Pub Date : 2024-11-20DOI: 10.1038/s41586-024-08129-x
Yiyun Lin, Junke Wang, Kaile Wang, Shanshan Bai, Aatish Thennavan, Runmin Wei, Yun Yan, Jianzhuo Li, Heba Elgamal, Emi Sei, Anna Casasent, Mitchell Rao, Chenling Tang, Asha S. Multani, Jin Ma, Jessica Montalvan, Chandandeep Nagi, Sebastian Winocour, Bora Lim, Alastair Thompson, Nicholas Navin
Aneuploid epithelial cells are common in breast cancer1,2; however, their presence in normal breast tissues is not well understood. To address this question, we applied single-cell DNA sequencing to profile copy number alterations in 83,206 epithelial cells from the breast tissues of 49 healthy women, and we applied single-cell DNA and assay for transposase-accessible chromatin sequencing co-assays to the samples of 19 women. Our data show that all women harboured rare aneuploid epithelial cells (median 3.19%) that increased with age. Many aneuploid epithelial cells (median 82.22%) in normal breast tissues underwent clonal expansions and harboured copy number alterations reminiscent of invasive breast cancers (gains of 1q; losses of 10q, 16q and 22q). Co-assay profiling showed that the aneuploid cells were mainly associated with the two luminal epithelial lineages, and spatial mapping showed that they localized in ductal and lobular structures with normal histopathology. Collectively, these data show that even healthy women have clonal expansions of rare aneuploid epithelial cells in their breast tissues.
非整倍体上皮细胞在乳腺癌中很常见1,2;然而,人们对它们在正常乳腺组织中的存在还不甚了解。为了解决这个问题,我们对 49 名健康女性乳腺组织中的 83 206 个上皮细胞进行了单细胞 DNA 测序,并对 19 名女性样本进行了单细胞 DNA 和转座酶可检测染色质测序联合分析。我们的数据显示,所有女性的乳腺组织中都存在罕见的非整倍体上皮细胞(中位数为 3.19%),并且随着年龄的增长而增加。正常乳腺组织中的许多非整倍体上皮细胞(中位数为 82.22%)都发生了克隆扩增,并带有与浸润性乳腺癌相似的拷贝数改变(1q 增益;10q、16q 和 22q 缺失)。联合分析图谱显示,非整倍体细胞主要与两个管腔上皮系相关,空间图谱显示,它们位于组织病理学正常的导管和小叶结构中。这些数据共同表明,即使是健康女性的乳腺组织中也存在罕见的非整倍体上皮细胞克隆扩增。
{"title":"Normal breast tissues harbour rare populations of aneuploid epithelial cells","authors":"Yiyun Lin, Junke Wang, Kaile Wang, Shanshan Bai, Aatish Thennavan, Runmin Wei, Yun Yan, Jianzhuo Li, Heba Elgamal, Emi Sei, Anna Casasent, Mitchell Rao, Chenling Tang, Asha S. Multani, Jin Ma, Jessica Montalvan, Chandandeep Nagi, Sebastian Winocour, Bora Lim, Alastair Thompson, Nicholas Navin","doi":"10.1038/s41586-024-08129-x","DOIUrl":"https://doi.org/10.1038/s41586-024-08129-x","url":null,"abstract":"<p>Aneuploid epithelial cells are common in breast cancer<sup>1,2</sup>; however, their presence in normal breast tissues is not well understood. To address this question, we applied single-cell DNA sequencing to profile copy number alterations in 83,206 epithelial cells from the breast tissues of 49 healthy women, and we applied single-cell DNA and assay for transposase-accessible chromatin sequencing co-assays to the samples of 19 women. Our data show that all women harboured rare aneuploid epithelial cells (median 3.19%) that increased with age. Many aneuploid epithelial cells (median 82.22%) in normal breast tissues underwent clonal expansions and harboured copy number alterations reminiscent of invasive breast cancers (gains of 1q; losses of 10q, 16q and 22q). Co-assay profiling showed that the aneuploid cells were mainly associated with the two luminal epithelial lineages, and spatial mapping showed that they localized in ductal and lobular structures with normal histopathology. Collectively, these data show that even healthy women have clonal expansions of rare aneuploid epithelial cells in their breast tissues.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"13 1","pages":""},"PeriodicalIF":64.8,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1038/d41586-024-03805-4
A strain of avian influenza is showing signs of adaptation to human hosts, but there is no evidence that it can transmit from person to person.
