Pub Date : 2016-12-01DOI: 10.1109/IEDM.2016.7838438
Qingzhu Zhang, H. Yin, Jun Luo, Hong Yang, Lingkuan Meng, Yudong Li, Zhenhua Wu, Yanbo Zhang, Yongkui Zhang, Changliang Qin, Junjie Li, Jianfeng Gao, Guilei Wang, W. Xiong, J. Xiang, Zhangyu Zhou, S. Mao, Gaobo Xu, Jinbiao Liu, Y. Qu, Tao Yang, Junfeng Li, Qiuxia Xu, Jiang Yan, Huilong Zhu, Chao Zhao, Tianchun Ye
The large parasitic resistance has become a critical limiting factor to on current (ION) of FinFET and nanowire devices. Fully metallic source and drain (MSD) process is one of the most promising solutions but it often suffers from intolerant junction leakage in bulk FETs. In this paper, fully MSD process on fin-on-insulator (FOI) FinFET is investigated extensively for the first time. By forming fully Ni(Pt) silicide on physically isolated fins, about 90% reduction in contacted resistivities (Rcs) and 55% reduction in sheet resistances (Rss) are achieved without obvious junction leakage degradation. As a consequence, Ion of transistor, with gate length (Lg) of 20nm, is increased 30 times, up to 547μA/μm for NMOS and 324 μA/μm for PMOS, respectively. Excellent controls of SCE and channel leakage with 47% DIBL, 32% SS and 2.5% device leakages reductions over the counterpart of conventional bulk FinFETs are also obtained. Meanwhile, the fully MSD process induces clear tensile stress into narrow fin-channel, resulting in enhanced electron mobility in NMOS. A further improvement in PMOS drive ability (486μA/μm) by using Schottky barrier source and drain (SBSD) technology is also explored.
{"title":"FOI FinFET with ultra-low parasitic resistance enabled by fully metallic source and drain formation on isolated bulk-fin","authors":"Qingzhu Zhang, H. Yin, Jun Luo, Hong Yang, Lingkuan Meng, Yudong Li, Zhenhua Wu, Yanbo Zhang, Yongkui Zhang, Changliang Qin, Junjie Li, Jianfeng Gao, Guilei Wang, W. Xiong, J. Xiang, Zhangyu Zhou, S. Mao, Gaobo Xu, Jinbiao Liu, Y. Qu, Tao Yang, Junfeng Li, Qiuxia Xu, Jiang Yan, Huilong Zhu, Chao Zhao, Tianchun Ye","doi":"10.1109/IEDM.2016.7838438","DOIUrl":"https://doi.org/10.1109/IEDM.2016.7838438","url":null,"abstract":"The large parasitic resistance has become a critical limiting factor to on current (ION) of FinFET and nanowire devices. Fully metallic source and drain (MSD) process is one of the most promising solutions but it often suffers from intolerant junction leakage in bulk FETs. In this paper, fully MSD process on fin-on-insulator (FOI) FinFET is investigated extensively for the first time. By forming fully Ni(Pt) silicide on physically isolated fins, about 90% reduction in contacted resistivities (Rcs) and 55% reduction in sheet resistances (Rss) are achieved without obvious junction leakage degradation. As a consequence, Ion of transistor, with gate length (Lg) of 20nm, is increased 30 times, up to 547μA/μm for NMOS and 324 μA/μm for PMOS, respectively. Excellent controls of SCE and channel leakage with 47% DIBL, 32% SS and 2.5% device leakages reductions over the counterpart of conventional bulk FinFETs are also obtained. Meanwhile, the fully MSD process induces clear tensile stress into narrow fin-channel, resulting in enhanced electron mobility in NMOS. A further improvement in PMOS drive ability (486μA/μm) by using Schottky barrier source and drain (SBSD) technology is also explored.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"164 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123785726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-12-01DOI: 10.1109/IEDM.2016.7838504
M. Asada, S. Suzuki
We report on our recent results of resonant tunneling diodes oscillating in the terahertz frequency range, including the structures for high frequency oscillation up to 1.92 THz at room temperature, high output power, high-speed direct modulation for wireless communication, and frequency tenability for spectroscopy.
