Pub Date : 2024-11-15DOI: 10.1038/s41565-024-01810-2
Leveraging X-rays to induce prolonged luminescence (radio-afterglow) and radiodynamic effects from typically inorganic optical agents enables diagnosis and therapy at light-inaccessible tissue depths. Now, a cascade X-ray energy conversion approach is developed to increase the intrinsically low X-ray conversion efficiency of organic molecules for the construction of radio-afterglow nanoprobes for cancer theranostics.
利用 X 射线诱导典型的无机光学制剂产生长时间发光(放射余辉)和放射动力学效应,可在光线无法到达的组织深度进行诊断和治疗。现在,我们开发了一种级联 X 射线能量转换方法,以提高有机分子固有的低 X 射线转换效率,从而构建用于癌症治疗的放射余辉纳米探针。
{"title":"Organic radio-afterglow nanoprobes for cancer theranostics","authors":"","doi":"10.1038/s41565-024-01810-2","DOIUrl":"10.1038/s41565-024-01810-2","url":null,"abstract":"Leveraging X-rays to induce prolonged luminescence (radio-afterglow) and radiodynamic effects from typically inorganic optical agents enables diagnosis and therapy at light-inaccessible tissue depths. Now, a cascade X-ray energy conversion approach is developed to increase the intrinsically low X-ray conversion efficiency of organic molecules for the construction of radio-afterglow nanoprobes for cancer theranostics.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"20 2","pages":"194-195"},"PeriodicalIF":38.1,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The recent discovery of superconductivity and magnetism in trilayer rhombohedral graphene (RG) establishes an ideal, untwisted platform to study strong correlation electronic phenomena. However, the correlated effects in multilayer RG have received limited attention, and, particularly, the evolution of the correlations with increasing layer number remains an unresolved question. Here we show the observation of layer-dependent electronic structures and correlations—under surprising liquid nitrogen temperature—in RG multilayers from 3 to 9 layers by using scanning tunnelling microscopy and spectroscopy. We explicitly determine layer-enhanced low-energy flat bands and interlayer coupling strengths. The former directly demonstrates the further flattening of low-energy bands in thicker RG, and the latter indicates the presence of varying interlayer interactions in RG multilayers. Moreover, we find significant splittings of the flat bands, ranging from ~50 meV to 80 meV, at 77 K when they are partially filled, indicating the emergence of interaction-induced strongly correlated states. Particularly, the strength of the correlated states is notably enhanced in thicker RG and reaches its maximum in the six-layer, validating directly theoretical predictions and establishing abundant new candidates for strongly correlated systems. Our results provide valuable insights into the layer dependence of the electronic properties in RG and demonstrate it as a suitable system for investigating robust and highly accessible correlated phases. By using scanning tunnelling microscopy and spectroscopy, researchers observe layer-dependent electronic correlations in rhombohedral graphene multilayers at 77 K, revealing the layer-enhanced low-energy flat bands and interlayer interactions.
{"title":"Layer-dependent evolution of electronic structures and correlations in rhombohedral multilayer graphene","authors":"Yang Zhang, Yue-Ying Zhou, Shihao Zhang, Hao Cai, Ling-Hui Tong, Wei-Yu Liao, Ruo-Jue Zou, Si-Min Xue, Yuan Tian, Tongtong Chen, Qiwei Tian, Chen Zhang, Yiliu Wang, Xuming Zou, Xingqiang Liu, Yuanyuan Hu, Ya-Ning Ren, Li Zhang, Lijie Zhang, Wen-Xiao Wang, Lin He, Lei Liao, Zhihui Qin, Long-Jing Yin","doi":"10.1038/s41565-024-01822-y","DOIUrl":"10.1038/s41565-024-01822-y","url":null,"abstract":"The recent discovery of superconductivity and magnetism in trilayer rhombohedral graphene (RG) establishes an ideal, untwisted platform to study strong correlation electronic phenomena. However, the correlated effects in multilayer RG have received limited attention, and, particularly, the evolution of the correlations with increasing layer number remains an unresolved question. Here we show the observation of layer-dependent electronic structures and correlations—under surprising liquid nitrogen temperature—in RG multilayers from 3 to 9 layers by using scanning tunnelling microscopy and spectroscopy. We explicitly determine layer-enhanced low-energy flat bands and interlayer coupling strengths. The former directly demonstrates the further flattening of low-energy bands in thicker RG, and the latter indicates the presence of varying interlayer interactions in RG multilayers. Moreover, we find significant splittings of the flat bands, ranging from ~50 meV to 80 meV, at 77 K when they are partially filled, indicating the emergence of interaction-induced strongly correlated states. Particularly, the strength of the correlated states is notably enhanced in thicker RG and reaches its maximum in the six-layer, validating directly theoretical predictions and establishing abundant new candidates for strongly correlated systems. Our results provide valuable insights into the layer dependence of the electronic properties in RG and demonstrate it as a suitable system for investigating robust and highly accessible correlated phases. By using scanning tunnelling microscopy and spectroscopy, researchers observe layer-dependent electronic correlations in rhombohedral graphene multilayers at 77 K, revealing the layer-enhanced low-energy flat bands and interlayer interactions.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"20 2","pages":"222-228"},"PeriodicalIF":38.1,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1038/s41565-024-01814-y
