Pub Date : 2024-09-09DOI: 10.1038/s41565-024-01779-y
Cassian Afting, Tobias Walther, Oliver M. Drozdowski, Christina Schlagheck, Ulrich S. Schwarz, Joachim Wittbrodt, Kerstin Göpfrich
Organoids are transformative in vitro model systems that mimic features of the corresponding tissue in vivo. However, across tissue types and species, organoids still often fail to reach full maturity and function because biochemical cues cannot be provided from within the organoid to guide their development. Here we introduce nanoengineered DNA microbeads with tissue mimetic tunable stiffness for implementing spatio-temporally controlled morphogen gradients inside of organoids at any point in their development. Using medaka retinal organoids and early embryos, we show that DNA microbeads can be integrated into embryos and organoids by microinjection and erased in a non-invasive manner with light. Coupling a recombinant surrogate Wnt to the DNA microbeads, we demonstrate the spatio-temporally controlled morphogen release from the microinjection site, which leads to morphogen gradients resulting in the formation of retinal pigmented epithelium while maintaining neuroretinal cell types. Thus, we bioengineered retinal organoids to more closely mirror the cell type diversity of in vivo retinae. Owing to the facile, one-pot fabrication process, the DNA microbead technology can be adapted to other organoid systems for improved tissue mimicry. Creating precise morphogen gradients for tissue engineering is challenging. Here the authors present mechanically tunable DNA hydrogel-based microbeads for light-controlled morphogen release in retinal organoids for better tissue mimicry.
类器官是一种可模拟体内相应组织特征的变革性体外模型系统。然而,在不同的组织类型和物种中,类器官仍常常无法完全成熟并发挥功能,因为类器官内部无法提供生化线索来指导其发育。在这里,我们引入了具有组织模拟可调硬度的纳米工程DNA微珠,用于在有机体发育的任何阶段在其内部实现时空可控的形态发生梯度。我们利用青鳉视网膜有机体和早期胚胎,证明了 DNA 微珠可以通过微注射集成到胚胎和有机体中,并用光照以非侵入方式清除。将重组替代 Wnt 与 DNA 微珠结合,我们证明了从微注射部位释放形态发生器的时空控制,这导致了形态发生器梯度,形成了视网膜色素上皮,同时保持了神经视网膜细胞类型。因此,我们对视网膜器官组织进行了生物工程改造,使其更接近于体内视网膜细胞类型的多样性。由于 DNA 微珠技术采用简便的单锅制造工艺,因此可应用于其他类器官系统,以提高组织仿真度。
{"title":"DNA microbeads for spatio-temporally controlled morphogen release within organoids","authors":"Cassian Afting, Tobias Walther, Oliver M. Drozdowski, Christina Schlagheck, Ulrich S. Schwarz, Joachim Wittbrodt, Kerstin Göpfrich","doi":"10.1038/s41565-024-01779-y","DOIUrl":"10.1038/s41565-024-01779-y","url":null,"abstract":"Organoids are transformative in vitro model systems that mimic features of the corresponding tissue in vivo. However, across tissue types and species, organoids still often fail to reach full maturity and function because biochemical cues cannot be provided from within the organoid to guide their development. Here we introduce nanoengineered DNA microbeads with tissue mimetic tunable stiffness for implementing spatio-temporally controlled morphogen gradients inside of organoids at any point in their development. Using medaka retinal organoids and early embryos, we show that DNA microbeads can be integrated into embryos and organoids by microinjection and erased in a non-invasive manner with light. Coupling a recombinant surrogate Wnt to the DNA microbeads, we demonstrate the spatio-temporally controlled morphogen release from the microinjection site, which leads to morphogen gradients resulting in the formation of retinal pigmented epithelium while maintaining neuroretinal cell types. Thus, we bioengineered retinal organoids to more closely mirror the cell type diversity of in vivo retinae. Owing to the facile, one-pot fabrication process, the DNA microbead technology can be adapted to other organoid systems for improved tissue mimicry. Creating precise morphogen gradients for tissue engineering is challenging. Here the authors present mechanically tunable DNA hydrogel-based microbeads for light-controlled morphogen release in retinal organoids for better tissue mimicry.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 12","pages":"1849-1857"},"PeriodicalIF":38.1,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41565-024-01779-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09DOI: 10.1038/s41565-024-01780-5
Wang Zhang, Jiakang Min, Hao Wang, Hongtao Wang, Xue Liang Li, Son Tung Ha, Biao Zhang, Cheng-Feng Pan, Hao Li, Hailong Liu, Hui Yin, Xiaolong Yang, Siqi Liu, Xiaodong Xu, Chaobin He, Hui Ying Yang, Joel K. W. Yang
