a comparable FinFET. Using physics-based TCAD for technology path-finding and device optimization, we are able to point out critical improvements required for the stacked NW-FET to surpass current FinFET technology.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134647673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 26
22nm FDSOI technology for emerging mobile, Internet-of-Things, and RF applications 22nm FDSOI技术,适用于新兴的移动、物联网和射频应用
Pub Date : 2016-12-01 DOI: 10.1109/iedm.2016.7838029
R. Carter, J. Mazurier, L. Pirro, J.-U. Sachse, P. Baars, J. Faul, C. Grass, G. Grasshoff, P. Javorka, T. Kammler, A. Preusse, S. Nielsen, T. Heller, J. Schmidt, H. Niebojewski, P. Chou, E. Smith, E. Erben, C. Metze, C. Bao, Y. Andee, I. Aydin, S. Morvan, J. Bernard, E. Bourjot, T. Feudel, D. Harame, R. Nelluri, H.-J. Thees, L. M-Meskamp, J. Kluth, R. Mulfinger, M. Rashed, R. Taylor, C. Weintraub, J. Hoentschel, M. Vinet, J. Schaeffer, B. Rice
22FDX™ is the industry's first FDSOI technology architected to meet the requirements of emerging mobile, Internet-of-Things (IoT), and RF applications. This platform achieves the power and performance efficiency of a 16/14nm FinFET technology in a cost effective, planar device architecture that can be implemented with ∼30% fewer masks. Performance comes from a second generation FDSOI transistor, which produces nFET (pFET) drive currents of 910μΑ/μm (856μΑ/μm) at 0.8 V and 100nA/μm Ioff. For ultra-low power applications, it offers low-voltage operation down to 0.4V Vmin for 8T logic libraries, as well as 0.62V and 0.52V Vmin for high-density and high-current bitcells, ultra-low leakage devices approaching 1pA/μm Ioff, and body-biasing to actively trade-off power and performance. Superior RF/Analog characteristics to FinFET are achieved including high fT/fMAx of 375GHz/290GHz and 260GHz/250GHz for nFET and pFET, respectively. The high fMAx extends the capabilities to 5G and milli-meter wave (>24GHz) RF applications.
22FDX™是业界首款FDSOI技术,旨在满足新兴移动、物联网(IoT)和射频应用的需求。该平台在具有成本效益的平面器件架构中实现了16/14nm FinFET技术的功率和性能效率,可以减少约30%的掩模。性能来自第二代FDSOI晶体管,在0.8 V和100nA/μm下产生的fet驱动电流为910μΑ/μm (856μΑ/μm)。对于超低功耗应用,它为8T逻辑库提供低至0.4V Vmin的低电压工作,为高密度和大电流位单元提供0.62V和0.52V Vmin,接近1pA/μm Ioff的超低泄漏器件,以及主动权衡功率和性能的体偏置。实现了FinFET优越的RF/模拟特性,包括nFET和fet分别达到375GHz/290GHz和260GHz/250GHz的高fT/fMAx。高fMAx将功能扩展到5G和毫米波(>24GHz)射频应用。
{"title":"22nm FDSOI technology for emerging mobile, Internet-of-Things, and RF applications","authors":"R. Carter, J. Mazurier, L. Pirro, J.-U. Sachse, P. Baars, J. Faul, C. Grass, G. Grasshoff, P. Javorka, T. Kammler, A. Preusse, S. Nielsen, T. Heller, J. Schmidt, H. Niebojewski, P. Chou, E. Smith, E. Erben, C. Metze, C. Bao, Y. Andee, I. Aydin, S. Morvan, J. Bernard, E. Bourjot, T. Feudel, D. Harame, R. Nelluri, H.-J. Thees, L. M-Meskamp, J. Kluth, R. Mulfinger, M. Rashed, R. Taylor, C. Weintraub, J. Hoentschel, M. Vinet, J. Schaeffer, B. Rice","doi":"10.1109/iedm.2016.7838029","DOIUrl":"https://doi.org/10.1109/iedm.2016.7838029","url":null,"abstract":"22FDX™ is the industry's first FDSOI technology architected to meet the requirements of emerging mobile, Internet-of-Things (IoT), and RF applications. This platform achieves the power and performance efficiency of a 16/14nm FinFET technology in a cost effective, planar device architecture that can be implemented with ∼30% fewer masks. Performance comes from a second generation FDSOI transistor, which produces nFET (pFET) drive currents of 910μΑ/μm (856μΑ/μm) at 0.8 V and 100nA/μm Ioff. For ultra-low power applications, it offers low-voltage operation down to 0.4V V<inf>min</inf> for 8T logic libraries, as well as 0.62V and 0.52V V<inf>min</inf> for high-density and high-current bitcells, ultra-low leakage devices approaching 1pA/μm I<inf>off</inf>, and body-biasing to actively trade-off power and performance. Superior RF/Analog characteristics to FinFET are achieved including high f<inf>T</inf>/f<inf>MAx</inf> of 375GHz/290GHz and 260GHz/250GHz for nFET and pFET, respectively. The high f<inf>MAx</inf> extends the capabilities to 5G and milli-meter wave (>24GHz) RF applications.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122340143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 173