Yilin Guo, Chen Yang, Lei Zhang, Yujie Hu, Jie Hao, Chuancheng Jia, Yang Yang, Yan Xu, Xingxing Li, Fanyang Mo, Yanwei Li, Kendall N. Houk, Xuefeng Guo
Olefin metathesis, as a powerful metal-catalysed carbon–carbon bond-forming method, has achieved considerable progress in recent years. However, the complexity originating from multicomponent interactions has long impeded a complete mechanistic understanding of olefin metathesis, which hampers further optimization of the reaction. Here, we clarify both productive and hidden degenerate pathways of ring-closing metathesis by focusing on one individual catalyst, using a sensitive single-molecule electrical detection platform. In addition to visualizing the full pathway, we found that the conventionally unwanted degenerate pathways have an unexpected constructive coupling effect on the productive pathway, and both types of pathway can be regulated by an external electric field. We then pushed forward this ability to ring-opening metathesis polymerization involving more interactive components. With single-monomer-insertion-event resolution, precise on-device synthesis of a single polymer was achieved by online manipulation of monomer insertion dynamics, intramolecular chain transfer, stereoregularity, degree of polymerization and block copolymerization. These results offer a comprehensive mechanistic understanding of olefin metathesis, exemplifying infinite opportunities for practical precise manufacturing. Single-molecule electrical detections clarify both productive and hidden degenerate pathways of ring-closing metathesis, and enable precise on-device synthesis of a single polymer with single-monomer-insertion-event resolution.
{"title":"Full on-device manipulation of olefin metathesis for precise manufacturing","authors":"Yilin Guo, Chen Yang, Lei Zhang, Yujie Hu, Jie Hao, Chuancheng Jia, Yang Yang, Yan Xu, Xingxing Li, Fanyang Mo, Yanwei Li, Kendall N. Houk, Xuefeng Guo","doi":"10.1038/s41565-024-01814-y","DOIUrl":"10.1038/s41565-024-01814-y","url":null,"abstract":"Olefin metathesis, as a powerful metal-catalysed carbon–carbon bond-forming method, has achieved considerable progress in recent years. However, the complexity originating from multicomponent interactions has long impeded a complete mechanistic understanding of olefin metathesis, which hampers further optimization of the reaction. Here, we clarify both productive and hidden degenerate pathways of ring-closing metathesis by focusing on one individual catalyst, using a sensitive single-molecule electrical detection platform. In addition to visualizing the full pathway, we found that the conventionally unwanted degenerate pathways have an unexpected constructive coupling effect on the productive pathway, and both types of pathway can be regulated by an external electric field. We then pushed forward this ability to ring-opening metathesis polymerization involving more interactive components. With single-monomer-insertion-event resolution, precise on-device synthesis of a single polymer was achieved by online manipulation of monomer insertion dynamics, intramolecular chain transfer, stereoregularity, degree of polymerization and block copolymerization. These results offer a comprehensive mechanistic understanding of olefin metathesis, exemplifying infinite opportunities for practical precise manufacturing. Single-molecule electrical detections clarify both productive and hidden degenerate pathways of ring-closing metathesis, and enable precise on-device synthesis of a single polymer with single-monomer-insertion-event resolution.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"20 2","pages":"246-254"},"PeriodicalIF":38.1,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In-sensor computing, which integrates sensing, memory and processing functions, has shown substantial potential in artificial vision systems. However, large-scale monolithic integration of in-sensor computing based on emerging devices with complementary metal–oxide–semiconductor (CMOS) circuits remains challenging, lacking functional demonstrations at the hardware level. Here we report a fully integrated 1-kb array with 128 × 8 one-transistor one-optoelectronic memristor (OEM) cells and silicon CMOS circuits, which features configurable multi-mode functionality encompassing three different modes of electronic memristor, dynamic OEM and non-volatile OEM (NV-OEM). These modes are configured by modulating the charge density within the oxygen