{"title":"Resonant-tunneling-diode terahertz oscillators and applications","authors":"M. Asada, S. Suzuki","doi":"10.1109/IEDM.2016.7838504","DOIUrl":"https://doi.org/10.1109/IEDM.2016.7838504","url":null,"abstract":"We report on our recent results of resonant tunneling diodes oscillating in the terahertz frequency range, including the structures for high frequency oscillation up to 1.92 THz at room temperature, high output power, high-speed direct modulation for wireless communication, and frequency tenability for spectroscopy.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130486730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-12-01DOI: 10.1109/IEDM.2016.7838350
Jianshi Tang, Q. Cao, D. Farmer, G. Tulevski, Shu-Jen Han
CNT-based complementary logic using low-temperature processed end-boned metal contacts are demonstrated. This new form of end-bonded contact is made by carbon dissolution into metal contacts with high carbon solubility (e.g., Ni and Co), which requires only low annealing temperature (400−600 °C). As-fabricated end-bonded Ni contacts serve as robust p-type contacts to CNTs and perform better than standard Pd side-bonded contacts at scaled dimensions. In addition, stable NFETs are converted from PFETs using Al2O3 as an n-type physicochemical doping layer. CMOS inverters are further built with end-bonded contacts for both PFETs and NFETs, featuring the smallest contact size thus far for CNT inverters. These new findings could pave the way to realizing CNT-based scalable CMOS technology.
{"title":"Carbon nanotube complementary logic with low-temperature processed end-bonded metal contacts","authors":"Jianshi Tang, Q. Cao, D. Farmer, G. Tulevski, Shu-Jen Han","doi":"10.1109/IEDM.2016.7838350","DOIUrl":"https://doi.org/10.1109/IEDM.2016.7838350","url":null,"abstract":"CNT-based complementary logic using low-temperature processed end-boned metal contacts are demonstrated. This new form of end-bonded contact is made by carbon dissolution into metal contacts with high carbon solubility (e.g., Ni and Co), which requires only low annealing temperature (400−600 °C). As-fabricated end-bonded Ni contacts serve as robust p-type contacts to CNTs and perform better than standard Pd side-bonded contacts at scaled dimensions. In addition, stable NFETs are converted from PFETs using Al2O3 as an n-type physicochemical doping layer. CMOS inverters are further built with end-bonded contacts for both PFETs and NFETs, featuring the smallest contact size thus far for CNT inverters. These new findings could pave the way to realizing CNT-based scalable CMOS technology.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"52 1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122107985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-12-01DOI: 10.1109/IEDM.2016.7838522
S. Lombardo, E. Wu, J. Stathis
Through comparison with a large data set, we show that progressive breakdown (PBD) of gate oxides is described by a physical model coupling carrier energy dissipation to electromigration producing the PBD growth. Dependence on temperature, voltage, carrier type, oxide thickness, and the statistics are well described in a consistent framework.