A photonic bandgap is a range of wavelengths wherein light is forbidden from entering a photonic crystal, similar to the electronic bandgap in semiconductors. Fabricating photonic crystals with a complete photonic bandgap in the visible spectrum presents at least two important challenges: achieving a material refractive index > ~2 and a three-dimensional patterning resolution better than ~280 nm (lattice constant of 400 nm). Here we show an approach to overcome such limitations using additive manufacturing, thus realizing high-quality, high-refractive index photonic crystals with size-tunable bandgaps across the visible spectrum. We develop a titanium ion-doped resin (Ti-Nano) for high-resolution printing by two-photon polymerization lithography. After printing, the structures are heat-treated in air to induce lattice shrinkage and produce titania nanostructures. We attain three-dimensional photonic crystals with patterning resolution as high as 180 nm and refractive index of 2.4–2.6. Optical characterization reveals ~100% reflectance within the photonic crystal bandgap in the visible range. Finally, we show capabilities in defining local defects and demonstrate proof-of-principle applications in spectrally selective perfect reflectors and chiral light discriminators. A nanoscale printing method is developed to fabricate three-dimensional high-refractive index photonic crystals whose bandgap spans in the entire visible range.
{"title":"Printing of 3D photonic crystals in titania with complete bandgap across the visible spectrum","authors":"Wang Zhang, Jiakang Min, Hao Wang, Hongtao Wang, Xue Liang Li, Son Tung Ha, Biao Zhang, Cheng-Feng Pan, Hao Li, Hailong Liu, Hui Yin, Xiaolong Yang, Siqi Liu, Xiaodong Xu, Chaobin He, Hui Ying Yang, Joel K. W. Yang","doi":"10.1038/s41565-024-01780-5","DOIUrl":"10.1038/s41565-024-01780-5","url":null,"abstract":"A photonic bandgap is a range of wavelengths wherein light is forbidden from entering a photonic crystal, similar to the electronic bandgap in semiconductors. Fabricating photonic crystals with a complete photonic bandgap in the visible spectrum presents at least two important challenges: achieving a material refractive index > ~2 and a three-dimensional patterning resolution better than ~280 nm (lattice constant of 400 nm). Here we show an approach to overcome such limitations using additive manufacturing, thus realizing high-quality, high-refractive index photonic crystals with size-tunable bandgaps across the visible spectrum. We develop a titanium ion-doped resin (Ti-Nano) for high-resolution printing by two-photon polymerization lithography. After printing, the structures are heat-treated in air to induce lattice shrinkage and produce titania nanostructures. We attain three-dimensional photonic crystals with patterning resolution as high as 180 nm and refractive index of 2.4–2.6. Optical characterization reveals ~100% reflectance within the photonic crystal bandgap in the visible range. Finally, we show capabilities in defining local defects and demonstrate proof-of-principle applications in spectrally selective perfect reflectors and chiral light discriminators. A nanoscale printing method is developed to fabricate three-dimensional high-refractive index photonic crystals whose bandgap spans in the entire visible range.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 12","pages":"1813-1820"},"PeriodicalIF":38.1,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06DOI: 10.1038/s41565-024-01754-7
Paul Joyce, Christine J. Allen, María José Alonso, Marianne Ashford, Michelle S. Bradbury, Matthieu Germain, Maria Kavallaris, Robert Langer, Twan Lammers, Maria Teresa Peracchia, Amirali Popat, Clive A. Prestidge, Cristianne J. F. Rijcken, Bruno Sarmento, Ruth B. Schmid, Avi Schroeder, Santhni Subramaniam, Chelsea R. Thorn, Kathryn A. Whitehead, Chun-Xia Zhao, Hélder A. Santos
Nanomedicines have created a paradigm shift in healthcare. Yet fundamental barriers still exist that prevent or delay the clinical translation of nanomedicines. Critical hurdles inhibiting clinical success include poor understanding of nanomedicines’ physicochemical properties, limited exposure in the cell or tissue of interest, poor reproducibility of preclinical outcomes in clinical trials, and biocompatibility concerns. Barriers that delay translation include industrial scale-up or scale-down and good manufacturing practices, funding and navigating the regulatory environment. Here we propose the DELIVER framework comprising the core principles to be realized during preclinical development to promote clinical investigation of nanomedicines. The proposed framework comes with design, experimental, manufacturing, preclinical, clinical, regulatory and business considerations, which we recommend investigators to carefully review during early-stage nanomedicine design and development to mitigate risk and enable timely clinical success. By reducing development time and clinical trial failure, it is envisaged that this framework will help accelerate the clinical translation and maximize the impact of nanomedicines. The authors propose a framework to be followed during preclinical investigation of nanomedicines to increase their translatability potential.