vacancies via synergistic optical and electrical operations, as confirmed by differential phase-contrast scanning transmission electron microscopy. Using this OEM system, three visual processing tasks are demonstrated: image sensory pre-processing with a recognition accuracy enhanced from 85.7% to 96.1% by the NV-OEM mode, more advanced object tracking with 96.1% accuracy using both dynamic OEM and NV-OEM modes and human motion recognition with a fully OEM-based in-sensor reservoir computing system achieving 91.2% accuracy. A system-level benchmark further shows that it consumes over 20 times less energy than graphics processing units. By monolithically integrating the multi-functional OEMs with Si CMOS, this work provides a cost-effective platform for diverse in-sensor computing applications. This study reports a fully integrated 128 × 8 optoelectronic memristor array with Si complementary metal–oxide–semiconductor circuits, featuring configurable multi-mode functionality. It demonstrates diversified in-sensor computing tasks and consumes 20 times less energy than GPUs.
{"title":"Fully integrated multi-mode optoelectronic memristor array for diversified in-sensor computing","authors":"Heyi Huang, Xiangpeng Liang, Yuyan Wang, Jianshi Tang, Yuankun Li, Yiwei Du, Wen Sun, Jianing Zhang, Peng Yao, Xing Mou, Feng Xu, Jinzhi Zhang, Yuyao Lu, Zhengwu Liu, Jianlin Wang, Zhixing Jiang, Ruofei Hu, Ze Wang, Qingtian Zhang, Bin Gao, Xuedong Bai, Lu Fang, Qionghai Dai, Huaxiang Yin, He Qian, Huaqiang Wu","doi":"10.1038/s41565-024-01794-z","DOIUrl":"10.1038/s41565-024-01794-z","url":null,"abstract":"In-sensor computing, which integrates sensing, memory and processing functions, has shown substantial potential in artificial vision systems. However, large-scale monolithic integration of in-sensor computing based on emerging devices with complementary metal–oxide–semiconductor (CMOS) circuits remains challenging, lacking functional demonstrations at the hardware level. Here we report a fully integrated 1-kb array with 128 × 8 one-transistor one-optoelectronic memristor (OEM) cells and silicon CMOS circuits, which features configurable multi-mode functionality encompassing three different modes of electronic memristor, dynamic OEM and non-volatile OEM (NV-OEM). These modes are configured by modulating the charge density within the oxygen vacancies via synergistic optical and electrical operations, as confirmed by differential phase-contrast scanning transmission electron microscopy. Using this OEM system, three visual processing tasks are demonstrated: image sensory pre-processing with a recognition accuracy enhanced from 85.7% to 96.1% by the NV-OEM mode, more advanced object tracking with 96.1% accuracy using both dynamic OEM and NV-OEM modes and human motion recognition with a fully OEM-based in-sensor reservoir computing system achieving 91.2% accuracy. A system-level benchmark further shows that it consumes over 20 times less energy than graphics processing units. By monolithically integrating the multi-functional OEMs with Si CMOS, this work provides a cost-effective platform for diverse in-sensor computing applications. This study reports a fully integrated 128 × 8 optoelectronic memristor array with Si complementary metal–oxide–semiconductor circuits, featuring configurable multi-mode functionality. It demonstrates diversified in-sensor computing tasks and consumes 20 times less energy than GPUs.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"20 1","pages":"93-103"},"PeriodicalIF":38.1,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1038/s41565-024-01804-0
Lennart Grabenhorst, Martina Pfeiffer, Thea Schinkel, Mirjam Kümmerlin, Gereon A. Brüggenthies, Jasmin B. Maglic, Florian Selbach, Alexander T. Murr, Philip Tinnefeld, Viktorija Glembockyte
Biosensors play key roles in medical research and diagnostics. However, the development of biosensors for new biomolecular targets of interest often involves tedious optimization steps to ensure a high signal response at the analyte concentration of interest. Here we show a modular nanosensor platform that facilitates these steps by offering ways to decouple and independently tune the signal output as well as the response window. Our approach utilizes a dynamic DNA origami nanostructure to engineer a high optical signal response based on fluorescence resonance energy transfer. We demonstrate mechanisms to tune the sensor’s response window, specificity and cooperativity as well as highlight the modularity of the proposed platform by extending it to different biomolecular targets including more complex sensing schemes. This versatile nanosensor platform offers a promising starting point for the rapid development of biosensors with tailored properties. The study presents a modular DNA origami-based single-molecule nanosensor that separates sensing from the signal output. It achieves high fluorescence resonance energy transfer contrast and enables tuning of the response window for improved sensor specificity, multiplexing and logic sensing.
