首页 > 最新文献

Nature Reviews Microbiology最新文献

英文 中文
Cross-kingdom nutrient exchange in the plant–arbuscular mycorrhizal fungus–bacterium continuum 植物-丛枝菌根真菌-细菌连续体中的跨领域养分交换
IF 69.2 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-07-16 DOI: 10.1038/s41579-024-01073-7
Shilong Duan, Gu Feng, Erik Limpens, Paola Bonfante, Xianan Xie, Lin Zhang
The association between plants and arbuscular mycorrhizal fungi (AMF) affects plant performance and ecosystem functioning. Recent studies have identified AMF-associated bacteria as cooperative partners that participate in AMF–plant symbiosis: specific endobacteria live inside AMF, and hyphospheric bacteria colonize the soil that surrounds the extraradical hyphae. In this Review, we describe the concept of a plant–AMF–bacterium continuum, summarize current advances and provide perspectives on soil microbiology. First, we review the top-down carbon flow and the bottom-up mineral flow (especially phosphorus and nitrogen) in this continuum, as well as how AMF–bacteria interactions influence the biogeochemical cycling of nutrients (for example, carbon, phosphorus and nitrogen). Second, we discuss how AMF interact with hyphospheric bacteria or endobacteria to regulate nutrient exchange between plants and AMF, and the possible molecular mechanisms that underpin this continuum. Finally, we explore future prospects for studies on the hyphosphere to facilitate the utilization of AMF and hyphospheric bacteria in sustainable agriculture. Most plants form symbioses with arbuscular mycorrhizal fungi, which themselves harbour endobacteria and hyphospheric bacteria. In this Review, Duan et al. explore how nutrients are transferred between the partners in this plant–fungus–bacterium continuum.
植物与丛枝菌根真菌(AMF)之间的联系会影响植物的生长和生态系统的功能。最近的研究发现,AMF相关细菌是参与AMF-植物共生的合作伙伴:特定的内生细菌生活在AMF内部,而下层细菌则定殖在围绕着根外菌丝的土壤中。在本综述中,我们将阐述植物-AMF-细菌连续体的概念,总结当前的研究进展,并对土壤微生物学提出展望。首先,我们回顾了这一连续体中自上而下的碳流和自下而上的矿物质流(尤其是磷和氮),以及 AMF-细菌相互作用如何影响养分(如碳、磷和氮)的生物地球化学循环。其次,我们将讨论 AMF 如何与同温层细菌或内生细菌相互作用,以调节植物与 AMF 之间的养分交换,以及支撑这一连续体的可能分子机制。最后,我们探讨了对同温层进行研究以促进在可持续农业中利用 AMF 和同温层细菌的未来前景。
{"title":"Cross-kingdom nutrient exchange in the plant–arbuscular mycorrhizal fungus–bacterium continuum","authors":"Shilong Duan, Gu Feng, Erik Limpens, Paola Bonfante, Xianan Xie, Lin Zhang","doi":"10.1038/s41579-024-01073-7","DOIUrl":"10.1038/s41579-024-01073-7","url":null,"abstract":"The association between plants and arbuscular mycorrhizal fungi (AMF) affects plant performance and ecosystem functioning. Recent studies have identified AMF-associated bacteria as cooperative partners that participate in AMF–plant symbiosis: specific endobacteria live inside AMF, and hyphospheric bacteria colonize the soil that surrounds the extraradical hyphae. In this Review, we describe the concept of a plant–AMF–bacterium continuum, summarize current advances and provide perspectives on soil microbiology. First, we review the top-down carbon flow and the bottom-up mineral flow (especially phosphorus and nitrogen) in this continuum, as well as how AMF–bacteria interactions influence the biogeochemical cycling of nutrients (for example, carbon, phosphorus and nitrogen). Second, we discuss how AMF interact with hyphospheric bacteria or endobacteria to regulate nutrient exchange between plants and AMF, and the possible molecular mechanisms that underpin this continuum. Finally, we explore future prospects for studies on the hyphosphere to facilitate the utilization of AMF and hyphospheric bacteria in sustainable agriculture. Most plants form symbioses with arbuscular mycorrhizal fungi, which themselves harbour endobacteria and hyphospheric bacteria. In this Review, Duan et al. explore how nutrients are transferred between the partners in this plant–fungus–bacterium continuum.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"22 12","pages":"773-790"},"PeriodicalIF":69.2,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141625073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Indirect intervention 间接干预
IF 69.2 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-07-16 DOI: 10.1038/s41579-024-01085-3
Andrea Du Toit
This study shows that accounting for spillover effects increased the cost-effectiveness of combined malaria-elimination interventions.