{"title":"A translational framework to DELIVER nanomedicines to the clinic","authors":"Paul Joyce, Christine J. Allen, María José Alonso, Marianne Ashford, Michelle S. Bradbury, Matthieu Germain, Maria Kavallaris, Robert Langer, Twan Lammers, Maria Teresa Peracchia, Amirali Popat, Clive A. Prestidge, Cristianne J. F. Rijcken, Bruno Sarmento, Ruth B. Schmid, Avi Schroeder, Santhni Subramaniam, Chelsea R. Thorn, Kathryn A. Whitehead, Chun-Xia Zhao, Hélder A. Santos","doi":"10.1038/s41565-024-01754-7","DOIUrl":"10.1038/s41565-024-01754-7","url":null,"abstract":"Nanomedicines have created a paradigm shift in healthcare. Yet fundamental barriers still exist that prevent or delay the clinical translation of nanomedicines. Critical hurdles inhibiting clinical success include poor understanding of nanomedicines’ physicochemical properties, limited exposure in the cell or tissue of interest, poor reproducibility of preclinical outcomes in clinical trials, and biocompatibility concerns. Barriers that delay translation include industrial scale-up or scale-down and good manufacturing practices, funding and navigating the regulatory environment. Here we propose the DELIVER framework comprising the core principles to be realized during preclinical development to promote clinical investigation of nanomedicines. The proposed framework comes with design, experimental, manufacturing, preclinical, clinical, regulatory and business considerations, which we recommend investigators to carefully review during early-stage nanomedicine design and development to mitigate risk and enable timely clinical success. By reducing development time and clinical trial failure, it is envisaged that this framework will help accelerate the clinical translation and maximize the impact of nanomedicines. The authors propose a framework to be followed during preclinical investigation of nanomedicines to increase their translatability potential.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 11","pages":"1597-1611"},"PeriodicalIF":38.1,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-02DOI: 10.1038/s41565-024-01764-5
Kangfan Ji, Xiangqian Wei, Anna R. Kahkoska, Juan Zhang, Yang Zhang, Jianchang Xu, Xinwei Wei, Wei Liu, Yanfang Wang, Yuejun Yao, Xuehui Huang, Shaoqian Mei, Yun Liu, Shiqi Wang, Zhengjie Zhao, Ziyi Lu, Jiahuan You, Guangzheng Xu, Youqing Shen, John. B. Buse, Jinqiang Wang, Zhen Gu
Contrary to current insulin formulations, endogenous insulin has direct access to the portal vein, regulating glucose metabolism in the liver with minimal hypoglycaemia. Here we report the synthesis of an amphiphilic diblock copolymer comprising a glucose-responsive positively charged segment and polycarboxybetaine. The mixing of this polymer with insulin facilitates the formation of worm-like micelles, achieving highly efficient absorption by the gastrointestinal tract and the creation of a glucose-responsive reservoir in the liver. Under hyperglycaemic conditions, the polymer triggers a rapid release of insulin, establishing a portal-to-peripheral insulin gradient—similarly to endogenous insulin—for the safe regulation of blood glucose. This insulin formulation exhibits a dose-dependent blood-glucose-regulating effect in a streptozotocin-induced mouse model of type 1 diabetes and controls the blood glucose at normoglycaemia for one day in non-obese diabetic mice. In addition, the formulation demonstrates a blood-glucose-lowering effect for one day in a pig model of type 1 diabetes without observable hypoglycaemia, showing promise for the safe and effective management of type 1 diabetes. Orally administrable and glucose-responsive worm-like micelles have been developed to protect insulin in the gastrointestinal tract, enhance its intestinal absorption, accumulate in the liver and enable efficient and safe blood-glucose management.