{"title":"Comprehensive model for progressive breakdown in nFETs and pFETs","authors":"S. Lombardo, E. Wu, J. Stathis","doi":"10.1109/IEDM.2016.7838522","DOIUrl":"https://doi.org/10.1109/IEDM.2016.7838522","url":null,"abstract":"Through comparison with a large data set, we show that progressive breakdown (PBD) of gate oxides is described by a physical model coupling carrier energy dissipation to electromigration producing the PBD growth. Dependence on temperature, voltage, carrier type, oxide thickness, and the statistics are well described in a consistent framework.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130214726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-12-01DOI: 10.1109/iedm.2016.7838029
R. Carter, J. Mazurier, L. Pirro, J.-U. Sachse, P. Baars, J. Faul, C. Grass, G. Grasshoff, P. Javorka, T. Kammler, A. Preusse, S. Nielsen, T. Heller, J. Schmidt, H. Niebojewski, P. Chou, E. Smith, E. Erben, C. Metze, C. Bao, Y. Andee, I. Aydin, S. Morvan, J. Bernard, E. Bourjot, T. Feudel, D. Harame, R. Nelluri, H.-J. Thees, L. M-Meskamp, J. Kluth, R. Mulfinger, M. Rashed, R. Taylor, C. Weintraub, J. Hoentschel, M. Vinet, J. Schaeffer, B. Rice
22FDX™ is the industry's first FDSOI technology architected to meet the requirements of emerging mobile, Internet-of-Things (IoT), and RF applications. This platform achieves the power and performance efficiency of a 16/14nm FinFET technology in a cost effective, planar device architecture that can be implemented with ∼30% fewer masks. Performance comes from a second generation FDSOI transistor, which produces nFET (pFET) drive currents of 910μΑ/μm (856μΑ/μm) at 0.8 V and 100nA/μm Ioff. For ultra-low power applications, it offers low-voltage operation down to 0.4V Vmin for 8T logic libraries, as well as 0.62V and 0.52V Vmin for high-density and high-current bitcells, ultra-low leakage devices approaching 1pA/μm Ioff, and body-biasing to actively trade-off power and performance. Superior RF/Analog characteristics to FinFET are achieved including high fT/fMAx of 375GHz/290GHz and 260GHz/250GHz for nFET and pFET, respectively. The high fMAx extends the capabilities to 5G and milli-meter wave (>24GHz) RF applications.
{"title":"22nm FDSOI technology for emerging mobile, Internet-of-Things, and RF applications","authors":"R. Carter, J. Mazurier, L. Pirro, J.-U. Sachse, P. Baars, J. Faul, C. Grass, G. Grasshoff, P. Javorka, T. Kammler, A. Preusse, S. Nielsen, T. Heller, J. Schmidt, H. Niebojewski, P. Chou, E. Smith, E. Erben, C. Metze, C. Bao, Y. Andee, I. Aydin, S. Morvan, J. Bernard, E. Bourjot, T. Feudel, D. Harame, R. Nelluri, H.-J. Thees, L. M-Meskamp, J. Kluth, R. Mulfinger, M. Rashed, R. Taylor, C. Weintraub, J. Hoentschel, M. Vinet, J. Schaeffer, B. Rice","doi":"10.1109/iedm.2016.7838029","DOIUrl":"https://doi.org/10.1109/iedm.2016.7838029","url":null,"abstract":"22FDX™ is the industry's first FDSOI technology architected to meet the requirements of emerging mobile, Internet-of-Things (IoT), and RF applications. This platform achieves the power and performance efficiency of a 16/14nm FinFET technology in a cost effective, planar device architecture that can be implemented with ∼30% fewer masks. Performance comes from a second generation FDSOI transistor, which produces nFET (pFET) drive currents of 910μΑ/μm (856μΑ/μm) at 0.8 V and 100nA/μm Ioff. For ultra-low power applications, it offers low-voltage operation down to 0.4V V<inf>min</inf> for 8T logic libraries, as well as 0.62V and 0.52V V<inf>min</inf> for high-density and high-current bitcells, ultra-low leakage devices approaching 1pA/μm I<inf>off</inf>, and body-biasing to actively trade-off power and performance. Superior RF/Analog characteristics to FinFET are achieved including high f<inf>T</inf>/f<inf>MAx</inf> of 375GHz/290GHz and 260GHz/250GHz for nFET and pFET, respectively. The high f<inf>MAx</inf> extends the capabilities to 5G and milli-meter wave (>24GHz) RF applications.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122340143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-12-01DOI: 10.1109/IEDM.2016.7838358
K. Takei
Macroscale, flexible, and/or stretchable electronics enable to collect a variety of information by attaching it on diverse objects including nonplanar surfaces such as human body. To realize the devices, there are several technical challenges such as (1) low-cost, macroscale sensor network formation, (2) low power and high performance flexible circuits, and (3) other flexible components including battery and wireless communications. In this study, we propose and develop a low power flexible circuit platform using inorganic material-based complementary metal-oxide-semiconductor (CMOS) on a flexible substrate and printed macro-scale, multi-functional sensor networks to address the challenges.