生物传感器在医学研究和诊断中发挥着关键作用。然而,针对新的生物分子目标开发生物传感器往往涉及繁琐的优化步骤,以确保在相关分析物浓度下的高信号响应。在这里,我们展示了一种模块化纳米传感器平台,它通过提供解耦和独立调节信号输出以及响应窗口的方法来简化这些步骤。我们的方法利用动态 DNA 折纸纳米结构,在荧光共振能量转移的基础上设计出高光学信号响应。我们展示了调整传感器响应窗口、特异性和合作性的机制,并通过将其扩展到不同的生物分子目标(包括更复杂的传感方案)来突出所提议平台的模块性。这种多功能纳米传感器平台为快速开发具有定制特性的生物传感器提供了一个很好的起点。
{"title":"Engineering modular and tunable single-molecule sensors by decoupling sensing from signal output","authors":"Lennart Grabenhorst, Martina Pfeiffer, Thea Schinkel, Mirjam Kümmerlin, Gereon A. Brüggenthies, Jasmin B. Maglic, Florian Selbach, Alexander T. Murr, Philip Tinnefeld, Viktorija Glembockyte","doi":"10.1038/s41565-024-01804-0","DOIUrl":"10.1038/s41565-024-01804-0","url":null,"abstract":"Biosensors play key roles in medical research and diagnostics. However, the development of biosensors for new biomolecular targets of interest often involves tedious optimization steps to ensure a high signal response at the analyte concentration of interest. Here we show a modular nanosensor platform that facilitates these steps by offering ways to decouple and independently tune the signal output as well as the response window. Our approach utilizes a dynamic DNA origami nanostructure to engineer a high optical signal response based on fluorescence resonance energy transfer. We demonstrate mechanisms to tune the sensor’s response window, specificity and cooperativity as well as highlight the modularity of the proposed platform by extending it to different biomolecular targets including more complex sensing schemes. This versatile nanosensor platform offers a promising starting point for the rapid development of biosensors with tailored properties. The study presents a modular DNA origami-based single-molecule nanosensor that separates sensing from the signal output. It achieves high fluorescence resonance energy transfer contrast and enables tuning of the response window for improved sensor specificity, multiplexing and logic sensing.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"20 2","pages":"303-310"},"PeriodicalIF":38.1,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nerve–cancer crosstalk has gained substantial attention owing to its impact on tumour growth, metastasis and therapy resistance. Effective therapeutic strategies targeting tumour-associated nerves within the intricate tumour microenvironment remain a major challenge in pancreatic cancer. Here we develop Escherichia coli Nissle 1917-derived outer membrane vesicles conjugated with nerve-binding peptide NP41, loaded with the tropomyosin receptor kinase (Trk) inhibitor larotrectinib (Lar@NP-OMVs) for tumour-associated nerve targeting. Lar@NP-OMVs achieve efficient nerve intervention to diminish neurite growth by disrupting the neurotrophin/Trk signalling pathway. Moreover, OMV-mediated repolarization of M2-like tumour-associated macrophages to an M1-like phenotype results in nerve injury, further accentuating Lar@NP-OMV-induced nerve intervention to inhibit nerve-triggered proliferation and migration of pancreatic cancer cells and angiogenesis. Leveraging this strategy, Lar@NP-OMVs significantly reduce nerve infiltration and neurite growth promoted by gemcitabine within the tumour microenvironment, leading to augmented chemotherapy efficacy in pancreatic cancer. This study sheds light on a potential avenue for nerve-targeted therapeutic intervention for enhancing pancreatic cancer therapy. This study presents the development of nanodrugs based on bacterial-derived outer membrane vesicles for targeted intervention in nerve–cancer crosstalk, which efficiently enhances pancreatic cancer chemotherapy.
