首页 > 最新文献

Nature Human Behaviour最新文献

英文 中文
Hybrid neural-cognitive models reveal how memory shapes human reward learning. 混合神经认知模型揭示了记忆如何塑造人类的奖励学习。
IF 15.9 1区 心理学 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2026-02-05 DOI: 10.1038/s41562-025-02324-0
Maria K Eckstein, Christopher Summerfield, Nathaniel D Daw, Kevin J Miller

A long-standing challenge for psychology and neuroscience is to understand the transformations by which past experiences shape future behaviour. Reward-guided learning is typically modelled using simple reinforcement learning (RL) algorithms. In RL, a handful of incrementally updated internal variables both summarize past rewards and drive future choice. Here we describe work that questions the assumptions of many RL models. We adopt a hybrid modelling approach that integrates artificial neural networks into interpretable cognitive architectures, estimating a maximally general form for each algorithmic component and systematically evaluating its necessity and sufficiency. Applying this method to a large dataset of human reward-learning behaviour, we show that successful models require independent and flexible memory variables that can track rich representations of the past. Using a modelling approach that combines predictive accuracy and interpretability, these results call into question an entire class of popular RL models based on incremental updating of scalar reward predictions.

心理学和神经科学面临的一个长期挑战是理解过去的经历如何影响未来的行为。奖励引导学习通常使用简单的强化学习(RL)算法建模。在强化学习中,一些增量更新的内部变量既总结了过去的奖励,也推动了未来的选择。在这里,我们描述了质疑许多强化学习模型假设的工作。我们采用混合建模方法,将人工神经网络集成到可解释的认知架构中,估计每个算法组件的最大一般形式,并系统地评估其必要性和充分性。将这种方法应用于人类奖励学习行为的大型数据集,我们表明成功的模型需要独立和灵活的记忆变量,这些变量可以跟踪过去的丰富表征。使用结合预测准确性和可解释性的建模方法,这些结果对基于增量更新标量奖励预测的整个流行强化学习模型提出了质疑。
{"title":"Hybrid neural-cognitive models reveal how memory shapes human reward learning.","authors":"Maria K Eckstein, Christopher Summerfield, Nathaniel D Daw, Kevin J Miller","doi":"10.1038/s41562-025-02324-0","DOIUrl":"https://doi.org/10.1038/s41562-025-02324-0","url":null,"abstract":"<p><p>A long-standing challenge for psychology and neuroscience is to understand the transformations by which past experiences shape future behaviour. Reward-guided learning is typically modelled using simple reinforcement learning (RL) algorithms. In RL, a handful of incrementally updated internal variables both summarize past rewards and drive future choice. Here we describe work that questions the assumptions of many RL models. We adopt a hybrid modelling approach that integrates artificial neural networks into interpretable cognitive architectures, estimating a maximally general form for each algorithmic component and systematically evaluating its necessity and sufficiency. Applying this method to a large dataset of human reward-learning behaviour, we show that successful models require independent and flexible memory variables that can track rich representations of the past. Using a modelling approach that combines predictive accuracy and interpretability, these results call into question an entire class of popular RL models based on incremental updating of scalar reward predictions.</p>","PeriodicalId":19074,"journal":{"name":"Nature Human Behaviour","volume":" ","pages":""},"PeriodicalIF":15.9,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146125809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How personalized disaster warnings can save lives. 个性化灾害预警如何拯救生命。
IF 15.9 1区 心理学 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2026-02-05 DOI: 10.1038/s41562-026-02405-8
Ilias G Pechlivanidis, Spyros Afentoulidis, Giuliano Di Baldassarre, Florian Pappenberger, Peter Salamon, Stefan Uhlenbrook