{"title":"High performance, flexible CMOS circuits and sensors toward wearable healthcare applications","authors":"K. Takei","doi":"10.1109/IEDM.2016.7838358","DOIUrl":"https://doi.org/10.1109/IEDM.2016.7838358","url":null,"abstract":"Macroscale, flexible, and/or stretchable electronics enable to collect a variety of information by attaching it on diverse objects including nonplanar surfaces such as human body. To realize the devices, there are several technical challenges such as (1) low-cost, macroscale sensor network formation, (2) low power and high performance flexible circuits, and (3) other flexible components including battery and wireless communications. In this study, we propose and develop a low power flexible circuit platform using inorganic material-based complementary metal-oxide-semiconductor (CMOS) on a flexible substrate and printed macro-scale, multi-functional sensor networks to address the challenges.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122840570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-12-01DOI: 10.1109/IEDM.2016.7838382
T. Ando, E. Cartier, P. Jamison, A. Pyzyna, S. Kim, J. Bruley, K. Chung, H. Shobha, I. Estrada-Raygoza, H. Tang, S. Kanakasabapathy, T. Spooner, L. Clevenger, G. Bonilla, H. Jagannathan, V. Narayanan
We demonstrate a record-low EOT (equivalent oxide thickness) of 0.8 nm for a metal-insulator-metal (MIM) decoupling capacitor, which is compatible with back-end-of-line (BEOL) processing. This results in 2-plate MIM capacitance density of 43 fF/um2, and leakage current density (Jg) of 5 fA/um2 at 1V, 125 oC. Moreover, we identify that symmetry of CV/IV/TDDB characteristics for both positive and negative bias polarities is a key consideration for stacking more than one MIM capacitor for further capacitance density increase. We develop a novel tri-layer high-k stack with buffer layers between HfO2 and metal electrodes, which substantially improves the electrical bias symmetry, and achieve Vuse = 1.32 V (10 yr/1 ppm/1 cm2/125 oC) at EOT = 0.8 nm. These results should support record stacked-MIM (> 2-plate) capacitance densities, with sub-nm EOT, for the 7 nm node and beyond.
{"title":"CMOS compatible MIM decoupling capacitor with reliable sub-nm EOT high-k stacks for the 7 nm node and beyond","authors":"T. Ando, E. Cartier, P. Jamison, A. Pyzyna, S. Kim, J. Bruley, K. Chung, H. Shobha, I. Estrada-Raygoza, H. Tang, S. Kanakasabapathy, T. Spooner, L. Clevenger, G. Bonilla, H. Jagannathan, V. Narayanan","doi":"10.1109/IEDM.2016.7838382","DOIUrl":"https://doi.org/10.1109/IEDM.2016.7838382","url":null,"abstract":"We demonstrate a record-low EOT (equivalent oxide thickness) of 0.8 nm for a metal-insulator-metal (MIM) decoupling capacitor, which is compatible with back-end-of-line (BEOL) processing. This results in 2-plate MIM capacitance density of 43 fF/um2, and leakage current density (Jg) of 5 fA/um2 at 1V, 125 oC. Moreover, we identify that symmetry of CV/IV/TDDB characteristics for both positive and negative bias polarities is a key consideration for stacking more than one MIM capacitor for further capacitance density increase. We develop a novel tri-layer high-k stack with buffer layers between HfO2 and metal electrodes, which substantially improves the electrical bias symmetry, and achieve Vuse = 1.32 V (10 yr/1 ppm/1 cm2/125 oC) at EOT = 0.8 nm. These results should support record stacked-MIM (> 2-plate) capacitance densities, with sub-nm EOT, for the 7 nm node and beyond.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128741508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-12-01DOI: 10.1109/IEDM.2016.7838493