一种禽流感菌株有适应人类宿主的迹象,但没有证据表明它可以在人与人之间传播。
{"title":"Why a teenager’s bird-flu infection is ringing alarm bells for scientists","authors":"","doi":"10.1038/d41586-024-03805-4","DOIUrl":"https://doi.org/10.1038/d41586-024-03805-4","url":null,"abstract":"A strain of avian influenza is showing signs of adaptation to human hosts, but there is no evidence that it can transmit from person to person.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"4 1","pages":""},"PeriodicalIF":64.8,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1038/d41586-024-03525-9
Impressive year-on-year growth has seen smaller hubs climb the list — but eyes remain on Beijing.
令人印象深刻的同比增长使较小的枢纽城市登上了榜单,但人们的目光仍然聚焦在北京。
{"title":"Leading Nature Index science cities in physical sciences: regional centres drive China’s progress","authors":"","doi":"10.1038/d41586-024-03525-9","DOIUrl":"https://doi.org/10.1038/d41586-024-03525-9","url":null,"abstract":"Impressive year-on-year growth has seen smaller hubs climb the list — but eyes remain on Beijing.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"8 1","pages":""},"PeriodicalIF":64.8,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1038/s41586-024-07571-1
Amanda J. Oliver, Ni Huang, Raquel Bartolome-Casado, Ruoyan Li, Simon Koplev, Hogne R. Nilsen, Madelyn Moy, Batuhan Cakir, Krzysztof Polanski, Victoria Gudiño, Elisa Melón-Ardanaz, Dinithi Sumanaweera, Daniel Dimitrov, Lisa Marie Milchsack, Michael E. B. FitzPatrick, Nicholas M. Provine, Jacqueline M. Boccacino, Emma Dann, Alexander V. Predeus, Ken To, Martin Prete, Jonathan A. Chapman, Andrea C. Masi, Emily Stephenson, Justin Engelbert, Sebastian Lobentanzer, Shani Perera, Laura Richardson, Rakeshlal Kapuge, Anna Wilbrey-Clark, Claudia I. Semprich, Sophie Ellams, Catherine Tudor, Philomeena Joseph, Alba Garrido-Trigo, Ana M. Corraliza, Thomas R. W. Oliver, C. Elizabeth Hook, Kylie R. James, Krishnaa T. Mahbubani, Kourosh Saeb-Parsy, Matthias Zilbauer, Julio Saez-Rodriguez, Marte Lie Høivik, Espen S. Bækkevold, Christopher J. Stewart, Janet E. Berrington, Kerstin B. Meyer, Paul Klenerman, Azucena Salas, Muzlifah Haniffa, Frode L. Jahnsen, Rasa Elmentaite, Sarah A. Teichmann
The gastrointestinal tract is a multi-organ system crucial for efficient nutrient uptake and barrier immunity. Advances in genomics and a surge in gastrointestinal diseases1,2 has fuelled efforts to catalogue cells constituting gastrointestinal tissues in health and disease3. Here we present systematic integration of 25 single-cell RNA sequencing datasets spanning the entire healthy gastrointestinal tract in development and in adulthood. We uniformly processed 385 samples from 189 healthy controls using a newly developed automated quality control approach (scAutoQC), leading to a healthy reference atlas with approximately 1.1 million cells and 136 fine-grained cell states. We anchor 12 gastrointestinal disease datasets spanning gastrointestinal cancers, coeliac disease, ulcerative colitis and Crohn’s disease to this reference. Utilizing this 1.6 million cell resource (gutcellatlas.org), we discover epithelial cell metaplasia originating from stem cells in intestinal inflammatory diseases with transcriptional similarity to cells found in pyloric and Brunner’s glands. Although previously linked to mucosal healing4, we now implicate pyloric gland metaplastic cells in inflammation through recruitment of immune cells including T cells and neutrophils. Overall, we describe inflammation-induced changes in stem cells that alter mucosal tissue architecture and promote further inflammation, a concept applicable to other tissues and diseases.