这项研究表明,考虑到溢出效应会提高综合疟疾消除干预措施的成本效益。
{"title":"Indirect intervention","authors":"Andrea Du Toit","doi":"10.1038/s41579-024-01085-3","DOIUrl":"10.1038/s41579-024-01085-3","url":null,"abstract":"This study shows that accounting for spillover effects increased the cost-effectiveness of combined malaria-elimination interventions.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"22 9","pages":"523-523"},"PeriodicalIF":69.2,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141625092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The interplay between diet and the gut microbiome: implications for health and disease 饮食与肠道微生物组之间的相互作用:对健康和疾病的影响。
IF 69.2 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-07-15 DOI: 10.1038/s41579-024-01068-4
Fiona C. Ross, Dhrati Patangia, Ghjuvan Grimaud, Aonghus Lavelle, Eugene M. Dempsey, R. Paul Ross, Catherine Stanton
Diet has a pivotal role in shaping the composition, function and diversity of the gut microbiome, with various diets having a profound impact on the stability, functionality and diversity of the microbial community within our gut. Understanding the profound impact of varied diets on the microbiome is crucial, as it will enable us not only to make well-informed dietary decisions for better metabolic and intestinal health, but also to prevent and slow the onset of specific diet-related diseases that stem from suboptimal diets. In this Review, we explore how geographical location affects the gut microbiome and how different diets shape its composition and function. We examine the mechanisms by which whole dietary regimes, such as the Mediterranean diet, high-fibre diet, plant-based diet, high-protein diet, ketogenic diet and Western diet, influence the gut microbiome. Furthermore, we underscore the need for exhaustive studies to better understand the causal relationship between diet, host and microorganisms for the development of precision nutrition and microbiome-based therapies. In this Review, Stanton and colleagues examine the effect of different whole diets on the composition and function of the gut microbiome and explore how the diet–microbiome relationship influences human health and the progression of different chronic diseases.
饮食在塑造肠道微生物组的组成、功能和多样性方面起着举足轻重的作用,各种饮食对我们肠道内微生物群落的稳定性、功能性和多样性有着深远的影响。了解各种饮食对微生物群的深刻影响至关重要,因为这不仅能让我们做出明智的饮食决定,改善代谢和肠道健康,还能预防和减缓因饮食不当而引发的特定饮食相关疾病。在这篇综述中,我们将探讨地理位置如何影响肠道微生物组,以及不同的饮食如何塑造其组成和功能。我们研究了地中海饮食、高纤维饮食、植物性饮食、高蛋白饮食、生酮饮食和西式饮食等整个饮食体系影响肠道微生物组的机制。此外,我们强调需要进行详尽的研究,以更好地了解饮食、宿主和微生物之间的因果关系,从而开发精准营养和基于微生物组的疗法。
{"title":"The interplay between diet and the gut microbiome: implications for health and disease","authors":"Fiona C. Ross, Dhrati Patangia, Ghjuvan Grimaud, Aonghus Lavelle, Eugene M. Dempsey, R. Paul Ross, Catherine Stanton","doi":"10.1038/s41579-024-01068-4","DOIUrl":"10.1038/s41579-024-01068-4","url":null,"abstract":"Diet has a pivotal role in shaping the composition, function and diversity of the gut microbiome, with various diets having a profound impact on the stability, functionality and diversity of the microbial community within our gut. Understanding the profound impact of varied diets on the microbiome is crucial, as it will enable us not only to make well-informed dietary decisions for better metabolic and intestinal health, but also to prevent and slow the onset of specific diet-related diseases that stem from suboptimal diets. In this Review, we explore how geographical location affects the gut microbiome and how different diets shape its composition and function. We examine the mechanisms by which whole dietary regimes, such as the Mediterranean diet, high-fibre diet, plant-based diet, high-protein diet, ketogenic diet and Western diet, influence the gut microbiome. Furthermore, we underscore the need for exhaustive studies to better understand the causal relationship between diet, host and microorganisms for the development of precision nutrition and microbiome-based therapies. In this Review, Stanton and colleagues examine the effect of different whole diets on the composition and function of the gut microbiome and explore how the diet–microbiome relationship influences human health and the progression of different chronic diseases.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"22 11","pages":"671-686"},"PeriodicalIF":69.2,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141620408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Getting wound closure with Alcaligenes 用阿尔卡莱纳菌封闭伤口
IF 69.2 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-07-08 DOI: 10.1038/s41579-024-01082-6
Agustina Taglialegna
In this study, White et al. report that Alcaligenes faecalis mediates wound repair in diabetic foot ulcers.