J. Kan, C. Park, C. Ching, J. Ahn, L. Xue, R. Wang, A. Kontos, S. Liang, M. Bangar, H. Chen, S. Hassan, S. Kim, M. Pakala, S. H. Kang
We present a comprehensive device and scalability validation of STT-MRAM for high performance applications in sub-10 nm CMOS by providing the first statistical account of barrier reliability in perpendicular magnetic tunnel junctions (pMTJs) from 70 to 25 nm diameter in 1 Gbit arrays. We have experimentally investigated the time-dependent dielectric breakdown (TDDB) properties and the dependence of the pMTJ lifetime on voltage, polarity, duty-cycle, and temperature. A large write-to-breakdown voltage window of > 1 V (> 20 σavg) was measured and a long time-to-breakdown was projected (> 1015 cycles) for 45 nm pMTJs, guaranteeing practically unlimited write cycles. We also reveal a dramatic enhancement of barrier reliability in conjunction with pMTJ size scaling down to 25 nm diameter, further widening the operating window at deeply scaled nodes.
我们提出了一个全面的STT-MRAM器件和可扩展性验证,用于sub- 10nm CMOS的高性能应用,提供了垂直磁隧道结(pMTJs)在1gbit阵列中从70到25nm直径的势垒可靠性的第一个统计说明。我们通过实验研究了时间相关的介质击穿(TDDB)特性以及pMTJ寿命对电压、极性、占空比和温度的依赖关系。45nm的pMTJs具有> 1 V (> 20 σavg)的大写入击穿电压窗,并且具有> 1015个周期的击穿时间,保证了几乎无限的写入周期。我们还发现,当pMTJ尺寸缩小到25 nm直径时,势垒可靠性显著增强,进一步扩大了深度缩放节点的操作窗口。
{"title":"Systematic validation of 2x nm diameter perpendicular MTJ arrays and MgO barrier for sub-10 nm embedded STT-MRAM with practically unlimited endurance","authors":"J. Kan, C. Park, C. Ching, J. Ahn, L. Xue, R. Wang, A. Kontos, S. Liang, M. Bangar, H. Chen, S. Hassan, S. Kim, M. Pakala, S. H. Kang","doi":"10.1109/IEDM.2016.7838493","DOIUrl":"https://doi.org/10.1109/IEDM.2016.7838493","url":null,"abstract":"We present a comprehensive device and scalability validation of STT-MRAM for high performance applications in sub-10 nm CMOS by providing the first statistical account of barrier reliability in perpendicular magnetic tunnel junctions (pMTJs) from 70 to 25 nm diameter in 1 Gbit arrays. We have experimentally investigated the time-dependent dielectric breakdown (TDDB) properties and the dependence of the pMTJ lifetime on voltage, polarity, duty-cycle, and temperature. A large write-to-breakdown voltage window of > 1 V (> 20 σavg) was measured and a long time-to-breakdown was projected (> 1015 cycles) for 45 nm pMTJs, guaranteeing practically unlimited write cycles. We also reveal a dramatic enhancement of barrier reliability in conjunction with pMTJ size scaling down to 25 nm diameter, further widening the operating window at deeply scaled nodes.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129094715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-12-01DOI: 10.1109/IEDM.2016.7838378
Tomohiro Yamazaki, Yasushi Maruyama, Yusuke Uesaka, Motoaki Nakamura, Y. Matoba, T. Terada, K. Komori, Y. Ohba, S. Arakawa, Yasutaka Hirasawa, Yuhi Kondo, J. Murayama, Kentaro Akiyama, Y. Oike, Shuzo Sato, T. Ezaki
Polarization information is useful in highly functional imaging. This paper presents a four-directional pixel-wise polarization CMOS image sensor using an air-gap wire grid on 2.5-μm back-illuminated pixels. The fabricated air-gap wire grid polarizer achieved a transmittance of 63.3 % and an extinction ratio of 85 at 550 nm, outperforming conventional polarization sensors. The pixel-wise polarizers fabricated with the wafer process on back-illuminated image sensors exhibit good oblique-incidence characteristics, even with small polarization pixels of 2.5 μm. The proposed image sensor realizes mega-pixel various fusion-imaging applications, such as surface reflection reduction, highly accurate depth mapping, and condition-robust surveillance.