{"title":"Single-cell integration reveals metaplasia in inflammatory gut diseases","authors":"Amanda J. Oliver, Ni Huang, Raquel Bartolome-Casado, Ruoyan Li, Simon Koplev, Hogne R. Nilsen, Madelyn Moy, Batuhan Cakir, Krzysztof Polanski, Victoria Gudiño, Elisa Melón-Ardanaz, Dinithi Sumanaweera, Daniel Dimitrov, Lisa Marie Milchsack, Michael E. B. FitzPatrick, Nicholas M. Provine, Jacqueline M. Boccacino, Emma Dann, Alexander V. Predeus, Ken To, Martin Prete, Jonathan A. Chapman, Andrea C. Masi, Emily Stephenson, Justin Engelbert, Sebastian Lobentanzer, Shani Perera, Laura Richardson, Rakeshlal Kapuge, Anna Wilbrey-Clark, Claudia I. Semprich, Sophie Ellams, Catherine Tudor, Philomeena Joseph, Alba Garrido-Trigo, Ana M. Corraliza, Thomas R. W. Oliver, C. Elizabeth Hook, Kylie R. James, Krishnaa T. Mahbubani, Kourosh Saeb-Parsy, Matthias Zilbauer, Julio Saez-Rodriguez, Marte Lie Høivik, Espen S. Bækkevold, Christopher J. Stewart, Janet E. Berrington, Kerstin B. Meyer, Paul Klenerman, Azucena Salas, Muzlifah Haniffa, Frode L. Jahnsen, Rasa Elmentaite, Sarah A. Teichmann","doi":"10.1038/s41586-024-07571-1","DOIUrl":"https://doi.org/10.1038/s41586-024-07571-1","url":null,"abstract":"<p>The gastrointestinal tract is a multi-organ system crucial for efficient nutrient uptake and barrier immunity. Advances in genomics and a surge in gastrointestinal diseases<sup>1,2</sup> has fuelled efforts to catalogue cells constituting gastrointestinal tissues in health and disease<sup>3</sup>. Here we present systematic integration of 25 single-cell RNA sequencing datasets spanning the entire healthy gastrointestinal tract in development and in adulthood. We uniformly processed 385 samples from 189 healthy controls using a newly developed automated quality control approach (scAutoQC), leading to a healthy reference atlas with approximately 1.1 million cells and 136 fine-grained cell states. We anchor 12 gastrointestinal disease datasets spanning gastrointestinal cancers, coeliac disease, ulcerative colitis and Crohn’s disease to this reference. Utilizing this 1.6 million cell resource (gutcellatlas.org), we discover epithelial cell metaplasia originating from stem cells in intestinal inflammatory diseases with transcriptional similarity to cells found in pyloric and Brunner’s glands. Although previously linked to mucosal healing<sup>4</sup>, we now implicate pyloric gland metaplastic cells in inflammation through recruitment of immune cells including T cells and neutrophils. Overall, we describe inflammation-induced changes in stem cells that alter mucosal tissue architecture and promote further inflammation, a concept applicable to other tissues and diseases.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"14 1","pages":""},"PeriodicalIF":64.8,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1038/s41586-024-08212-3
Dimokratis Karamanlis, Mohammad H. Khani, Helene M. Schreyer, Sören J. Zapp, Matthias Mietsch, Tim Gollisch
The role of the vertebrate retina in early vision is generally described by the efficient coding hypothesis1,2, which predicts that the retina reduces the redundancy inherent in natural scenes3 by discarding spatiotemporal correlations while preserving stimulus information4. It is unclear, however, whether the predicted decorrelation and redundancy reduction in the activity of ganglion cells, the retina’s output neurons, hold under gaze shifts, which dominate the dynamics of the natural visual input5. We show here that species-specific gaze patterns in natural stimuli can drive correlated spiking responses both in and across distinct types of ganglion cells in marmoset as well as mouse retina. These concerted responses disrupt redundancy reduction to signal fixation periods with locally high spatial contrast. Model-based analyses of ganglion cell responses to natural stimuli show that the observed response correlations follow from nonlinear pooling of ganglion cell inputs. Our results indicate cell-type-specific deviations from efficient coding in retinal processing of natural gaze shifts.