{"title":"Targeted intervention in nerve–cancer crosstalk enhances pancreatic cancer chemotherapy","authors":"Jiaqi Qin, Jingjie Liu, Zhaohan Wei, Xin Li, Zhaoxia Chen, Jianye Li, Wenxia Zheng, Haojie Liu, Shiyi Xu, Tuying Yong, Ben Zhao, Shanmiao Gou, Shenghong Ju, Gao-Jun Teng, Xiangliang Yang, Lu Gan","doi":"10.1038/s41565-024-01803-1","DOIUrl":"10.1038/s41565-024-01803-1","url":null,"abstract":"Nerve–cancer crosstalk has gained substantial attention owing to its impact on tumour growth, metastasis and therapy resistance. Effective therapeutic strategies targeting tumour-associated nerves within the intricate tumour microenvironment remain a major challenge in pancreatic cancer. Here we develop Escherichia coli Nissle 1917-derived outer membrane vesicles conjugated with nerve-binding peptide NP41, loaded with the tropomyosin receptor kinase (Trk) inhibitor larotrectinib (Lar@NP-OMVs) for tumour-associated nerve targeting. Lar@NP-OMVs achieve efficient nerve intervention to diminish neurite growth by disrupting the neurotrophin/Trk signalling pathway. Moreover, OMV-mediated repolarization of M2-like tumour-associated macrophages to an M1-like phenotype results in nerve injury, further accentuating Lar@NP-OMV-induced nerve intervention to inhibit nerve-triggered proliferation and migration of pancreatic cancer cells and angiogenesis. Leveraging this strategy, Lar@NP-OMVs significantly reduce nerve infiltration and neurite growth promoted by gemcitabine within the tumour microenvironment, leading to augmented chemotherapy efficacy in pancreatic cancer. This study sheds light on a potential avenue for nerve-targeted therapeutic intervention for enhancing pancreatic cancer therapy. This study presents the development of nanodrugs based on bacterial-derived outer membrane vesicles for targeted intervention in nerve–cancer crosstalk, which efficiently enhances pancreatic cancer chemotherapy.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"20 2","pages":"311-324"},"PeriodicalIF":38.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1038/s41565-024-01812-0
Xuyang Lin, Yang Yang, Xueyang Li, Yongshun Lv, Zhaolong Wang, Jun Du, Xiaohan Luo, Dongjian Zhou, Chunlei Xiao, Kaifeng Wu
Blue lasers play a pivotal role in laser-based display, printing, manufacturing, data recording and medical technologies. Colloidal quantum dots (QDs) are solution-grown materials with strong, tunable emission covering the whole visible spectrum, but the development of QD lasers has largely relied on Cd-containing red-emitting QDs, with technologically viable blue QD lasers remaining out of reach. Here we report on the realization of tunable and robust lasing using low-toxicity blue-emitting ZnSe–ZnS core–shell QDs that are compact in size yet still feature suppressed Auger recombination and long optical gain lifetime approaching 1 ns. These characteristics allow us to handle the blue QDs like laser dyes for liquid-state amplified spontaneous emission and lasing. The blue QD laser is operated under quasi-continuous-wave excitation by solid-state nanosecond lasers. A Littrow-configuration cavity enables narrow linewidth (<0.2 nm), wavelength-tunable, coherent and stable laser outputs without circulating the solution. These results indicate the promise of ZnSe–ZnS QDs to fill the ‘blue gap’ of QD lasers and to replace less stable blue laser dyes for a multitude of applications. Low-toxicity ZnSe–ZnS core–shell quantum dots show tunable and stable blue lasing in solution.