{"title":"How personalized disaster warnings can save lives.","authors":"Ilias G Pechlivanidis, Spyros Afentoulidis, Giuliano Di Baldassarre, Florian Pappenberger, Peter Salamon, Stefan Uhlenbrook","doi":"10.1038/s41562-026-02405-8","DOIUrl":"https://doi.org/10.1038/s41562-026-02405-8","url":null,"abstract":"","PeriodicalId":19074,"journal":{"name":"Nature Human Behaviour","volume":" ","pages":""},"PeriodicalIF":15.9,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146125785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generative AI predicts personality traits on the basis of open-ended narratives. 生成式AI在开放式叙事的基础上预测个性特征。
IF 15.9 1区 心理学 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2026-02-02 DOI: 10.1038/s41562-025-02397-x
{"title":"Generative AI predicts personality traits on the basis of open-ended narratives.","authors":"","doi":"10.1038/s41562-025-02397-x","DOIUrl":"https://doi.org/10.1038/s41562-025-02397-x","url":null,"abstract":"","PeriodicalId":19074,"journal":{"name":"Nature Human Behaviour","volume":" ","pages":""},"PeriodicalIF":15.9,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146106338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The tension between big team science and colonial power dynamics. 大团队科学和殖民权力动力学之间的紧张关系。
IF 15.9 1区 心理学 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2026-02-02 DOI: 10.1038/s41562-026-02404-9
Fanli Jia
{"title":"The tension between big team science and colonial power dynamics.","authors":"Fanli Jia","doi":"10.1038/s41562-026-02404-9","DOIUrl":"https://doi.org/10.1038/s41562-026-02404-9","url":null,"abstract":"","PeriodicalId":19074,"journal":{"name":"Nature Human Behaviour","volume":" ","pages":""},"PeriodicalIF":15.9,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146106378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Why single-item measures of wellbeing are best. 为什么衡量幸福的单项指标是最好的?
IF 15.9 1区 心理学 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2026-02-02 DOI: 10.1038/s41562-026-02401-y
John F Helliwell, Richard Layard, Jeffrey D Sachs, Jan-Emmanuel De Neve, Lara B Aknin, Shun Wang
{"title":"Why single-item measures of wellbeing are best.","authors":"John F Helliwell, Richard Layard, Jeffrey D Sachs, Jan-Emmanuel De Neve, Lara B Aknin, Shun Wang","doi":"10.1038/s41562-026-02401-y","DOIUrl":"https://doi.org/10.1038/s41562-026-02401-y","url":null,"abstract":"","PeriodicalId":19074,"journal":{"name":"Nature Human Behaviour","volume":" ","pages":""},"PeriodicalIF":15.9,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146106387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Political action is now crucial for US scientists. 政治行动现在对美国科学家来说至关重要。
IF 15.9 1区 心理学 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2026-02-02 DOI: 10.1038/s41562-026-02406-7
Tatiane Russo-Tait, Summer Blanco, Eduardo Bonilla-Silva
{"title":"Political action is now crucial for US scientists.","authors":"Tatiane Russo-Tait, Summer Blanco, Eduardo Bonilla-Silva","doi":"10.1038/s41562-026-02406-7","DOIUrl":"https://doi.org/10.1038/s41562-026-02406-7","url":null,"abstract":"","PeriodicalId":19074,"journal":{"name":"Nature Human Behaviour","volume":" ","pages":""},"PeriodicalIF":15.9,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146106380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Advancing the psychology of social class with large-scale replications in four countries. 作者更正:通过在四个国家的大规模重复,推进社会阶层心理学。
IF 15.9 1区 心理学 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2026-02-02 DOI: 10.1038/s41562-026-02419-2
Anatolia Batruch, Nicolas Sommet, Frédérique Autin
{"title":"Author Correction: Advancing the psychology of social class with large-scale replications in four countries.","authors":"Anatolia Batruch, Nicolas Sommet, Frédérique Autin","doi":"10.1038/s41562-026-02419-2","DOIUrl":"https://doi.org/10.1038/s41562-026-02419-2","url":null,"abstract":"","PeriodicalId":19074,"journal":{"name":"Nature Human Behaviour","volume":" ","pages":""},"PeriodicalIF":15.9,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146106355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing personality using zero-shot generative AI scoring of brief open-ended text. 使用零概率生成AI对简短的开放式文本进行评分来评估个性。