{"title":"Nonlinear receptive fields evoke redundant retinal coding of natural scenes","authors":"Dimokratis Karamanlis, Mohammad H. Khani, Helene M. Schreyer, Sören J. Zapp, Matthias Mietsch, Tim Gollisch","doi":"10.1038/s41586-024-08212-3","DOIUrl":"https://doi.org/10.1038/s41586-024-08212-3","url":null,"abstract":"<p>The role of the vertebrate retina in early vision is generally described by the efficient coding hypothesis<sup>1,2</sup>, which predicts that the retina reduces the redundancy inherent in natural scenes<sup>3</sup> by discarding spatiotemporal correlations while preserving stimulus information<sup>4</sup>. It is unclear, however, whether the predicted decorrelation and redundancy reduction in the activity of ganglion cells, the retina’s output neurons, hold under gaze shifts, which dominate the dynamics of the natural visual input<sup>5</sup>. We show here that species-specific gaze patterns in natural stimuli can drive correlated spiking responses both in and across distinct types of ganglion cells in marmoset as well as mouse retina. These concerted responses disrupt redundancy reduction to signal fixation periods with locally high spatial contrast. Model-based analyses of ganglion cell responses to natural stimuli show that the observed response correlations follow from nonlinear pooling of ganglion cell inputs. Our results indicate cell-type-specific deviations from efficient coding in retinal processing of natural gaze shifts.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"251 1","pages":""},"PeriodicalIF":64.8,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1038/s41586-024-08240-z
Mikayla A. Borton, Bridget B. McGivern, Kathryn R. Willi, Ben J. Woodcroft, Annika C. Mosier, Derick M. Singleton, Ted Bambakidis, Aaron Pelly, Rebecca A. Daly, Filipe Liu, Andrew Freiburger, Janaka N. Edirisinghe, José P. Faria, Robert Danczak, Ikaia Leleiwi, Amy E. Goldman, Michael J. Wilkins, Ed K. Hall, Christa Pennacchio, Simon Roux, Emiley A. Eloe-Fadrosh, Stephen P. Good, Matthew B. Sullivan, Elisha M. Wood-Charlson, Christopher S. Miller, Matthew R. V. Ross, Christopher S. Henry, Byron C. Crump, James C. Stegen, Kelly C. Wrighton
Predicting elemental cycles and maintaining water quality under increasing anthropogenic influence requires knowledge of the spatial drivers of river microbiomes. However, understanding of the core microbial processes governing river biogeochemistry is hindered by a lack of genome-resolved functional insights and sampling across multiple rivers. Here we used a community science effort to accelerate the sampling, sequencing and genome-resolved analyses of river microbiomes to create the Genome Resolved Open Watersheds database (GROWdb). GROWdb profiles the identity, distribution, function and expression of microbial genomes across river surface waters covering 90% of United States watersheds. Specifically, GROWdb encompasses microbial lineages from 27 phyla, including novel members from 10 families and 128 genera, and defines the core river microbiome at the genome level. GROWdb analyses coupled to extensive geospatial information reveals local and regional drivers of microbial community structuring, while also presenting foundational hypotheses about ecosystem function. Building on the previously conceived River Continuum Concept1, we layer on microbial functional trait expression, which suggests that the structure and function of river microbiomes is predictable. We make GROWdb available through various collaborative cyberinfrastructures2,3, so that it can be widely accessed across disciplines for watershed predictive modelling and microbiome-based management practices.
