首页 > 最新文献

Nature nanotechnology最新文献

英文 中文
DNA microbeads for spatio-temporally controlled morphogen release within organoids 用于有机体内时空控制形态发生器释放的 DNA 微珠
IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-09 DOI: 10.1038/s41565-024-01779-y
Cassian Afting, Tobias Walther, Oliver M. Drozdowski, Christina Schlagheck, Ulrich S. Schwarz, Joachim Wittbrodt, Kerstin Göpfrich
Organoids are transformative in vitro model systems that mimic features of the corresponding tissue in vivo. However, across tissue types and species, organoids still often fail to reach full maturity and function because biochemical cues cannot be provided from within the organoid to guide their development. Here we introduce nanoengineered DNA microbeads with tissue mimetic tunable stiffness for implementing spatio-temporally controlled morphogen gradients inside of organoids at any point in their development. Using medaka retinal organoids and early embryos, we show that DNA microbeads can be integrated into embryos and organoids by microinjection and erased in a non-invasive manner with light. Coupling a recombinant surrogate Wnt to the DNA microbeads, we demonstrate the spatio-temporally controlled morphogen release from the microinjection site, which leads to morphogen gradients resulting in the formation of retinal pigmented epithelium while maintaining neuroretinal cell types. Thus, we bioengineered retinal organoids to more closely mirror the cell type diversity of in vivo retinae. Owing to the facile, one-pot fabrication process, the DNA microbead technology can be adapted to other organoid systems for improved tissue mimicry. Creating precise morphogen gradients for tissue engineering is challenging. Here the authors present mechanically tunable DNA hydrogel-based microbeads for light-controlled morphogen release in retinal organoids for better tissue mimicry.
类器官是一种可模拟体内相应组织特征的变革性体外模型系统。然而,在不同的组织类型和物种中,类器官仍常常无法完全成熟并发挥功能,因为类器官内部无法提供生化线索来指导其发育。在这里,我们引入了具有组织模拟可调硬度的纳米工程DNA微珠,用于在有机体发育的任何阶段在其内部实现时空可控的形态发生梯度。我们利用青鳉视网膜有机体和早期胚胎,证明了 DNA 微珠可以通过微注射集成到胚胎和有机体中,并用光照以非侵入方式清除。将重组替代 Wnt 与 DNA 微珠结合,我们证明了从微注射部位释放形态发生器的时空控制,这导致了形态发生器梯度,形成了视网膜色素上皮,同时保持了神经视网膜细胞类型。因此,我们对视网膜器官组织进行了生物工程改造,使其更接近于体内视网膜细胞类型的多样性。由于 DNA 微珠技术采用简便的单锅制造工艺,因此可应用于其他类器官系统,以提高组织仿真度。
{"title":"DNA microbeads for spatio-temporally controlled morphogen release within organoids","authors":"Cassian Afting, Tobias Walther, Oliver M. Drozdowski, Christina Schlagheck, Ulrich S. Schwarz, Joachim Wittbrodt, Kerstin Göpfrich","doi":"10.1038/s41565-024-01779-y","DOIUrl":"10.1038/s41565-024-01779-y","url":null,"abstract":"Organoids are transformative in vitro model systems that mimic features of the corresponding tissue in vivo. However, across tissue types and species, organoids still often fail to reach full maturity and function because biochemical cues cannot be provided from within the organoid to guide their development. Here we introduce nanoengineered DNA microbeads with tissue mimetic tunable stiffness for implementing spatio-temporally controlled morphogen gradients inside of organoids at any point in their development. Using medaka retinal organoids and early embryos, we show that DNA microbeads can be integrated into embryos and organoids by microinjection and erased in a non-invasive manner with light. Coupling a recombinant surrogate Wnt to the DNA microbeads, we demonstrate the spatio-temporally controlled morphogen release from the microinjection site, which leads to morphogen gradients resulting in the formation of retinal pigmented epithelium while maintaining neuroretinal cell types. Thus, we bioengineered retinal organoids to more closely mirror the cell type diversity of in vivo retinae. Owing to the facile, one-pot fabrication process, the DNA microbead technology can be adapted to other organoid systems for improved tissue mimicry. Creating precise morphogen gradients for tissue engineering is challenging. Here the authors present mechanically tunable DNA hydrogel-based microbeads for light-controlled morphogen release in retinal organoids for better tissue mimicry.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 12","pages":"1849-1857"},"PeriodicalIF":38.1,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41565-024-01779-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Printing of 3D photonic crystals in titania with complete bandgap across the visible spectrum 在二氧化钛中打印出具有完整可见光谱带隙的三维光子晶体
IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-09 DOI: 10.1038/s41565-024-01780-5
Wang Zhang, Jiakang Min, Hao Wang, Hongtao Wang, Xue Liang Li, Son Tung Ha, Biao Zhang, Cheng-Feng Pan, Hao Li, Hailong Liu, Hui Yin, Xiaolong Yang, Siqi Liu, Xiaodong Xu, Chaobin He, Hui Ying Yang, Joel K. W. Yang
A photonic bandgap is a range of wavelengths wherein light is forbidden from entering a photonic crystal, similar to the electronic bandgap in semiconductors. Fabricating photonic crystals with a complete photonic bandgap in the visible spectrum presents at least two important challenges: achieving a material refractive index > ~2 and a three-dimensional patterning resolution better than ~280 nm (lattice constant of 400 nm). Here we show an approach to overcome such limitations using additive manufacturing, thus realizing high-quality, high-refractive index photonic crystals with size-tunable bandgaps across the visible spectrum. We develop a titanium ion-doped resin (Ti-Nano) for high-resolution printing by two-photon polymerization lithography. After printing, the structures are heat-treated in air to induce lattice shrinkage and produce titania nanostructures. We attain three-dimensional photonic crystals with patterning resolution as high as 180 nm and refractive index of 2.4–2.6. Optical characterization reveals ~100% reflectance within the photonic crystal bandgap in the visible range. Finally, we show capabilities in defining local defects and demonstrate proof-of-principle applications in spectrally selective perfect reflectors and chiral light discriminators. A nanoscale printing method is developed to fabricate three-dimensional high-refractive index photonic crystals whose bandgap spans in the entire visible range.
光子带隙是禁止光线进入光子晶体的波长范围,类似于半导体中的电子带隙。制造在可见光谱中具有完整光子带隙的光子晶体至少面临两个重要挑战:实现材料折射率> ~2和优于 ~280 nm(晶格常数为 400 nm)的三维图案化分辨率。在这里,我们展示了一种利用增材制造技术克服这些限制的方法,从而实现了高质量、高折射率的光子晶体,其带隙大小可在整个可见光谱范围内进行调整。我们开发了一种掺杂钛离子的树脂(Ti-Nano),用于通过双光子聚合光刻技术进行高分辨率打印。印刷完成后,在空气中对结构进行热处理,以诱导晶格收缩并产生二氧化钛纳米结构。我们获得的三维光子晶体的图案分辨率高达 180 纳米,折射率为 2.4-2.6。光学表征显示,在可见光范围内,光子晶体带隙的反射率约为 100%。最后,我们展示了定义局部缺陷的能力,并演示了在光谱选择性完美反射器和手性光鉴别器中的原理性应用。
{"title":"Printing of 3D photonic crystals in titania with complete bandgap across the visible spectrum","authors":"Wang Zhang, Jiakang Min, Hao Wang, Hongtao Wang, Xue Liang Li, Son Tung Ha, Biao Zhang, Cheng-Feng Pan, Hao Li, Hailong Liu, Hui Yin, Xiaolong Yang, Siqi Liu, Xiaodong Xu, Chaobin He, Hui Ying Yang, Joel K. W. Yang","doi":"10.1038/s41565-024-01780-5","DOIUrl":"10.1038/s41565-024-01780-5","url":null,"abstract":"A photonic bandgap is a range of wavelengths wherein light is forbidden from entering a photonic crystal, similar to the electronic bandgap in semiconductors. Fabricating photonic crystals with a complete photonic bandgap in the visible spectrum presents at least two important challenges: achieving a material refractive index > ~2 and a three-dimensional patterning resolution better than ~280 nm (lattice constant of 400 nm). Here we show an approach to overcome such limitations using additive manufacturing, thus realizing high-quality, high-refractive index photonic crystals with size-tunable bandgaps across the visible spectrum. We develop a titanium ion-doped resin (Ti-Nano) for high-resolution printing by two-photon polymerization lithography. After printing, the structures are heat-treated in air to induce lattice shrinkage and produce titania nanostructures. We attain three-dimensional photonic crystals with patterning resolution as high as 180 nm and refractive index of 2.4–2.6. Optical characterization reveals ~100% reflectance within the photonic crystal bandgap in the visible range. Finally, we show capabilities in defining local defects and demonstrate proof-of-principle applications in spectrally selective perfect reflectors and chiral light discriminators. A nanoscale printing method is developed to fabricate three-dimensional high-refractive index photonic crystals whose bandgap spans in the entire visible range.