{"title":"An orally administered glucose-responsive polymeric complex for high-efficiency and safe delivery of insulin in mice and pigs","authors":"Kangfan Ji, Xiangqian Wei, Anna R. Kahkoska, Juan Zhang, Yang Zhang, Jianchang Xu, Xinwei Wei, Wei Liu, Yanfang Wang, Yuejun Yao, Xuehui Huang, Shaoqian Mei, Yun Liu, Shiqi Wang, Zhengjie Zhao, Ziyi Lu, Jiahuan You, Guangzheng Xu, Youqing Shen, John. B. Buse, Jinqiang Wang, Zhen Gu","doi":"10.1038/s41565-024-01764-5","DOIUrl":"10.1038/s41565-024-01764-5","url":null,"abstract":"Contrary to current insulin formulations, endogenous insulin has direct access to the portal vein, regulating glucose metabolism in the liver with minimal hypoglycaemia. Here we report the synthesis of an amphiphilic diblock copolymer comprising a glucose-responsive positively charged segment and polycarboxybetaine. The mixing of this polymer with insulin facilitates the formation of worm-like micelles, achieving highly efficient absorption by the gastrointestinal tract and the creation of a glucose-responsive reservoir in the liver. Under hyperglycaemic conditions, the polymer triggers a rapid release of insulin, establishing a portal-to-peripheral insulin gradient—similarly to endogenous insulin—for the safe regulation of blood glucose. This insulin formulation exhibits a dose-dependent blood-glucose-regulating effect in a streptozotocin-induced mouse model of type 1 diabetes and controls the blood glucose at normoglycaemia for one day in non-obese diabetic mice. In addition, the formulation demonstrates a blood-glucose-lowering effect for one day in a pig model of type 1 diabetes without observable hypoglycaemia, showing promise for the safe and effective management of type 1 diabetes. Orally administrable and glucose-responsive worm-like micelles have been developed to protect insulin in the gastrointestinal tract, enhance its intestinal absorption, accumulate in the liver and enable efficient and safe blood-glucose management.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 12","pages":"1880-1891"},"PeriodicalIF":38.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-02DOI: 10.1038/s41565-024-01773-4
Zhimeng Liu, Yuqiang Zeng, Junyang Tan, Hailong Wang, Yudong Zhu, Xin Geng, Peter Guttmann, Xu Hou, Yang Yang, Yunkai Xu, Peter Cloetens, Dong Zhou, Yinping Wei, Jun Lu, Jie Li, Bilu Liu, Martin Winter, Robert Kostecki, Yuanjing Lin, Xin He
Layered lithium-rich transition metal oxides are promising cathode candidates for high-energy-density lithium batteries due to the redox contributions from transition metal cations and oxygen anions. However, their practical application is hindered by gradual capacity fading and voltage decay. Although oxygen loss and phase transformation are recognized as primary factors, the structural deterioration, chemical rearrangement, kinetic and thermodynamic effects remain unclear. Here we integrate analysis of morphological, structural and oxidation state evolution from individual atoms to secondary particles. By performing nanoscale to microscale characterizations, distinct structural change pathways associated with intraparticle heterogeneous reactions are identified. The high level of oxygen defects formed throughout the particle by slow electrochemical activation triggers progressive phase transformation and the formation of nanovoids. Ultrafast lithium (de)intercalation leads to oxygen-distortion-dominated lattice displacement, transition metal ion dissolution and lithium site variation. These inhomogeneous and irreversible structural changes are responsible for the low initial Coulombic efficiency, and ongoing particle cracking and expansion in the subsequent cycles. This work employs nano- to microscale characterization to identify different structural change pathways associated with non-homogeneous reactions within the particles, and explores differences in the failure mechanisms of lithium-rich transition metal oxide materials at different current densities.