{"title":"A functional microbiome catalogue crowdsourced from North American rivers","authors":"Mikayla A. Borton, Bridget B. McGivern, Kathryn R. Willi, Ben J. Woodcroft, Annika C. Mosier, Derick M. Singleton, Ted Bambakidis, Aaron Pelly, Rebecca A. Daly, Filipe Liu, Andrew Freiburger, Janaka N. Edirisinghe, José P. Faria, Robert Danczak, Ikaia Leleiwi, Amy E. Goldman, Michael J. Wilkins, Ed K. Hall, Christa Pennacchio, Simon Roux, Emiley A. Eloe-Fadrosh, Stephen P. Good, Matthew B. Sullivan, Elisha M. Wood-Charlson, Christopher S. Miller, Matthew R. V. Ross, Christopher S. Henry, Byron C. Crump, James C. Stegen, Kelly C. Wrighton","doi":"10.1038/s41586-024-08240-z","DOIUrl":"https://doi.org/10.1038/s41586-024-08240-z","url":null,"abstract":"<p>Predicting elemental cycles and maintaining water quality under increasing anthropogenic influence requires knowledge of the spatial drivers of river microbiomes. However, understanding of the core microbial processes governing river biogeochemistry is hindered by a lack of genome-resolved functional insights and sampling across multiple rivers. Here we used a community science effort to accelerate the sampling, sequencing and genome-resolved analyses of river microbiomes to create the Genome Resolved Open Watersheds database (GROWdb). GROWdb profiles the identity, distribution, function and expression of microbial genomes across river surface waters covering 90% of United States watersheds. Specifically, GROWdb encompasses microbial lineages from 27 phyla, including novel members from 10 families and 128 genera, and defines the core river microbiome at the genome level. GROWdb analyses coupled to extensive geospatial information reveals local and regional drivers of microbial community structuring, while also presenting foundational hypotheses about ecosystem function. Building on the previously conceived River Continuum Concept<sup>1</sup>, we layer on microbial functional trait expression, which suggests that the structure and function of river microbiomes is predictable. We make GROWdb available through various collaborative cyberinfrastructures<sup>2,3</sup>, so that it can be widely accessed across disciplines for watershed predictive modelling and microbiome-based management practices.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"46 1","pages":""},"PeriodicalIF":64.8,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1038/s41586-024-08217-y
Qin Qin Huang, Emilie M. Wigdor, Daniel S. Malawsky, Patrick Campbell, Kaitlin E. Samocha, V. Kartik Chundru, Petr Danecek, Sarah Lindsay, Thomas Marchant, Mahmoud Koko, Sana Amanat, Davide Bonfanti, Eamonn Sheridan, Elizabeth J. Radford, Jeffrey C. Barrett, Caroline F. Wright, Helen V. Firth, Varun Warrier, Alexander Strudwick Young, Matthew E. Hurles, Hilary C. Martin
Although rare neurodevelopmental conditions have a large Mendelian component1, common genetic variants also contribute to risk2,3. However, little is known about how this polygenic risk is distributed among patients with these conditions and their parents nor its interplay with rare variants. It is also unclear whether polygenic background affects risk directly through alleles transmitted from parents to children, or whether indirect genetic effects mediated through the family environment4 also play a role. Here we addressed these questions using genetic data from 11,573 patients with rare neurodevelopmental conditions, 9,128 of their parents and 26,869 controls. Common variants explained around 10% of variance in risk. Patients with a monogenic diagnosis had significantly less polygenic risk than those without, supporting a liability threshold model5. A polygenic score for neurodevelopmental conditions showed only a direct genetic effect. By contrast, polygenic scores for educational attainment and cognitive performance showed no direct genetic effect, but the non-transmitted alleles in the parents were correlated with the child’s risk, potentially due to indirect genetic effects and/or parental assortment for these traits4. Indeed, as expected under parental assortment, we show that common variant predisposition for neurodevelopmental conditions is correlated with the rare variant component of risk. These findings indicate that future studies should investigate the possible role and nature of indirect genetic effects on rare neurodevelopmental conditions, and consider the contribution of common and rare variants simultaneously when studying cognition-related phenotypes.