High performance, flexible CMOS circuits and sensors toward wearable healthcare applications 面向可穿戴医疗保健应用的高性能、柔性CMOS电路和传感器
Pub Date : 2016-12-01 DOI: 10.1109/IEDM.2016.7838358
K. Takei
Macroscale, flexible, and/or stretchable electronics enable to collect a variety of information by attaching it on diverse objects including nonplanar surfaces such as human body. To realize the devices, there are several technical challenges such as (1) low-cost, macroscale sensor network formation, (2) low power and high performance flexible circuits, and (3) other flexible components including battery and wireless communications. In this study, we propose and develop a low power flexible circuit platform using inorganic material-based complementary metal-oxide-semiconductor (CMOS) on a flexible substrate and printed macro-scale, multi-functional sensor networks to address the challenges.
宏观的、柔性的和/或可拉伸的电子设备能够通过将其附着在不同的物体上(包括非平面表面,如人体)来收集各种信息。为了实现这些设备,存在几个技术挑战,如:(1)低成本,宏观传感器网络的形成,(2)低功耗和高性能柔性电路,以及(3)其他柔性组件,包括电池和无线通信。在这项研究中,我们提出并开发了一个低功耗的柔性电路平台,使用基于无机材料的互补金属氧化物半导体(CMOS)在柔性衬底上和印刷宏观,多功能传感器网络来解决这些挑战。
{"title":"High performance, flexible CMOS circuits and sensors toward wearable healthcare applications","authors":"K. Takei","doi":"10.1109/IEDM.2016.7838358","DOIUrl":"https://doi.org/10.1109/IEDM.2016.7838358","url":null,"abstract":"Macroscale, flexible, and/or stretchable electronics enable to collect a variety of information by attaching it on diverse objects including nonplanar surfaces such as human body. To realize the devices, there are several technical challenges such as (1) low-cost, macroscale sensor network formation, (2) low power and high performance flexible circuits, and (3) other flexible components including battery and wireless communications. In this study, we propose and develop a low power flexible circuit platform using inorganic material-based complementary metal-oxide-semiconductor (CMOS) on a flexible substrate and printed macro-scale, multi-functional sensor networks to address the challenges.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122840570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
CMOS compatible MIM decoupling capacitor with reliable sub-nm EOT high-k stacks for the 7 nm node and beyond CMOS兼容MIM去耦电容器,具有可靠的亚纳米EOT高k堆栈,适用于7纳米及以上节点
Pub Date : 2016-12-01 DOI: 10.1109/IEDM.2016.7838382
T. Ando, E. Cartier, P. Jamison, A. Pyzyna, S. Kim, J. Bruley, K. Chung, H. Shobha, I. Estrada-Raygoza, H. Tang, S. Kanakasabapathy, T. Spooner, L. Clevenger, G. Bonilla, H. Jagannathan, V. Narayanan
We demonstrate a record-low EOT (equivalent oxide thickness) of 0.8 nm for a metal-insulator-metal (MIM) decoupling capacitor, which is compatible with back-end-of-line (BEOL) processing. This results in 2-plate MIM capacitance density of 43 fF/um2, and leakage current density (Jg) of 5 fA/um2 at 1V, 125 oC. Moreover, we identify that symmetry of CV/IV/TDDB characteristics for both positive and negative bias polarities is a key consideration for stacking more than one MIM capacitor for further capacitance density increase. We develop a novel tri-layer high-k stack with buffer layers between HfO2 and metal electrodes, which substantially improves the electrical bias symmetry, and achieve Vuse = 1.32 V (10 yr/1 ppm/1 cm2/125 oC) at EOT = 0.8 nm. These results should support record stacked-MIM (> 2-plate) capacitance densities, with sub-nm EOT, for the 7 nm node and beyond.