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 12","pages":"1813-1820"},"PeriodicalIF":38.1,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Graphene oxide electrodes enable electrical stimulation of distinct calcium signalling in brain astrocytes 作者更正:氧化石墨烯电极可对大脑星形胶质细胞中不同的钙信号进行电刺激
IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-09 DOI: 10.1038/s41565-024-01797-w
Roberta Fabbri, Alessandra Scidà, Emanuela Saracino, Giorgia Conte, Alessandro Kovtun, Andrea Candini, Denisa Kirdajova, Diletta Spennato, Valeria Marchetti, Chiara Lazzarini, Aikaterini Konstantoulaki, Paolo Dambruoso, Marco Caprini, Michele Muccini, Mauro Ursino, Miroslava Anderova, Emanuele Treossi, Roberto Zamboni, Vincenzo Palermo, Valentina Benfenati
{"title":"Author Correction: Graphene oxide electrodes enable electrical stimulation of distinct calcium signalling in brain astrocytes","authors":"Roberta Fabbri, Alessandra Scidà, Emanuela Saracino, Giorgia Conte, Alessandro Kovtun, Andrea Candini, Denisa Kirdajova, Diletta Spennato, Valeria Marchetti, Chiara Lazzarini, Aikaterini Konstantoulaki, Paolo Dambruoso, Marco Caprini, Michele Muccini, Mauro Ursino, Miroslava Anderova, Emanuele Treossi, Roberto Zamboni, Vincenzo Palermo, Valentina Benfenati","doi":"10.1038/s41565-024-01797-w","DOIUrl":"10.1038/s41565-024-01797-w","url":null,"abstract":"","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 9","pages":"1420-1420"},"PeriodicalIF":38.1,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41565-024-01797-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A translational framework to DELIVER nanomedicines to the clinic 将纳米药物应用于临床的转化框架
IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-06 DOI: 10.1038/s41565-024-01754-7
Paul Joyce, Christine J. Allen, María José Alonso, Marianne Ashford, Michelle S. Bradbury, Matthieu Germain, Maria Kavallaris, Robert Langer, Twan Lammers, Maria Teresa Peracchia, Amirali Popat, Clive A. Prestidge, Cristianne J. F. Rijcken, Bruno Sarmento, Ruth B. Schmid, Avi Schroeder, Santhni Subramaniam, Chelsea R. Thorn, Kathryn A. Whitehead, Chun-Xia Zhao, Hélder A. Santos
Nanomedicines have created a paradigm shift in healthcare. Yet fundamental barriers still exist that prevent or delay the clinical translation of nanomedicines. Critical hurdles inhibiting clinical success include poor understanding of nanomedicines’ physicochemical properties, limited exposure in the cell or tissue of interest, poor reproducibility of preclinical outcomes in clinical trials, and biocompatibility concerns. Barriers that delay translation include industrial scale-up or scale-down and good manufacturing practices, funding and navigating the regulatory environment. Here we propose the DELIVER framework comprising the core principles to be realized during preclinical development to promote clinical investigation of nanomedicines. The proposed framework comes with design, experimental, manufacturing, preclinical, clinical, regulatory and business considerations, which we recommend investigators to carefully review during early-stage nanomedicine design and development to mitigate risk and enable timely clinical success. By reducing development time and clinical trial failure, it is envisaged that this framework will help accelerate the clinical translation and maximize the impact of nanomedicines. The authors propose a framework to be followed during preclinical investigation of nanomedicines to increase their translatability potential.