{"title":"Blue lasers using low-toxicity colloidal quantum dots","authors":"Xuyang Lin, Yang Yang, Xueyang Li, Yongshun Lv, Zhaolong Wang, Jun Du, Xiaohan Luo, Dongjian Zhou, Chunlei Xiao, Kaifeng Wu","doi":"10.1038/s41565-024-01812-0","DOIUrl":"10.1038/s41565-024-01812-0","url":null,"abstract":"Blue lasers play a pivotal role in laser-based display, printing, manufacturing, data recording and medical technologies. Colloidal quantum dots (QDs) are solution-grown materials with strong, tunable emission covering the whole visible spectrum, but the development of QD lasers has largely relied on Cd-containing red-emitting QDs, with technologically viable blue QD lasers remaining out of reach. Here we report on the realization of tunable and robust lasing using low-toxicity blue-emitting ZnSe–ZnS core–shell QDs that are compact in size yet still feature suppressed Auger recombination and long optical gain lifetime approaching 1 ns. These characteristics allow us to handle the blue QDs like laser dyes for liquid-state amplified spontaneous emission and lasing. The blue QD laser is operated under quasi-continuous-wave excitation by solid-state nanosecond lasers. A Littrow-configuration cavity enables narrow linewidth (<0.2 nm), wavelength-tunable, coherent and stable laser outputs without circulating the solution. These results indicate the promise of ZnSe–ZnS QDs to fill the ‘blue gap’ of QD lasers and to replace less stable blue laser dyes for a multitude of applications. Low-toxicity ZnSe–ZnS core–shell quantum dots show tunable and stable blue lasing in solution.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"20 2","pages":"229-236"},"PeriodicalIF":38.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-31DOI: 10.1038/s41565-024-01817-9
Xin Zhang, Elizaveta Morozova, Maximilian Rimbach-Russ, Daniel Jirovec, Tzu-Kan Hsiao, Pablo Cova Fariña, Chien-An Wang, Stefan D. Oosterhout, Amir Sammak, Giordano Scappucci, Menno Veldhorst, Lieven M. K. Vandersypen
The coherent control of interacting spins in semiconductor quantum dots is of strong interest for quantum information processing and for studying quantum magnetism from the bottom up. Here we present a 2 × 4 germanium quantum dot array with full and controllable interactions between nearest-neighbour spins. As a demonstration of the level of control, we define four singlet–triplet qubits in this system and show two-axis single-qubit control of each qubit and SWAP-style two-qubit gates between all neighbouring qubit pairs, yielding average single-qubit gate fidelities of 99.49(8)–99.84(1)% and Bell state fidelities of 73(1)–90(1)%. Combining these operations, we experimentally implement a circuit designed to generate and distribute entanglement across the array. A remote Bell state with a fidelity of 75(2)% and concurrence of 22(4)% is achieved. These results highlight the potential of singlet–triplet qubits as a competing platform for quantum computing and indicate that scaling up the control of quantum dot spins in extended bilinear arrays can be feasible. Singlet–triplet qubits implemented in a 2 × 4 germanium quantum dot array allow for a quantum circuit that generates and distributes entanglement across the array with a remote Bell state fidelity of 75(2)% between the first and last qubit.