我们证明了金属-绝缘体-金属(MIM)去耦电容器的EOT(等效氧化物厚度)为0.8 nm,这与后端线(BEOL)工艺兼容。这导致2板MIM电容密度为43 fF/um2,泄漏电流密度(Jg)为5 fA/um2在1V, 125 oC。此外,我们还发现,CV/IV/TDDB特性的正负偏置极性对称性是堆叠多个MIM电容器以进一步提高电容密度的关键考虑因素。我们开发了一种新型的三层高k堆叠,在HfO2和金属电极之间有缓冲层,这大大提高了电偏置对称性,并在EOT = 0.8 nm时实现了Vuse = 1.32 V (10 yr/1 ppm/1 cm2/125 oC)。这些结果应该支持记录的堆叠- mim (> 2-plate)电容密度,具有亚纳米的EOT,适用于7纳米及以上节点。
{"title":"CMOS compatible MIM decoupling capacitor with reliable sub-nm EOT high-k stacks for the 7 nm node and beyond","authors":"T. Ando, E. Cartier, P. Jamison, A. Pyzyna, S. Kim, J. Bruley, K. Chung, H. Shobha, I. Estrada-Raygoza, H. Tang, S. Kanakasabapathy, T. Spooner, L. Clevenger, G. Bonilla, H. Jagannathan, V. Narayanan","doi":"10.1109/IEDM.2016.7838382","DOIUrl":"https://doi.org/10.1109/IEDM.2016.7838382","url":null,"abstract":"We demonstrate a record-low EOT (equivalent oxide thickness) of 0.8 nm for a metal-insulator-metal (MIM) decoupling capacitor, which is compatible with back-end-of-line (BEOL) processing. This results in 2-plate MIM capacitance density of 43 fF/um2, and leakage current density (Jg) of 5 fA/um2 at 1V, 125 oC. Moreover, we identify that symmetry of CV/IV/TDDB characteristics for both positive and negative bias polarities is a key consideration for stacking more than one MIM capacitor for further capacitance density increase. We develop a novel tri-layer high-k stack with buffer layers between HfO2 and metal electrodes, which substantially improves the electrical bias symmetry, and achieve Vuse = 1.32 V (10 yr/1 ppm/1 cm2/125 oC) at EOT = 0.8 nm. These results should support record stacked-MIM (> 2-plate) capacitance densities, with sub-nm EOT, for the 7 nm node and beyond.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128741508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Systematic validation of 2x nm diameter perpendicular MTJ arrays and MgO barrier for sub-10 nm embedded STT-MRAM with practically unlimited endurance 系统验证2nm直径垂直MTJ阵列和MgO势垒在10 nm以下的嵌入式STT-MRAM具有几乎无限的耐用性
Pub Date : 2016-12-01 DOI: 10.1109/IEDM.2016.7838493
J. Kan, C. Park, C. Ching, J. Ahn, L. Xue, R. Wang, A. Kontos, S. Liang, M. Bangar, H. Chen, S. Hassan, S. Kim, M. Pakala, S. H. Kang
We present a comprehensive device and scalability validation of STT-MRAM for high performance applications in sub-10 nm CMOS by providing the first statistical account of barrier reliability in perpendicular magnetic tunnel junctions (pMTJs) from 70 to 25 nm diameter in 1 Gbit arrays. We have experimentally investigated the time-dependent dielectric breakdown (TDDB) properties and the dependence of the pMTJ lifetime on voltage, polarity, duty-cycle, and temperature. A large write-to-breakdown voltage window of > 1 V (> 20 σavg) was measured and a long time-to-breakdown was projected (> 1015 cycles) for 45 nm pMTJs, guaranteeing practically unlimited write cycles. We also reveal a dramatic enhancement of barrier reliability in conjunction with pMTJ size scaling down to 25 nm diameter, further widening the operating window at deeply scaled nodes.