纳米药物带来了医疗保健模式的转变。然而,阻碍或推迟纳米药物临床转化的根本障碍依然存在。阻碍临床成功的关键障碍包括:对纳米药物理化特性的了解不足、在相关细胞或组织中的暴露有限、临床前结果在临床试验中的可重复性差以及生物兼容性问题。延误转化的障碍包括工业放大或缩小规模、良好生产规范、资金和监管环境。在此,我们提出了 DELIVER 框架,其中包括临床前开发过程中应实现的核心原则,以促进纳米药物的临床研究。该框架包括设计、实验、生产、临床前、临床、监管和商业等方面的考虑因素,我们建议研究人员在纳米药物的早期设计和开发阶段仔细审查这些因素,以降低风险并及时取得临床成功。通过缩短开发时间和减少临床试验失败,预计该框架将有助于加快纳米药物的临床转化并最大限度地发挥其影响。
{"title":"A translational framework to DELIVER nanomedicines to the clinic","authors":"Paul Joyce, Christine J. Allen, María José Alonso, Marianne Ashford, Michelle S. Bradbury, Matthieu Germain, Maria Kavallaris, Robert Langer, Twan Lammers, Maria Teresa Peracchia, Amirali Popat, Clive A. Prestidge, Cristianne J. F. Rijcken, Bruno Sarmento, Ruth B. Schmid, Avi Schroeder, Santhni Subramaniam, Chelsea R. Thorn, Kathryn A. Whitehead, Chun-Xia Zhao, Hélder A. Santos","doi":"10.1038/s41565-024-01754-7","DOIUrl":"10.1038/s41565-024-01754-7","url":null,"abstract":"Nanomedicines have created a paradigm shift in healthcare. Yet fundamental barriers still exist that prevent or delay the clinical translation of nanomedicines. Critical hurdles inhibiting clinical success include poor understanding of nanomedicines’ physicochemical properties, limited exposure in the cell or tissue of interest, poor reproducibility of preclinical outcomes in clinical trials, and biocompatibility concerns. Barriers that delay translation include industrial scale-up or scale-down and good manufacturing practices, funding and navigating the regulatory environment. Here we propose the DELIVER framework comprising the core principles to be realized during preclinical development to promote clinical investigation of nanomedicines. The proposed framework comes with design, experimental, manufacturing, preclinical, clinical, regulatory and business considerations, which we recommend investigators to carefully review during early-stage nanomedicine design and development to mitigate risk and enable timely clinical success. By reducing development time and clinical trial failure, it is envisaged that this framework will help accelerate the clinical translation and maximize the impact of nanomedicines. The authors propose a framework to be followed during preclinical investigation of nanomedicines to increase their translatability potential.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 11","pages":"1597-1611"},"PeriodicalIF":38.1,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An orally administered glucose-responsive polymeric complex for high-efficiency and safe delivery of insulin in mice and pigs 一种口服葡萄糖反应性聚合物复合物,用于在小鼠和猪体内高效安全地输送胰岛素
IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-02 DOI: 10.1038/s41565-024-01764-5
Kangfan Ji, Xiangqian Wei, Anna R. Kahkoska, Juan Zhang, Yang Zhang, Jianchang Xu, Xinwei Wei, Wei Liu, Yanfang Wang, Yuejun Yao, Xuehui Huang, Shaoqian Mei, Yun Liu, Shiqi Wang, Zhengjie Zhao, Ziyi Lu, Jiahuan You, Guangzheng Xu, Youqing Shen, John. B. Buse, Jinqiang Wang, Zhen Gu