{"title":"Universal control of four singlet–triplet qubits","authors":"Xin Zhang, Elizaveta Morozova, Maximilian Rimbach-Russ, Daniel Jirovec, Tzu-Kan Hsiao, Pablo Cova Fariña, Chien-An Wang, Stefan D. Oosterhout, Amir Sammak, Giordano Scappucci, Menno Veldhorst, Lieven M. K. Vandersypen","doi":"10.1038/s41565-024-01817-9","DOIUrl":"10.1038/s41565-024-01817-9","url":null,"abstract":"The coherent control of interacting spins in semiconductor quantum dots is of strong interest for quantum information processing and for studying quantum magnetism from the bottom up. Here we present a 2 × 4 germanium quantum dot array with full and controllable interactions between nearest-neighbour spins. As a demonstration of the level of control, we define four singlet–triplet qubits in this system and show two-axis single-qubit control of each qubit and SWAP-style two-qubit gates between all neighbouring qubit pairs, yielding average single-qubit gate fidelities of 99.49(8)–99.84(1)% and Bell state fidelities of 73(1)–90(1)%. Combining these operations, we experimentally implement a circuit designed to generate and distribute entanglement across the array. A remote Bell state with a fidelity of 75(2)% and concurrence of 22(4)% is achieved. These results highlight the potential of singlet–triplet qubits as a competing platform for quantum computing and indicate that scaling up the control of quantum dot spins in extended bilinear arrays can be feasible. Singlet–triplet qubits implemented in a 2 × 4 germanium quantum dot array allow for a quantum circuit that generates and distributes entanglement across the array with a remote Bell state fidelity of 75(2)% between the first and last qubit.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"20 2","pages":"209-215"},"PeriodicalIF":38.1,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41565-024-01817-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1038/s41565-024-01774-3
Randy P. Carney, Rachel R. Mizenko, Batuhan T. Bozkurt, Neona Lowe, Tanner Henson, Alessandra Arizzi, Aijun Wang, Cheemeng Tan, Steven C. George
Extracellular vesicles (EVs) are diverse nanoparticles with large heterogeneity in size and molecular composition. Although this heterogeneity provides high diagnostic value for liquid biopsy and confers many exploitable functions for therapeutic applications in cancer detection, wound healing and neurodegenerative and cardiovascular diseases, it has also impeded their clinical translation—hence heterogeneity acts as a double-edged sword. Here we review the impact of subpopulation heterogeneity on EV function and identify key cornerstones for addressing heterogeneity in the context of modern analytical platforms with single-particle resolution. We outline concrete steps towards the identification of key active biomolecules that determine EV mechanisms of action across different EV subtypes. We describe how such knowledge could accelerate EV-based therapies and engineering approaches for mimetic artificial nanovesicle formulations. This approach blunts one edge of the sword, leaving only a single razor-sharp edge on which EV heterogeneity can be exploited for therapeutic applications across many diseases. This Review presents a path to strategically overcoming extracellular vesicle heterogeneity and assay standardization, and offers solutions for realizing the clinical translation of extracellular vesicles for diagnostics and nanotherapeutics.
细胞外囊泡(EVs)是一种多样化的纳米颗粒,在大小和分子组成上具有很大的异质性。尽管这种异质性为液体活检提供了很高的诊断价值,并为癌症检测、伤口愈合、神经退行性疾病和心血管疾病的治疗应用提供了许多可利用的功能,但它也阻碍了其临床转化--因此异质性就像一把双刃剑。在此,我们回顾了亚群异质性对 EV 功能的影响,并确定了在具有单颗粒分辨率的现代分析平台背景下解决异质性问题的关键基石。我们概述了识别决定不同 EV 亚型的 EV 作用机制的关键活性生物分子的具体步骤。我们描述了这些知识如何能加速基于 EV 的疗法和模拟人工纳米微粒配方的工程方法。这种方法钝化了剑的一个边缘,只留下一个锋利的边缘,可以利用 EV 的异质性对多种疾病进行治疗。
{"title":"Harnessing extracellular vesicle heterogeneity for diagnostic and therapeutic applications","authors":"Randy P. Carney, Rachel R. Mizenko, Batuhan T. Bozkurt, Neona Lowe, Tanner Henson, Alessandra Arizzi, Aijun Wang, Cheemeng Tan, Steven C. George","doi":"10.1038/s41565-024-01774-3","DOIUrl":"10.1038/s41565-024-01774-3","url":null,"abstract":"Extracellular vesicles (EVs) are diverse nanoparticles with large heterogeneity in size and molecular composition. Although this heterogeneity provides high diagnostic value for liquid biopsy and confers many exploitable functions for therapeutic applications in cancer detection, wound healing and neurodegenerative and cardiovascular diseases, it has also impeded their clinical translation—hence heterogeneity acts as a double-edged sword. Here we review the impact of subpopulation heterogeneity on EV function and identify key cornerstones for addressing heterogeneity in the context of modern analytical platforms with single-particle