{"title":"Revealing the degradation pathways of layered Li-rich oxide cathodes","authors":"Zhimeng Liu, Yuqiang Zeng, Junyang Tan, Hailong Wang, Yudong Zhu, Xin Geng, Peter Guttmann, Xu Hou, Yang Yang, Yunkai Xu, Peter Cloetens, Dong Zhou, Yinping Wei, Jun Lu, Jie Li, Bilu Liu, Martin Winter, Robert Kostecki, Yuanjing Lin, Xin He","doi":"10.1038/s41565-024-01773-4","DOIUrl":"10.1038/s41565-024-01773-4","url":null,"abstract":"Layered lithium-rich transition metal oxides are promising cathode candidates for high-energy-density lithium batteries due to the redox contributions from transition metal cations and oxygen anions. However, their practical application is hindered by gradual capacity fading and voltage decay. Although oxygen loss and phase transformation are recognized as primary factors, the structural deterioration, chemical rearrangement, kinetic and thermodynamic effects remain unclear. Here we integrate analysis of morphological, structural and oxidation state evolution from individual atoms to secondary particles. By performing nanoscale to microscale characterizations, distinct structural change pathways associated with intraparticle heterogeneous reactions are identified. The high level of oxygen defects formed throughout the particle by slow electrochemical activation triggers progressive phase transformation and the formation of nanovoids. Ultrafast lithium (de)intercalation leads to oxygen-distortion-dominated lattice displacement, transition metal ion dissolution and lithium site variation. These inhomogeneous and irreversible structural changes are responsible for the low initial Coulombic efficiency, and ongoing particle cracking and expansion in the subsequent cycles. This work employs nano- to microscale characterization to identify different structural change pathways associated with non-homogeneous reactions within the particles, and explores differences in the failure mechanisms of lithium-rich transition metal oxide materials at different current densities.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 12","pages":"1821-1830"},"PeriodicalIF":38.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-29DOI: 10.1038/s41565-024-01755-6
Cheng-Ping Zhang, K. T. Law
The third-order nonlinear Hall effect is observed in the quantum Hall states in graphene.
在石墨烯的量子霍尔态中观察到了三阶非线性霍尔效应。
{"title":"Nonlinear Hall effect in an insulator","authors":"Cheng-Ping Zhang, K. T. Law","doi":"10.1038/s41565-024-01755-6","DOIUrl":"10.1038/s41565-024-01755-6","url":null,"abstract":"The third-order nonlinear Hall effect is observed in the quantum Hall states in graphene.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 10","pages":"1432-1433"},"PeriodicalIF":38.1,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142090262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-29DOI: 10.1038/s41565-024-01749-4
Kun Zhou, Chenxiang Lin
A DNA origami nanodevice presents its hidden death ligand pattern in the acidic tumour microenvironment to kill cancerous cells, opening opportunities for effective and safe cancer therapy.