我们提出了一个全面的STT-MRAM器件和可扩展性验证,用于sub- 10nm CMOS的高性能应用,提供了垂直磁隧道结(pMTJs)在1gbit阵列中从70到25nm直径的势垒可靠性的第一个统计说明。我们通过实验研究了时间相关的介质击穿(TDDB)特性以及pMTJ寿命对电压、极性、占空比和温度的依赖关系。45nm的pMTJs具有> 1 V (> 20 σavg)的大写入击穿电压窗,并且具有> 1015个周期的击穿时间,保证了几乎无限的写入周期。我们还发现,当pMTJ尺寸缩小到25 nm直径时,势垒可靠性显著增强,进一步扩大了深度缩放节点的操作窗口。
{"title":"Systematic validation of 2x nm diameter perpendicular MTJ arrays and MgO barrier for sub-10 nm embedded STT-MRAM with practically unlimited endurance","authors":"J. Kan, C. Park, C. Ching, J. Ahn, L. Xue, R. Wang, A. Kontos, S. Liang, M. Bangar, H. Chen, S. Hassan, S. Kim, M. Pakala, S. H. Kang","doi":"10.1109/IEDM.2016.7838493","DOIUrl":"https://doi.org/10.1109/IEDM.2016.7838493","url":null,"abstract":"We present a comprehensive device and scalability validation of STT-MRAM for high performance applications in sub-10 nm CMOS by providing the first statistical account of barrier reliability in perpendicular magnetic tunnel junctions (pMTJs) from 70 to 25 nm diameter in 1 Gbit arrays. We have experimentally investigated the time-dependent dielectric breakdown (TDDB) properties and the dependence of the pMTJ lifetime on voltage, polarity, duty-cycle, and temperature. A large write-to-breakdown voltage window of > 1 V (> 20 σavg) was measured and a long time-to-breakdown was projected (> 1015 cycles) for 45 nm pMTJs, guaranteeing practically unlimited write cycles. We also reveal a dramatic enhancement of barrier reliability in conjunction with pMTJ size scaling down to 25 nm diameter, further widening the operating window at deeply scaled nodes.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129094715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 53
Four-directional pixel-wise polarization CMOS image sensor using air-gap wire grid on 2.5-μm back-illuminated pixels 在2.5 μm背照像素上采用气隙线栅的四向像素偏振CMOS图像传感器
Pub Date : 2016-12-01 DOI: 10.1109/IEDM.2016.7838378
Tomohiro Yamazaki, Yasushi Maruyama, Yusuke Uesaka, Motoaki Nakamura, Y. Matoba, T. Terada, K. Komori, Y. Ohba, S. Arakawa, Yasutaka Hirasawa, Yuhi Kondo, J. Murayama, Kentaro Akiyama, Y. Oike, Shuzo Sato, T. Ezaki
Polarization information is useful in highly functional imaging. This paper presents a four-directional pixel-wise polarization CMOS image sensor using an air-gap wire grid on 2.5-μm back-illuminated pixels. The fabricated air-gap wire grid polarizer achieved a transmittance of 63.3 % and an extinction ratio of 85 at 550 nm, outperforming conventional polarization sensors. The pixel-wise polarizers fabricated with the wafer process on back-illuminated image sensors exhibit good oblique-incidence characteristics, even with small polarization pixels of 2.5 μm. The proposed image sensor realizes mega-pixel various fusion-imaging applications, such as surface reflection reduction, highly accurate depth mapping, and condition-robust surveillance.