在这项研究中,White 等人报告说,粪钙铝菌能促进糖尿病足溃疡的伤口修复。
{"title":"Getting wound closure with Alcaligenes","authors":"Agustina Taglialegna","doi":"10.1038/s41579-024-01082-6","DOIUrl":"10.1038/s41579-024-01082-6","url":null,"abstract":"In this study, White et al. report that Alcaligenes faecalis mediates wound repair in diabetic foot ulcers.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"22 9","pages":"523-523"},"PeriodicalIF":69.2,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141556976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Busting Cryptococcus with brilacidin 用青蒿素消灭隐球菌
IF 69.2 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-07-08 DOI: 10.1038/s41579-024-01081-7
Agustina Taglialegna
In this study, Diehl et al. report that brilacidin could be a promising antifungal drug against Cryptococcus neoformans.
在这项研究中,Diehl 等人报告说,布利拉西丁可能是一种很有前途的抗真菌药物,可用于抗新生隐球菌。
{"title":"Busting Cryptococcus with brilacidin","authors":"Agustina Taglialegna","doi":"10.1038/s41579-024-01081-7","DOIUrl":"10.1038/s41579-024-01081-7","url":null,"abstract":"In this study, Diehl et al. report that brilacidin could be a promising antifungal drug against Cryptococcus neoformans.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"22 9","pages":"524-524"},"PeriodicalIF":69.2,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141556975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New WHO proposed terminology for respiratory pathogen transmission 世界卫生组织提出的呼吸道病原体传播新术语。
IF 69.2 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-07-03 DOI: 10.1038/s41579-024-01067-5
Nancy H. L. Leung, Donald K. Milton
A WHO report suggests the terms ‘airborne transmission/inhalation’, ‘direct deposition’ and ‘infectious respiratory particles’ for describing transmission modes, highlighting the continuum of particle size with greatest exposure near the source. The report did not update infection control guidelines.
世卫组织的一份报告建议使用 "空气传播/吸入"、"直接沉积 "和 "传染性呼吸道微粒 "等术语来描述传播模式,并强调了微粒大小的连续性,在源头附近的暴露量最大。该报告没有更新感染控制指南。
{"title":"New WHO proposed terminology for respiratory pathogen transmission","authors":"Nancy H. L. Leung, Donald K. Milton","doi":"10.1038/s41579-024-01067-5","DOIUrl":"10.1038/s41579-024-01067-5","url":null,"abstract":"A WHO report suggests the terms ‘airborne transmission/inhalation’, ‘direct deposition’ and ‘infectious respiratory particles’ for describing transmission modes, highlighting the continuum of particle size with greatest exposure near the source. The report did not update infection control guidelines.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"22 8","pages":"453-454"},"PeriodicalIF":69.2,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Respiratory syncytial virus infection and novel interventions 作者更正:呼吸道合胞病毒感染与新型干预措施。
IF 69.2 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-07-02 DOI: 10.1038/s41579-024-01078-2
Annefleur C. Langedijk, Louis J. Bont
{"title":"Author Correction: Respiratory syncytial virus infection and novel interventions","authors":"Annefleur C. Langedijk, Louis J. Bont","doi":"10.1038/s41579-024-01078-2","DOIUrl":"10.1038/s41579-024-01078-2","url":null,"abstract":"","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"22 9","pages":"587-587"},"PeriodicalIF":69.2,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41579-024-01078-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacterial barcoding facilitates plant microbiome studies 细菌条形码有助于植物微生物组研究。
IF 69.2 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-06-26 DOI: 10.1038/s41579-024-01069-3
Hualan Liu
This month’s Genome Watch highlights the use of genetic barcoding towards a better understanding of plant–microorganism interactions and colonization dynamics.