Contrary to current insulin formulations, endogenous insulin has direct access to the portal vein, regulating glucose metabolism in the liver with minimal hypoglycaemia. Here we report the synthesis of an amphiphilic diblock copolymer comprising a glucose-responsive positively charged segment and polycarboxybetaine. The mixing of this polymer with insulin facilitates the formation of worm-like micelles, achieving highly efficient absorption by the gastrointestinal tract and the creation of a glucose-responsive reservoir in the liver. Under hyperglycaemic conditions, the polymer triggers a rapid release of insulin, establishing a portal-to-peripheral insulin gradient—similarly to endogenous insulin—for the safe regulation of blood glucose. This insulin formulation exhibits a dose-dependent blood-glucose-regulating effect in a streptozotocin-induced mouse model of type 1 diabetes and controls the blood glucose at normoglycaemia for one day in non-obese diabetic mice. In addition, the formulation demonstrates a blood-glucose-lowering effect for one day in a pig model of type 1 diabetes without observable hypoglycaemia, showing promise for the safe and effective management of type 1 diabetes. Orally administrable and glucose-responsive worm-like micelles have been developed to protect insulin in the gastrointestinal tract, enhance its intestinal absorption, accumulate in the liver and enable efficient and safe blood-glucose management.
与目前的胰岛素制剂相反,内源性胰岛素可直接进入门静脉,调节肝脏中的葡萄糖代谢,同时将低血糖症降至最低。在此,我们报告了一种两亲性二嵌段共聚物的合成过程,该共聚物由葡萄糖响应正电段和聚羧基甜菜碱组成。这种聚合物与胰岛素混合后可形成蠕虫状胶束,从而实现胃肠道的高效吸收,并在肝脏中形成葡萄糖反应库。在高血糖条件下,这种聚合物会引发胰岛素的快速释放,从而建立起从门静脉到外周的胰岛素梯度--类似于内源性胰岛素,从而安全地调节血糖。这种胰岛素制剂在链脲佐菌素诱导的 1 型糖尿病小鼠模型中显示出剂量依赖性血糖调节效果,并能在非肥胖糖尿病小鼠中将血糖控制在正常血糖水平一天。此外,该制剂在 1 型糖尿病猪模型中显示出一天的降血糖效果,且无明显低血糖症状,显示出安全有效地治疗 1 型糖尿病的前景。
{"title":"An orally administered glucose-responsive polymeric complex for high-efficiency and safe delivery of insulin in mice and pigs","authors":"Kangfan Ji, Xiangqian Wei, Anna R. Kahkoska, Juan Zhang, Yang Zhang, Jianchang Xu, Xinwei Wei, Wei Liu, Yanfang Wang, Yuejun Yao, Xuehui Huang, Shaoqian Mei, Yun Liu, Shiqi Wang, Zhengjie Zhao, Ziyi Lu, Jiahuan You, Guangzheng Xu, Youqing Shen, John. B. Buse, Jinqiang Wang, Zhen Gu","doi":"10.1038/s41565-024-01764-5","DOIUrl":"10.1038/s41565-024-01764-5","url":null,"abstract":"Contrary to current insulin formulations, endogenous insulin has direct access to the portal vein, regulating glucose metabolism in the liver with minimal hypoglycaemia. Here we report the synthesis of an amphiphilic diblock copolymer comprising a glucose-responsive positively charged segment and polycarboxybetaine. The mixing of this polymer with insulin facilitates the formation of worm-like micelles, achieving highly efficient absorption by the gastrointestinal tract and the creation of a glucose-responsive reservoir in the liver. Under hyperglycaemic conditions, the polymer triggers a rapid release of insulin, establishing a portal-to-peripheral insulin gradient—similarly to endogenous insulin—for the safe regulation of blood glucose. This insulin formulation exhibits a dose-dependent blood-glucose-regulating effect in a streptozotocin-induced mouse model of type 1 diabetes and controls the blood glucose at normoglycaemia for one day in non-obese diabetic mice. In addition, the formulation demonstrates a blood-glucose-lowering effect for one day in a pig model of type 1 diabetes without observable hypoglycaemia, showing promise for the safe and effective management of type 1 diabetes. Orally administrable and glucose-responsive worm-like micelles have been developed to protect insulin in the gastrointestinal tract, enhance its intestinal absorption, accumulate in the liver and enable efficient and safe blood-glucose management.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 12","pages":"1880-1891"},"PeriodicalIF":38.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revealing the degradation pathways of layered Li-rich oxide cathodes 揭示层状富锂氧化物阴极的降解途径
IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-02 DOI: 10.1038/s41565-024-01773-4
Zhimeng Liu, Yuqiang Zeng, Junyang Tan, Hailong Wang, Yudong Zhu, Xin Geng, Peter Guttmann, Xu Hou, Yang Yang, Yunkai Xu, Peter Cloetens, Dong Zhou, Yinping Wei, Jun Lu, Jie Li, Bilu Liu, Martin Winter, Robert Kostecki, Yuanjing Lin, Xin He
Layered lithium-rich transition metal oxides are promising cathode candidates for high-energy-density lithium batteries due to the redox contributions from transition metal cations and oxygen anions. However, their practical application is hindered by gradual capacity fading and voltage decay. Although oxygen loss and phase transformation are recognized as primary factors, the structural deterioration, chemical rearrangement, kinetic and thermodynamic effects remain unclear. Here we integrate analysis of morphological, structural and oxidation state evolution from individual atoms to secondary particles. By performing nanoscale to microscale characterizations, distinct structural change pathways associated with intraparticle heterogeneous reactions are identified. The high level of oxygen defects formed throughout the particle by slow electrochemical activation triggers progressive phase transformation and the formation of nanovoids. Ultrafast lithium (de)intercalation leads to oxygen-distortion-dominated lattice displacement, transition metal ion dissolution and lithium site variation. These inhomogeneous and irreversible structural changes are responsible for the low initial Coulombic efficiency, and ongoing particle cracking and expansion in the subsequent cycles. This work employs nano- to microscale characterization to identify different structural change pathways associated with non-homogeneous reactions within the particles, and explores differences in the failure mechanisms of lithium-rich transition metal oxide materials at different current densities.
由于过渡金属阳离子和氧阴离子的氧化还原作用,层状富锂过渡金属氧化物有望成为高能量密度锂电池的正极候选材料。然而,它们的实际应用却受到容量逐渐衰减和电压衰减的阻碍。虽然氧损耗和相变被认为是主要因素,但结构退化、化学重排、动力学和热力学效应仍不清楚。在这里,我们综合分析了从单个原子到次级粒子的形态、结构和氧化态演变。通过从纳米尺度到微观尺度的表征,我们确定了与颗粒内异质反应相关的独特结构变化途径。通过缓慢的电化学活化在整个颗粒中形成的高水平氧缺陷引发了渐进的相变并形成了纳米固体。超快的锂(脱)插层导致以氧畸变为主的晶格位移、过渡金属离子溶解和锂位点变化。这些不均匀和不可逆的结构变化是造成初始库仑效率低以及在随后的循环中颗粒不断开裂和膨胀的原因。
{"title":"Revealing the degradation pathways of layered Li-rich oxide cathodes","authors":"Zhimeng Liu, Yuqiang Zeng, Junyang Tan, Hailong Wang, Yudong Zhu, Xin Geng, Peter Guttmann, Xu Hou, Yang Yang, Yunkai Xu, Peter Cloetens, Dong Zhou, Yinping Wei, Jun Lu, Jie Li, Bilu Liu, Martin Winter, Robert Kostecki, Yuanjing Lin, Xin He","doi":"10.1038/s41565-024-01773-4","DOIUrl":"10.1038/s41565-024-01773-4","url":null,"abstract":"Layered lithium-rich transition metal oxides are promising cathode candidates for high-energy-density lithium batteries due to the redox contributions from transition metal cations and oxygen anions. However, their practical application is hindered by gradual capacity fading and voltage decay. Although oxygen loss and phase transformation are recognized as primary factors, the structural deterioration, chemical rearrangement, kinetic and thermodynamic effects remain unclear. Here we