一种 DNA 折纸纳米装置在酸性肿瘤微环境中呈现出其隐藏的死亡配体模式,从而杀死癌细胞,为有效、安全的癌症治疗提供了机会。
{"title":"DNA nanoswitches pack an anti-cancer punch","authors":"Kun Zhou, Chenxiang Lin","doi":"10.1038/s41565-024-01749-4","DOIUrl":"10.1038/s41565-024-01749-4","url":null,"abstract":"A DNA origami nanodevice presents its hidden death ligand pattern in the acidic tumour microenvironment to kill cancerous cells, opening opportunities for effective and safe cancer therapy.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 12","pages":"1765-1766"},"PeriodicalIF":38.1,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142090276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-29DOI: 10.1038/s41565-024-01750-x
Seokwoo Kim, Yeongtae Jang, Junsuk Rho
Natural hyperbolic materials hybridized with nanostructures provide deep-subwavelength-scale confinement of an electromagnetic field.
与纳米结构杂化的天然双曲线材料可提供深亚波长尺度的电磁场约束。
{"title":"Revisiting hyperbolic materials for deep-subwavelength polaritonics","authors":"Seokwoo Kim, Yeongtae Jang, Junsuk Rho","doi":"10.1038/s41565-024-01750-x","DOIUrl":"10.1038/s41565-024-01750-x","url":null,"abstract":"Natural hyperbolic materials hybridized with nanostructures provide deep-subwavelength-scale confinement of an electromagnetic field.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 10","pages":"1434-1435"},"PeriodicalIF":38.1,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142090261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-29DOI: 10.1038/s41565-024-01775-2
Hao Wang, Peng Fan, Jing Chen, Lili Jiang, Hong-Jun Gao, Jose L. Lado, Kai Yang
Artificial quantum systems have emerged as platforms to realize topological matter in a well-controlled manner. So far, experiments have mostly explored non-interacting topological states, and the realization of many-body topological phases in solid-state platforms with atomic resolution has remained challenging. Here we construct topological quantum Heisenberg spin lattices by assembling spin chains and two-dimensional spin arrays from spin-1/2 Ti atoms on an insulating MgO film in a scanning tunnelling microscope. We engineer both topological and trivial phases of the quantum spin model and thereby realize first- and second-order topological quantum magnets. We probe the many-body excitations of the quantum magnets by single-atom electron spin resonance with an energy resolution better than 100 neV. Making use of the atomically localized magnetic field of the scanning tunnelling microscope tip, we visualize various many-body topological bound modes including topological edge states, topological defects and higher-order corner modes. Our results provide a bottom-up approach for the simulation of exotic quantum many-body phases of interacting spins. Atom manipulation in a scanning tunnelling microscope allows the fabrication of artificial topological quantum magnets. Single-atom electron spin resonance experiments probe the many-body topological modes of the quantum magnets and provide a visualization.
{"title":"Construction of topological quantum magnets from atomic spins on surfaces","authors":"Hao Wang, Peng Fan, Jing Chen, Lili Jiang, Hong-Jun Gao, Jose L. Lado, Kai Yang","doi":"10.1038/s41565-024-01775-2","DOIUrl":"10.1038/s41565-024-01775-2","url":null,"abstract":"Artificial quantum systems have emerged as platforms to realize topological matter in a well-controlled manner. So far, experiments have mostly explored non-interacting topological states, and the realization of many-body topological phases in solid-state platforms with atomic resolution has remained challenging. Here we construct topological quantum Heisenberg spin lattices by assembling spin chains and two-dimensional spin arrays from spin-1/2 Ti atoms on an insulating MgO film in a scanning tunnelling microscope. We engineer both topological and trivial phases of the quantum spin model and thereby realize first- and second-order topological quantum magnets. We probe the many-body excitations of the quantum magnets by single-atom electron spin resonance with an energy resolution better than 100 neV. Making use of the atomically localized magnetic field of the scanning tunnelling microscope tip, we visualize various many-body topological bound modes including topological edge states, topological defects and higher-order corner modes. Our results provide a bottom-up approach for the simulation of exotic quantum many-body phases of interacting spins. Atom manipulation in a scanning tunnelling microscope allows the fabrication of artificial topological quantum magnets. Single-atom electron spin resonance experiments probe the many-body topological modes of the quantum magnets and provide a visualization.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 12","pages":"1782-1788"},"PeriodicalIF":38.1,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142090264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}