IF 29.9 1区 心理学 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2026-01-30 DOI: 10.1038/s41562-025-02389-x
Aidan G C Wright,Whitney R Ringwald,Colin E Vize,Johannes C Eichstaedt,Mike Angstadt,Aman Taxali,Chandra Sripada
Contemporary personality assessment relies heavily on psychometric scales, which offer efficiency but risk oversimplifying the rich and contextual nature of personality. Recognizing these limitations, this study explores the use of commercially available generative large language models (LLMs), such as ChatGPT, Claude and so on, to assess personality traits from open-ended qualitative narratives. Across two distinct samples and methodologies (spontaneous streams of thought and daily video diaries), we used seven commercial, generative LLMs to score Big-Five personality traits, achieving convergence with self-report measures comparable to or exceeding established benchmarks (for example, self-other agreement, ecological momentary assessment, and bespoke machine learning models). Although results differed across different LLMs, we found that using the average LLM score across models provided the strongest agreement with self-report. Further, LLM-generated trait scores also demonstrated predictive validity regarding daily behaviours and mental health outcomes. This LLM-based approach achieved quantitative rigour based on qualitative data and is easily accessible without specialized training. Importantly, our findings also reaffirm that personality is expressed ubiquitously, in that it is carried in the stream of our thoughts and is woven into the fabric of our daily lives. These results encourage broader adoption of generative LLMs for psychological assessment and-given the new generation of tools-stress the value of idiographic narratives as reliable sources of psychological insight.
当代人格评估严重依赖于心理测量量表,它提供了效率,但有可能过度简化人格的丰富性和情境性。认识到这些局限性,本研究探索了商业上可用的生成式大型语言模型(llm)的使用,如ChatGPT、Claude等,从开放式定性叙述中评估人格特征。在两个不同的样本和方法(自发的思想流和每日视频日记)中,我们使用了七个商业的、生成的法学硕士来对大五人格特征进行评分,实现了与自我报告测量相媲美或超过既定基准的收敛(例如,自我-他人协议、生态瞬间评估和定制的机器学习模型)。尽管不同法学硕士的结果不同,但我们发现,使用不同模型的平均法学硕士分数与自我报告的一致性最强。此外,法学硕士生成的特质得分也证明了对日常行为和心理健康结果的预测有效性。这种基于法学硕士的方法实现了基于定性数据的定量严密性,并且无需专门培训即可轻松访问。重要的是,我们的研究结果还重申,个性无处不在,它伴随着我们的思想流,编织在我们的日常生活中。这些结果鼓励更广泛地采用生成式法学硕士进行心理评估,并给予新一代工具,强调具体叙事作为心理洞察力可靠来源的价值。
{"title":"Assessing personality using zero-shot generative AI scoring of brief open-ended text.","authors":"Aidan G C Wright,Whitney R Ringwald,Colin E Vize,Johannes C Eichstaedt,Mike Angstadt,Aman Taxali,Chandra Sripada","doi":"10.1038/s41562-025-02389-x","DOIUrl":"https://doi.org/10.1038/s41562-025-02389-x","url":null,"abstract":"Contemporary personality assessment relies heavily on psychometric scales, which offer efficiency but risk oversimplifying the rich and contextual nature of personality. Recognizing these limitations, this study explores the use of commercially available generative large language models (LLMs), such as ChatGPT, Claude and so on, to assess personality traits from open-ended qualitative narratives. Across two distinct samples and methodologies (spontaneous streams of thought and daily video diaries), we used seven commercial, generative LLMs to score Big-Five personality traits, achieving convergence with self-report measures comparable to or exceeding established benchmarks (for example, self-other agreement, ecological momentary assessment, and bespoke machine learning models). Although results differed across different LLMs, we found that using the average LLM score across models provided the strongest agreement with self-report. Further, LLM-generated trait scores also demonstrated predictive validity regarding daily behaviours and mental health outcomes. This LLM-based approach achieved quantitative rigour based on qualitative data and is easily