{"title":"Examining the role of common variants in rare neurodevelopmental conditions","authors":"Qin Qin Huang, Emilie M. Wigdor, Daniel S. Malawsky, Patrick Campbell, Kaitlin E. Samocha, V. Kartik Chundru, Petr Danecek, Sarah Lindsay, Thomas Marchant, Mahmoud Koko, Sana Amanat, Davide Bonfanti, Eamonn Sheridan, Elizabeth J. Radford, Jeffrey C. Barrett, Caroline F. Wright, Helen V. Firth, Varun Warrier, Alexander Strudwick Young, Matthew E. Hurles, Hilary C. Martin","doi":"10.1038/s41586-024-08217-y","DOIUrl":"https://doi.org/10.1038/s41586-024-08217-y","url":null,"abstract":"<p>Although rare neurodevelopmental conditions have a large Mendelian component<sup>1</sup>, common genetic variants also contribute to risk<sup>2,3</sup>. However, little is known about how this polygenic risk is distributed among patients with these conditions and their parents nor its interplay with rare variants. It is also unclear whether polygenic background affects risk directly through alleles transmitted from parents to children, or whether indirect genetic effects mediated through the family environment<sup>4</sup> also play a role. Here we addressed these questions using genetic data from 11,573 patients with rare neurodevelopmental conditions, 9,128 of their parents and 26,869 controls. Common variants explained around 10% of variance in risk. Patients with a monogenic diagnosis had significantly less polygenic risk than those without, supporting a liability threshold model<sup>5</sup>. A polygenic score for neurodevelopmental conditions showed only a direct genetic effect. By contrast, polygenic scores for educational attainment and cognitive performance showed no direct genetic effect, but the non-transmitted alleles in the parents were correlated with the child’s risk, potentially due to indirect genetic effects and/or parental assortment for these traits<sup>4</sup>. Indeed, as expected under parental assortment, we show that common variant predisposition for neurodevelopmental conditions is correlated with the rare variant component of risk. These findings indicate that future studies should investigate the possible role and nature of indirect genetic effects on rare neurodevelopmental conditions, and consider the contribution of common and rare variants simultaneously when studying cognition-related phenotypes.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"23 1","pages":""},"PeriodicalIF":64.8,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1038/s41586-024-08202-5
G. Arrick, D. Sticker, A. Ghazal, Y. Lu, T. Duncombe, D. Gwynne, B. Mouridsen, J. Wainer, J. P. H. Jepsen, T. S. Last, D. Schultz, K. Hess, E. Medina De Alba, S. Min, M. Poulsen, C. Anker, P. Karandikar, H. D. Pedersen, J. Collins, N. E. Egecioglu, S. Tamang, C. Cleveland, K. Ishida, A. H. Uhrenfeldt, J. Kuosmanen, M. Pereverzina, A. Hayward, R. K. Kirk, S. You, C. M. Dalsgaard, S. B. Gunnarsson, I. Patsi, A. Bohr, A. Azzarello, M. R. Frederiksen, P. Herskind, J. Li, N. Roxhed, U. L. Rahbek, J. J. Water, S. T. Buckley, G. Traverso
Needle-based injections currently enable the administration of a wide range of biomacromolecule therapies across the body, including the gastrointestinal tract1,2,3, through recent developments in ingestible robotic devices4,5,6,7. However, needles generally require training, sharps management and disposal, and pose challenges for autonomous ingestible systems. Here, inspired by the jetting systems of cephalopods, we have developed and evaluated microjet delivery systems that can deliver jets in axial and radial directions into tissue, making them suitable for tubular and globular segments of the gastrointestinal tract. Furthermore, they are implemented in both tethered and ingestible formats, facilitating endoscopic applications or patient self-dosing. Our study identified suitable pressure and nozzle dimensions for different segments of the gastrointestinal tract and applied microjets in a variety of devices that support delivery across the various anatomic segments of the gastrointestinal tract. We characterized the ability of these systems to administer macromolecules, including insulin, a glucagon-like peptide-1 (GLP1) analogue and a small interfering RNA (siRNA) in large animal models, achieving exposure levels similar to those achieved with subcutaneous delivery. This research provides key insights into jetting design parameters for gastrointestinal administration, substantially broadening the possibilities for future endoscopic and ingestible drug delivery devices.