{"title":"Four-directional pixel-wise polarization CMOS image sensor using air-gap wire grid on 2.5-μm back-illuminated pixels","authors":"Tomohiro Yamazaki, Yasushi Maruyama, Yusuke Uesaka, Motoaki Nakamura, Y. Matoba, T. Terada, K. Komori, Y. Ohba, S. Arakawa, Yasutaka Hirasawa, Yuhi Kondo, J. Murayama, Kentaro Akiyama, Y. Oike, Shuzo Sato, T. Ezaki","doi":"10.1109/IEDM.2016.7838378","DOIUrl":"https://doi.org/10.1109/IEDM.2016.7838378","url":null,"abstract":"Polarization information is useful in highly functional imaging. This paper presents a four-directional pixel-wise polarization CMOS image sensor using an air-gap wire grid on 2.5-μm back-illuminated pixels. The fabricated air-gap wire grid polarizer achieved a transmittance of 63.3 % and an extinction ratio of 85 at 550 nm, outperforming conventional polarization sensors. The pixel-wise polarizers fabricated with the wafer process on back-illuminated image sensors exhibit good oblique-incidence characteristics, even with small polarization pixels of 2.5 μm. The proposed image sensor realizes mega-pixel various fusion-imaging applications, such as surface reflection reduction, highly accurate depth mapping, and condition-robust surveillance.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116124810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-12-01DOI: 10.1109/IEDM.2016.7838451
Mingda Li, R. Yan, D. Jena, H. Xing
We review the conception and development of two-dimensional heterojunction interlayer field effect transistor (Thin-TFET), where a steep subthreshold swing (SS) and a high on-current are estimated theoretically. The Thin-TFET has been experimentally demonstrated using WSe2/SnSe2 stacked heterostructures, where the SS is mostly likely limited by the interfacial trap density of states and the parasitic MOSFET. Due to its vertical stacking structure, Thin-TFET intrinsically has a smaller gate-drain capacitance compared to the conventional lateral pin-TFET. In turn, this results in mitigated Miller Effect in Thin-TFET thus reducing dynamic energy dissipation in circuits.
{"title":"Two-dimensional heterojunction interlayer tunnel FET (Thin-TFET): From theory to applications","authors":"Mingda Li, R. Yan, D. Jena, H. Xing","doi":"10.1109/IEDM.2016.7838451","DOIUrl":"https://doi.org/10.1109/IEDM.2016.7838451","url":null,"abstract":"We review the conception and development of two-dimensional heterojunction interlayer field effect transistor (Thin-TFET), where a steep subthreshold swing (SS) and a high on-current are estimated theoretically. The Thin-TFET has been experimentally demonstrated using WSe2/SnSe2 stacked heterostructures, where the SS is mostly likely limited by the interfacial trap density of states and the parasitic MOSFET. Due to its vertical stacking structure, Thin-TFET intrinsically has a smaller gate-drain capacitance compared to the conventional lateral pin-TFET. In turn, this results in mitigated Miller Effect in Thin-TFET thus reducing dynamic energy dissipation in circuits.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117181854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}