偏振信息在高功能成像中是有用的。本文提出了一种采用气隙线栅在2.5 μm背照像素上实现四向像素偏振的CMOS图像传感器。该气隙线栅偏振器在550nm处的透射率为63.3%,消光比为85,优于传统偏振传感器。在背光图像传感器上采用晶圆工艺制备的逐像元偏振片,即使在2.5 μm的小偏振像元下,也具有良好的斜入射特性。所提出的图像传感器实现了百万像素的各种融合成像应用,如表面反射减少、高精度深度映射和条件鲁棒监视。
{"title":"Four-directional pixel-wise polarization CMOS image sensor using air-gap wire grid on 2.5-μm back-illuminated pixels","authors":"Tomohiro Yamazaki, Yasushi Maruyama, Yusuke Uesaka, Motoaki Nakamura, Y. Matoba, T. Terada, K. Komori, Y. Ohba, S. Arakawa, Yasutaka Hirasawa, Yuhi Kondo, J. Murayama, Kentaro Akiyama, Y. Oike, Shuzo Sato, T. Ezaki","doi":"10.1109/IEDM.2016.7838378","DOIUrl":"https://doi.org/10.1109/IEDM.2016.7838378","url":null,"abstract":"Polarization information is useful in highly functional imaging. This paper presents a four-directional pixel-wise polarization CMOS image sensor using an air-gap wire grid on 2.5-μm back-illuminated pixels. The fabricated air-gap wire grid polarizer achieved a transmittance of 63.3 % and an extinction ratio of 85 at 550 nm, outperforming conventional polarization sensors. The pixel-wise polarizers fabricated with the wafer process on back-illuminated image sensors exhibit good oblique-incidence characteristics, even with small polarization pixels of 2.5 μm. The proposed image sensor realizes mega-pixel various fusion-imaging applications, such as surface reflection reduction, highly accurate depth mapping, and condition-robust surveillance.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116124810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
Two-dimensional heterojunction interlayer tunnel FET (Thin-TFET): From theory to applications 二维异质结层间隧道FET (Thin-TFET):从理论到应用
Pub Date : 2016-12-01 DOI: 10.1109/IEDM.2016.7838451
Mingda Li, R. Yan, D. Jena, H. Xing
We review the conception and development of two-dimensional heterojunction interlayer field effect transistor (Thin-TFET), where a steep subthreshold swing (SS) and a high on-current are estimated theoretically. The Thin-TFET has been experimentally demonstrated using WSe2/SnSe2 stacked heterostructures, where the SS is mostly likely limited by the interfacial trap density of states and the parasitic MOSFET. Due to its vertical stacking structure, Thin-TFET intrinsically has a smaller gate-drain capacitance compared to the conventional lateral pin-TFET. In turn, this results in mitigated Miller Effect in Thin-TFET thus reducing dynamic energy dissipation in circuits.
我们回顾了二维异质结层间场效应晶体管(thin - ttfet)的概念和发展,理论上估计了陡的亚阈值摆幅(SS)和大的导通电流。利用WSe2/SnSe2堆叠异质结构对薄型tfet进行了实验证明,其中SS很可能受到状态的界面阱密度和寄生MOSFET的限制。由于其垂直堆叠结构,Thin-TFET本质上具有比传统的横向pin-TFET更小的栅极-漏极电容。反过来,这导致薄型tfet中的米勒效应减轻,从而减少电路中的动态能量耗散。
{"title":"Two-dimensional heterojunction interlayer tunnel FET (Thin-TFET): From theory to applications","authors":"Mingda Li, R. Yan, D. Jena, H. Xing","doi":"10.1109/IEDM.2016.7838451","DOIUrl":"https://doi.org/10.1109/IEDM.2016.7838451","url":null,"abstract":"We review the conception and development of two-dimensional heterojunction interlayer field effect transistor (Thin-TFET), where a steep subthreshold swing (SS) and a high on-current are estimated theoretically. The Thin-TFET has been experimentally demonstrated using WSe2/SnSe2 stacked heterostructures, where the SS is mostly likely limited by the interfacial trap density of states and the parasitic MOSFET. Due to its vertical stacking structure, Thin-TFET intrinsically has a smaller gate-drain capacitance compared to the conventional lateral pin-TFET. In turn, this results in mitigated Miller Effect in Thin-TFET thus reducing dynamic energy dissipation in circuits.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117181854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
期刊
2016 IEEE International Electron Devices Meeting (IEDM)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1