integrate analysis of morphological, structural and oxidation state evolution from individual atoms to secondary particles. By performing nanoscale to microscale characterizations, distinct structural change pathways associated with intraparticle heterogeneous reactions are identified. The high level of oxygen defects formed throughout the particle by slow electrochemical activation triggers progressive phase transformation and the formation of nanovoids. Ultrafast lithium (de)intercalation leads to oxygen-distortion-dominated lattice displacement, transition metal ion dissolution and lithium site variation. These inhomogeneous and irreversible structural changes are responsible for the low initial Coulombic efficiency, and ongoing particle cracking and expansion in the subsequent cycles. This work employs nano- to microscale characterization to identify different structural change pathways associated with non-homogeneous reactions within the particles, and explores differences in the failure mechanisms of lithium-rich transition metal oxide materials at different current densities.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 12","pages":"1821-1830"},"PeriodicalIF":38.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlinear Hall effect in an insulator 绝缘体中的非线性霍尔效应
IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-29 DOI: 10.1038/s41565-024-01755-6
Cheng-Ping Zhang, K. T. Law
The third-order nonlinear Hall effect is observed in the quantum Hall states in graphene.
在石墨烯的量子霍尔态中观察到了三阶非线性霍尔效应。
{"title":"Nonlinear Hall effect in an insulator","authors":"Cheng-Ping Zhang, K. T. Law","doi":"10.1038/s41565-024-01755-6","DOIUrl":"10.1038/s41565-024-01755-6","url":null,"abstract":"The third-order nonlinear Hall effect is observed in the quantum Hall states in graphene.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 10","pages":"1432-1433"},"PeriodicalIF":38.1,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142090262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNA nanoswitches pack an anti-cancer punch DNA 纳米开关可抗癌
IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-29 DOI: 10.1038/s41565-024-01749-4
Kun Zhou, Chenxiang Lin
A DNA origami nanodevice presents its hidden death ligand pattern in the acidic tumour microenvironment to kill cancerous cells, opening opportunities for effective and safe cancer therapy.
一种 DNA 折纸纳米装置在酸性肿瘤微环境中呈现出其隐藏的死亡配体模式,从而杀死癌细胞,为有效、安全的癌症治疗提供了机会。
{"title":"DNA nanoswitches pack an anti-cancer punch","authors":"Kun Zhou, Chenxiang Lin","doi":"10.1038/s41565-024-01749-4","DOIUrl":"10.1038/s41565-024-01749-4","url":null,"abstract":"A DNA origami nanodevice presents its hidden death ligand pattern in the acidic tumour microenvironment to kill cancerous cells, opening opportunities for effective and safe cancer therapy.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 12","pages":"1765-1766"},"PeriodicalIF":38.1,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142090276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revisiting hyperbolic materials for deep-subwavelength polaritonics 重新审视用于深亚波长偏振电子学的双曲材料
IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-29 DOI: 10.1038/s41565-024-01750-x
Seokwoo Kim, Yeongtae Jang, Junsuk Rho
Natural hyperbolic materials hybridized with nanostructures provide deep-subwavelength-scale confinement of an electromagnetic field.