resolution. We outline concrete steps towards the identification of key active biomolecules that determine EV mechanisms of action across different EV subtypes. We describe how such knowledge could accelerate EV-based therapies and engineering approaches for mimetic artificial nanovesicle formulations. This approach blunts one edge of the sword, leaving only a single razor-sharp edge on which EV heterogeneity can be exploited for therapeutic applications across many diseases. This Review presents a path to strategically overcoming extracellular vesicle heterogeneity and assay standardization, and offers solutions for realizing the clinical translation of extracellular vesicles for diagnostics and nanotherapeutics.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"20 1","pages":"14-25"},"PeriodicalIF":38.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1038/s41565-024-01805-z
Chenxiao Zhao, Gonçalo Catarina, Jin-Jiang Zhang, João C. G. Henriques, Lin Yang, Ji Ma, Xinliang Feng, Oliver Gröning, Pascal Ruffieux, Joaquín Fernández-Rossier, Roman Fasel
Unlocking the potential of topological order in many-body spin systems has been a key goal in quantum materials research. Despite extensive efforts, the quest for a versatile platform enabling site-selective spin manipulation, essential for tuning and probing diverse topological phases, has persisted. Here we utilize on-surface synthesis to construct spin-1/2 alternating-exchange Heisenberg chains by covalently linking Clar’s goblets—nanographenes each hosting two antiferromagnetically coupled spins. Using scanning tunnelling microscopy, we exert atomic-scale control over chain lengths, parities and exchange-coupling terminations, and probe their magnetic response via inelastic tunnelling spectroscopy. Our investigation confirms the gapped nature of bulk excitations in the chains, known as triplons. Their dispersion relation is extracted from the spatial variation of tunnelling spectral amplitudes. Depending on the parity and termination of chains, we observe varying numbers of in-gap spin-1/2 edge excitations, reflecting the degeneracy of distinct topological ground states in the thermodynamic limit. By monitoring interactions between these edge spins, we identify the exponential decay of spin correlations. Our findings present a phase-controlled many-body platform, opening avenues toward spin-based quantum devices. Scanning probe microscopy experiments realize the alternating-exchange spin-1/2 Heisenberg model via magnetic nanographene chains. They control odd- to even-Haldane phase transitions and monitor spin–spin correlations and triplon dispersion.
{"title":"Tunable topological phases in nanographene-based spin-1/2 alternating-exchange Heisenberg chains","authors":"Chenxiao Zhao, Gonçalo Catarina, Jin-Jiang Zhang, João C. G. Henriques, Lin Yang, Ji Ma, Xinliang Feng, Oliver Gröning, Pascal Ruffieux, Joaquín Fernández-Rossier, Roman Fasel","doi":"10.1038/s41565-024-01805-z","DOIUrl":"10.1038/s41565-024-01805-z","url":null,"abstract":"Unlocking the potential of topological order in many-body spin systems has been a key goal in quantum materials research. Despite extensive efforts, the quest for a versatile platform enabling site-selective spin manipulation, essential for tuning and probing diverse topological phases, has persisted. Here we utilize on-surface synthesis to construct spin-1/2 alternating-exchange Heisenberg chains by covalently linking Clar’s goblets—nanographenes each hosting two antiferromagnetically coupled spins. Using scanning tunnelling microscopy, we exert atomic-scale control over chain lengths, parities and exchange-coupling terminations, and probe their magnetic response via inelastic tunnelling spectroscopy. Our investigation confirms the gapped nature of bulk excitations in the chains, known as triplons. Their dispersion relation is extracted from the spatial variation of tunnelling spectral amplitudes. Depending on the parity and termination of chains, we observe varying numbers of in-gap spin-1/2 edge excitations, reflecting the degeneracy of distinct topological ground states in the thermodynamic limit. By monitoring interactions between these edge spins, we identify the exponential decay of spin correlations. Our findings present a phase-controlled many-body platform, opening avenues toward spin-based quantum devices. Scanning probe microscopy experiments realize the alternating-exchange spin-1/2 Heisenberg model via magnetic nanographene chains. They control odd- to even-Haldane phase transitions and monitor spin–spin correlations and triplon dispersion.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 12","pages":"1789-1795"},"PeriodicalIF":38.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}