本期 "基因组观察 "重点介绍利用基因条形码更好地了解植物与微生物之间的相互作用和定殖动态。
{"title":"Bacterial barcoding facilitates plant microbiome studies","authors":"Hualan Liu","doi":"10.1038/s41579-024-01069-3","DOIUrl":"10.1038/s41579-024-01069-3","url":null,"abstract":"This month’s Genome Watch highlights the use of genetic barcoding towards a better understanding of plant–microorganism interactions and colonization dynamics.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"22 8","pages":"459-459"},"PeriodicalIF":69.2,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141458189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The pathobiology of human fungal infections 人类真菌感染的病理生物学
IF 69.2 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-06-25 DOI: 10.1038/s41579-024-01062-w
Gordon D. Brown, Elizabeth R. Ballou, Steven Bates, Elaine M. Bignell, Andrew M. Borman, Alexandra C. Brand, Alistair J. P. Brown, Carolina Coelho, Peter C. Cook, Rhys A. Farrer, Nelesh P. Govender, Neil A. R. Gow, William Hope, J. Claire Hoving, Rachael Dangarembizi, Thomas S. Harrison, Elizabeth M. Johnson, Liliane Mukaremera, Mark Ramsdale, Christopher R. Thornton, Jane Usher, Adilia Warris, Duncan Wilson
Human fungal infections are a historically neglected area of disease research, yet they cause more than 1.5 million deaths every year. Our understanding of the pathophysiology of these infections has increased considerably over the past decade, through major insights into both the host and pathogen factors that contribute to the phenotype and severity of these diseases. Recent studies are revealing multiple mechanisms by which fungi modify and manipulate the host, escape immune surveillance and generate complex comorbidities. Although the emergence of fungal strains that are less susceptible to antifungal drugs or that rapidly evolve drug resistance is posing new threats, greater understanding of immune mechanisms and host susceptibility factors is beginning to offer novel immunotherapeutic options for the future. In this Review, we provide a broad and comprehensive overview of the pathobiology of human fungal infections, focusing specifically on pathogens that can cause invasive life-threatening infections, highlighting recent discoveries from the pathogen, host and clinical perspectives. We conclude by discussing key future challenges including antifungal drug resistance, the emergence of new pathogens and new developments in modern medicine that are promoting susceptibility to infection. In this Review, Brown et al. provide an overview of fungal pathobiology from the pathogen, host and clinical perspectives, focusing specifically on pathogens that can cause invasive life-threatening infections.
人类真菌感染是一个历来被忽视的疾病研究领域,但每年却造成 150 多万人死亡。在过去的十年中,我们对这些感染的病理生理学的了解有了很大的提高,对导致这些疾病的表型和严重程度的宿主和病原体因素都有了重要的认识。最近的研究揭示了真菌改变和操纵宿主、逃避免疫监视和产生复杂合并症的多种机制。虽然对抗真菌药物敏感性较低或耐药性迅速发展的真菌菌株的出现正在构成新的威胁,但对免疫机制和宿主易感因素的进一步了解正开始为未来提供新的免疫治疗方案。在这篇综述中,我们对人类真菌感染的病理生物学进行了广泛而全面的概述,尤其侧重于可导致危及生命的侵袭性感染的病原体,重点介绍了从病原体、宿主和临床角度的最新发现。最后,我们将讨论未来的主要挑战,包括抗真菌药物耐药性、新病原体的出现以及现代医学的新发展,这些都会增加感染的易感性。
{"title":"The pathobiology of human fungal infections","authors":"Gordon D. Brown, Elizabeth R. Ballou, Steven Bates, Elaine M. Bignell, Andrew M. Borman, Alexandra C. Brand, Alistair J. P. Brown, Carolina Coelho, Peter C. Cook, Rhys A. Farrer, Nelesh P. Govender, Neil A. R. Gow, William Hope, J. Claire Hoving, Rachael Dangarembizi, Thomas S. Harrison, Elizabeth M. Johnson, Liliane Mukaremera, Mark Ramsdale, Christopher R. Thornton, Jane Usher, Adilia Warris, Duncan Wilson","doi":"10.1038/s41579-024-01062-w","DOIUrl":"10.1038/s41579-024-01062-w","url":null,"abstract":"Human fungal infections are a historically neglected area of disease research, yet they cause more than 1.5 million deaths every year. Our understanding of the pathophysiology of these infections has increased considerably over the past decade, through major insights into both the host and pathogen factors that contribute to the phenotype and severity of these diseases. Recent studies are revealing multiple mechanisms by which fungi modify and manipulate the host, escape immune surveillance and generate complex comorbidities. Although the emergence of fungal strains that are less susceptible to antifungal drugs or that rapidly evolve drug resistance is posing new threats, greater understanding of immune mechanisms and host susceptibility factors is beginning to offer novel immunotherapeutic options for the future. In this Review, we provide a broad and comprehensive overview of the pathobiology of human fungal infections, focusing specifically on pathogens that can cause invasive life-threatening infections, highlighting recent discoveries from the pathogen, host and clinical perspectives. We conclude by discussing key future challenges including antifungal drug resistance, the emergence of new pathogens and new developments in modern medicine that are promoting susceptibility to infection. In this Review, Brown et al. provide an overview of fungal pathobiology from the pathogen, host and clinical perspectives, focusing specifically on pathogens that can cause invasive life-threatening infections.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"22 11","pages":"687-704"},"PeriodicalIF":69.2,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141448216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pertussis vaccines, epidemiology and evolution 百日咳疫苗、流行病学和演变
