Socioeconomic status (SES) impacts health and life-course outcomes. This genome-wide association study (GWAS) of sociologically informed occupational status measures (ISEI, SIOPS, CAMSIS) using the UK Biobank (N = 273,157) identified 106 independent single-nucleotide polymorphisms of which 8 are novel to the study of SES. Genetic correlations with educational attainment (rg = 0.96–0.97) and income (rg = 0.81–0.91) point to a common genetic factor for SES. We observed a 54–57% reduction in within-family predictions compared with population-based predictions, attributed to indirect parental effects (22–27% attenuation) and assortative mating (21–27%) following our calculations. Using polygenic scores from population predictions of 5–10% (incremental R2 = 0.023–0.097 across different approaches and occupational status measures), we showed that (1) cognitive and non-cognitive traits, including scholastic and occupational motivation and aspiration, link polygenic scores to occupational status and (2) 62% of the intergenerational transmission of occupational status cannot be ascribed to genetic inheritance of common variants but other factors such as family environments. Finally, links between genetics, occupation, career trajectory and health are interrelated with parental occupational status.
Disruptions, such as closures of businesses during pandemics, not only affect businesses and amenities directly but also influence how people move, spreading the impact to other businesses and increasing the overall economic shock. However, it is unclear how much businesses depend on each other during disruptions. Leveraging human mobility data and same-day visits in five US cities, we quantify dependencies between points of interest encompassing businesses, stores and amenities. We find that dependency networks computed from human mobility exhibit significantly higher rates of long-distance connections and biases towards specific pairs of point-of-interest categories. We show that using behaviour-based dependency relationships improves the predictability of business resilience during shocks by around 40% compared with distance-based models, and that neglecting behaviour-based dependencies can lead to underestimation of the spatial cascades of disruptions. Our findings underscore the importance of measuring complex relationships in patterns of human mobility to foster urban economic resilience to shocks.
We experience surprise when reality conflicts with our expectations. When we encounter such expectation violations in psychological tasks and daily life, are we experiencing completely different forms of surprise? Or is surprise a fundamental psychological process with shared neural bases across contexts? To address this question, we identified a brain network model, the surprise edge-fluctuation-based predictive model (EFPM), whose regional interaction dynamics measured with functional magnetic resonance imaging (fMRI) predicted surprise in an adaptive learning task. The same model generalized to predict surprise as a separate group of individuals watched suspenseful basketball games and as a third group watched videos violating psychological expectations. The surprise EFPM also uniquely predicts surprise, capturing expectation violations better than models built from other brain networks, fMRI measures and behavioural metrics. These results suggest that shared neurocognitive processes underlie surprise across contexts and that distinct experiences can be translated into the common space of brain dynamics.
Over the past decade, multidisciplinary research has seen the Amazon Basin go from a context perceived as unfavourable for food production and large-scale human societies to one of ‘garden cities’, domestication, and anthropogenically influenced forests and soils. Nevertheless, direct insights into human interactions with particular crops and especially animals remain scarce across this vast area. Here we present new stable carbon and nitrogen isotope data from 86 human and 68 animal remains dating between ce ~700 and 1400 from the Llanos de Mojos, Bolivia. We show evidence of human reliance on maize agriculture in the earliest phases before a reduction in the dietary importance of this crop between ce 1100 and 1400. We also provide evidence that muscovy ducks (Cairina moschata), the only known domesticated vertebrate in the South American lowlands, had substantial maize intake suggesting intentional feeding, or even their domestication, from as early as ce 800. Our data provide insights into human interactions with Amazonian ecosystems, including direct evidence for human management of animals in pre-colonial contexts, further enriching our understanding of human history in what was once considered a ‘counterfeit paradise’.