{"title":"Cephalopod-inspired jetting devices for gastrointestinal drug delivery","authors":"G. Arrick, D. Sticker, A. Ghazal, Y. Lu, T. Duncombe, D. Gwynne, B. Mouridsen, J. Wainer, J. P. H. Jepsen, T. S. Last, D. Schultz, K. Hess, E. Medina De Alba, S. Min, M. Poulsen, C. Anker, P. Karandikar, H. D. Pedersen, J. Collins, N. E. Egecioglu, S. Tamang, C. Cleveland, K. Ishida, A. H. Uhrenfeldt, J. Kuosmanen, M. Pereverzina, A. Hayward, R. K. Kirk, S. You, C. M. Dalsgaard, S. B. Gunnarsson, I. Patsi, A. Bohr, A. Azzarello, M. R. Frederiksen, P. Herskind, J. Li, N. Roxhed, U. L. Rahbek, J. J. Water, S. T. Buckley, G. Traverso","doi":"10.1038/s41586-024-08202-5","DOIUrl":"https://doi.org/10.1038/s41586-024-08202-5","url":null,"abstract":"<p>Needle-based injections currently enable the administration of a wide range of biomacromolecule therapies across the body, including the gastrointestinal tract<sup>1,2,3</sup>, through recent developments in ingestible robotic devices<sup>4,5,6,7</sup>. However, needles generally require training, sharps management and disposal, and pose challenges for autonomous ingestible systems. Here, inspired by the jetting systems of cephalopods, we have developed and evaluated microjet delivery systems that can deliver jets in axial and radial directions into tissue, making them suitable for tubular and globular segments of the gastrointestinal tract. Furthermore, they are implemented in both tethered and ingestible formats, facilitating endoscopic applications or patient self-dosing. Our study identified suitable pressure and nozzle dimensions for different segments of the gastrointestinal tract and applied microjets in a variety of devices that support delivery across the various anatomic segments of the gastrointestinal tract. We characterized the ability of these systems to administer macromolecules, including insulin, a glucagon-like peptide-1 (GLP1) analogue and a small interfering RNA (siRNA) in large animal models, achieving exposure levels similar to those achieved with subcutaneous delivery. This research provides key insights into jetting design parameters for gastrointestinal administration, substantially broadening the possibilities for future endoscopic and ingestible drug delivery devices.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"81 1","pages":""},"PeriodicalIF":64.8,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19DOI: 10.1038/d41586-024-03760-0
David Cantor, Bayard Roberts, Jina Swartz
Compared with cross-border refugees, people who are internally displaced receive little attention — despite their dire health needs.
与跨境难民相比,境内流离失所者很少受到关注--尽管他们有着迫切的健康需求。
{"title":"Health of people who are displaced in their own countries is a neglected global crisis","authors":"David Cantor, Bayard Roberts, Jina Swartz","doi":"10.1038/d41586-024-03760-0","DOIUrl":"https://doi.org/10.1038/d41586-024-03760-0","url":null,"abstract":"Compared with cross-border refugees, people who are internally displaced receive little attention — despite their dire health needs.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"13 1","pages":""},"PeriodicalIF":64.8,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142671090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19DOI: 10.1038/d41586-024-03755-x
The US president-elect says he will pull the country out of international treaties and partnerships. That need not lead to disorder.
美国当选总统表示,他将让美国退出国际条约和伙伴关系。这不一定会导致混乱。
{"title":"How the world will weather Trump’s withdrawal from global agreements","authors":"","doi":"10.1038/d41586-024-03755-x","DOIUrl":"https://doi.org/10.1038/d41586-024-03755-x","url":null,"abstract":"The US president-elect says he will pull the country out of international treaties and partnerships. That need not lead to disorder.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"54 1","pages":""},"PeriodicalIF":64.8,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}