IF 69.2 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-06-21 DOI: 10.1038/s41579-024-01064-8
Matthieu Domenech de Cellès, Pejman Rohani
Pertussis, which is caused by Bordetella pertussis, has plagued humans for at least 800 years, is highly infectious and can be fatal in the unvaccinated, especially very young infants. Although the rollout of whole-cell pertussis (wP) vaccines in the 1940s and 1950s was associated with a drastic drop in incidence, concerns regarding the reactogenicity of wP vaccines led to the development of a new generation of safer, acellular (aP) vaccines that have been adopted mainly in high-income countries. Over the past 20 years, some countries that boast high aP coverage have experienced a resurgence in pertussis, which has led to substantial debate over the basic immunology, epidemiology and evolutionary biology of the bacterium. Controversy surrounds the duration of natural immunity and vaccine-derived immunity, the ability of vaccines to prevent transmission and severe disease, and the impact of evolution on evading vaccine immunity. Resolving these issues is made challenging by incomplete detection of pertussis cases, the absence of a serological marker of immunity, modest sequencing of the bacterial genome and heterogeneity in diagnostic methods of surveillance. In this Review, we lay out the complexities of contemporary pertussis and, where possible, propose a parsimonious explanation for apparently incongruous observations. In this Review, Domenech de Cellès and Rohani explore the contemporary epidemiology of pertussis and discuss the controversies surrounding the mechanisms responsible for the re-emergence of pertussis, including the effectiveness and duration of natural immunity and vaccine-derived immunity, the ability of vaccines to prevent transmission and severe disease, and the impact of evolution on evading vaccine immunity.
由百日咳杆菌引起的百日咳已经困扰人类至少 800 年之久,它具有高度传染性,未接种疫苗者,尤其是年幼的婴儿接种后可能会致命。尽管 20 世纪 40 年代和 50 年代全细胞百日咳 (wP) 疫苗的推广使发病率急剧下降,但人们对 wP 疫苗的致反应性的担忧导致了新一代更安全的无细胞 (aP) 疫苗的开发,这些疫苗主要在高收入国家采用。过去 20 年来,一些无细胞疫苗覆盖率较高的国家经历了百日咳复发的过程,这引发了有关百日咳杆菌的基础免疫学、流行病学和进化生物学的大量争论。争议围绕着自然免疫和疫苗衍生免疫的持续时间、疫苗预防传播和严重疾病的能力以及进化对逃避疫苗免疫的影响。由于百日咳病例检测不完全、缺乏免疫的血清学标志物、细菌基因组测序水平不高以及监测诊断方法的多样性,解决这些问题具有挑战性。在这篇综述中,我们阐述了当代百日咳的复杂性,并在可能的情况下对明显不协调的观察结果提出了合理的解释。
{"title":"Pertussis vaccines, epidemiology and evolution","authors":"Matthieu Domenech de Cellès, Pejman Rohani","doi":"10.1038/s41579-024-01064-8","DOIUrl":"10.1038/s41579-024-01064-8","url":null,"abstract":"Pertussis, which is caused by Bordetella pertussis, has plagued humans for at least 800 years, is highly infectious and can be fatal in the unvaccinated, especially very young infants. Although the rollout of whole-cell pertussis (wP) vaccines in the 1940s and 1950s was associated with a drastic drop in incidence, concerns regarding the reactogenicity of wP vaccines led to the development of a new generation of safer, acellular (aP) vaccines that have been adopted mainly in high-income countries. Over the past 20 years, some countries that boast high aP coverage have experienced a resurgence in pertussis, which has led to substantial debate over the basic immunology, epidemiology and evolutionary biology of the bacterium. Controversy surrounds the duration of natural immunity and vaccine-derived immunity, the ability of vaccines to prevent transmission and severe disease, and the impact of evolution on evading vaccine immunity. Resolving these issues is made challenging by incomplete detection of pertussis cases, the absence of a serological marker of immunity, modest sequencing of the bacterial genome and heterogeneity in diagnostic methods of surveillance. In this Review, we lay out the complexities of contemporary pertussis and, where possible, propose a parsimonious explanation for apparently incongruous observations. In this Review, Domenech de Cellès and Rohani explore the contemporary epidemiology of pertussis and discuss the controversies surrounding the mechanisms responsible for the re-emergence of pertussis, including the effectiveness and duration of natural immunity and vaccine-derived immunity, the ability of vaccines to prevent transmission and severe disease, and the impact of evolution on evading vaccine immunity.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"22 11","pages":"722-735"},"PeriodicalIF":69.2,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Reviews Microbiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1