与纳米结构杂化的天然双曲线材料可提供深亚波长尺度的电磁场约束。
{"title":"Revisiting hyperbolic materials for deep-subwavelength polaritonics","authors":"Seokwoo Kim, Yeongtae Jang, Junsuk Rho","doi":"10.1038/s41565-024-01750-x","DOIUrl":"10.1038/s41565-024-01750-x","url":null,"abstract":"Natural hyperbolic materials hybridized with nanostructures provide deep-subwavelength-scale confinement of an electromagnetic field.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 10","pages":"1434-1435"},"PeriodicalIF":38.1,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142090261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction of topological quantum magnets from atomic spins on surfaces 利用表面原子自旋构建拓扑量子磁体
IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-29 DOI: 10.1038/s41565-024-01775-2
Hao Wang, Peng Fan, Jing Chen, Lili Jiang, Hong-Jun Gao, Jose L. Lado, Kai Yang
Artificial quantum systems have emerged as platforms to realize topological matter in a well-controlled manner. So far, experiments have mostly explored non-interacting topological states, and the realization of many-body topological phases in solid-state platforms with atomic resolution has remained challenging. Here we construct topological quantum Heisenberg spin lattices by assembling spin chains and two-dimensional spin arrays from spin-1/2 Ti atoms on an insulating MgO film in a scanning tunnelling microscope. We engineer both topological and trivial phases of the quantum spin model and thereby realize first- and second-order topological quantum magnets. We probe the many-body excitations of the quantum magnets by single-atom electron spin resonance with an energy resolution better than 100 neV. Making use of the atomically localized magnetic field of the scanning tunnelling microscope tip, we visualize various many-body topological bound modes including topological edge states, topological defects and higher-order corner modes. Our results provide a bottom-up approach for the simulation of exotic quantum many-body phases of interacting spins. Atom manipulation in a scanning tunnelling microscope allows the fabrication of artificial topological quantum magnets. Single-atom electron spin resonance experiments probe the many-body topological modes of the quantum magnets and provide a visualization.
人工量子系统已成为以良好控制方式实现拓扑物质的平台。迄今为止,实验主要探索的是非相互作用拓扑态,而在原子分辨率的固态平台上实现多体拓扑相仍具有挑战性。在这里,我们通过扫描隧道显微镜,在绝缘氧化镁薄膜上将自旋 1/2 的钛原子组装成自旋链和二维自旋阵列,从而构建了拓扑量子海森堡自旋晶格。我们设计了量子自旋模型的拓扑和琐相,从而实现了一阶和二阶拓扑量子磁体。我们通过单原子电子自旋共振探测量子磁体的多体激发,能量分辨率优于 100 neV。利用扫描隧道显微镜尖端的原子局部磁场,我们观察到了各种多体拓扑束缚模式,包括拓扑边缘态、拓扑缺陷和高阶角模式。我们的研究结果为模拟相互作用自旋的奇异量子多体相提供了一种自下而上的方法。
{"title":"Construction of topological quantum magnets from atomic spins on surfaces","authors":"Hao Wang, Peng Fan, Jing Chen, Lili Jiang, Hong-Jun Gao, Jose L. Lado, Kai Yang","doi":"10.1038/s41565-024-01775-2","DOIUrl":"10.1038/s41565-024-01775-2","url":null,"abstract":"Artificial quantum systems have emerged as platforms to realize topological matter in a well-controlled manner. So far, experiments have mostly explored non-interacting topological states, and the realization of many-body topological phases in solid-state platforms with atomic resolution has remained challenging. Here we construct topological quantum Heisenberg spin lattices by assembling spin chains and two-dimensional spin arrays from spin-1/2 Ti atoms on an insulating MgO film in a scanning tunnelling microscope. We engineer both topological and trivial phases of the quantum spin model and thereby realize first- and second-order topological quantum magnets. We probe the many-body excitations of the quantum magnets by single-atom electron spin resonance with an energy resolution better than 100 neV. Making use of the atomically localized magnetic field of the scanning tunnelling microscope tip, we visualize various many-body topological bound modes including topological edge states, topological defects and higher-order corner modes. Our results provide a bottom-up approach for the simulation of exotic quantum many-body phases of interacting spins. Atom manipulation in a scanning tunnelling microscope allows the fabrication of artificial topological quantum magnets. Single-atom electron spin resonance experiments probe the many-body topological modes of the quantum magnets and provide a visualization.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 12","pages":"1782-1788"},"PeriodicalIF":38.1,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142090264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature nanotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1