accessible without specialized training. Importantly, our findings also reaffirm that personality is expressed ubiquitously, in that it is carried in the stream of our thoughts and is woven into the fabric of our daily lives. These results encourage broader adoption of generative LLMs for psychological assessment and-given the new generation of tools-stress the value of idiographic narratives as reliable sources of psychological insight.","PeriodicalId":19074,"journal":{"name":"Nature Human Behaviour","volume":"93 1","pages":""},"PeriodicalIF":29.9,"publicationDate":"2026-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146088911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Climate change adaptation must consider older people. 适应气候变化必须考虑到老年人。
IF 29.9 1区 心理学 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2026-01-29 DOI: 10.1038/s41562-026-02402-x
Liming Yao,Shiqi Tan,Chengwei Lv,Nan Wang,Yoshikuni Yoshida,Yin Long
{"title":"Climate change adaptation must consider older people.","authors":"Liming Yao,Shiqi Tan,Chengwei Lv,Nan Wang,Yoshikuni Yoshida,Yin Long","doi":"10.1038/s41562-026-02402-x","DOIUrl":"https://doi.org/10.1038/s41562-026-02402-x","url":null,"abstract":"","PeriodicalId":19074,"journal":{"name":"Nature Human Behaviour","volume":"110 1","pages":""},"PeriodicalIF":29.9,"publicationDate":"2026-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146073125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convergent transcriptomic and connectomic controllers of information integration and its anaesthetic breakdown across mammalian brains 哺乳动物大脑信息整合的趋同转录组学和连接组学控制者及其麻醉崩溃
IF 29.9 1区 心理学 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2026-01-28 DOI: 10.1038/s41562-025-02381-5
Andrea I. Luppi, Lynn Uhrig, Jordy Tasserie, Pedro A. M. Mediano, Fernando E. Rosas, S. Parker Singleton, Daniel Gutierrez-Barragan, Silvia Gini, Pablo Castro, Camilo M. Signorelli, Daniel Golkowski, Andreas Ranft, Rüdiger Ilg, Denis Jordan, Kanako Muta, Junichi Hata, Hideyuki Okano, Zhen-Qi Liu, Yohan Yee, Alain Destexhe, Rodrigo Cofre, David K. Menon, Alessandro Gozzi, Bechir Jarraya, Emmanuel A. Stamatakis
The mammalian brain orchestrates the processing and integration of information to guide behaviour. Here, to characterize mammalian information-processing architecture, we combine functional neuroimaging and anaesthesia in humans, macaques, marmosets and mice. We show that breakdown of information integration is a convergent effect of diverse anaesthetics across mammalian species. As the system disintegrates, brain dynamics become more difficult to control. Both effects are reversed upon re-awakening induced by thalamic deep-brain stimulation in the macaque. Regional breakdown of integrated information coincides with the species-specific spatial topography of PVALB/Pvalb gene expression. To provide mechanistic insight beyond correlation, we develop computational models for humans, macaques and mice that integrate species-specific connectivity and transcriptomic gradients, demonstrating their respective roles for controlling brain dynamics and information integration. We reveal evolutionarily conserved controllers of information integration in the mammalian brain.
哺乳动物的大脑协调信息的处理和整合,以指导行为。在这里,为了描述哺乳动物的信息处理结构,我们结合了人类、猕猴、狨猴和小鼠的功能神经成像和麻醉。我们表明,信息整合的崩溃是多种麻醉在哺乳动物物种中的趋同效应。随着系统的瓦解,大脑动力学变得更加难以控制。在猕猴的丘脑深部脑刺激诱导的再觉醒中,这两种效果都被逆转了。综合信息的区域分解与PVALB/ PVALB基因表达的物种特异性空间地形相吻合。为了提供超越相关性的机制洞察,我们开发了人类、猕猴和小鼠的计算模型,整合了物种特异性连接和转录组梯度,展示了它们在控制大脑动力学和信息整合方面的各自作用。我们揭示了哺乳动物大脑中信息整合的进化保守控制器。
{"title":"Convergent transcriptomic and connectomic controllers of information integration and its anaesthetic breakdown across mammalian brains","authors":"Andrea I. Luppi, Lynn Uhrig, Jordy Tasserie, Pedro A. M. Mediano, Fernando E. Rosas, S. Parker Singleton, Daniel Gutierrez-Barragan, Silvia Gini, Pablo Castro, Camilo M. Signorelli, Daniel Golkowski, Andreas Ranft, Rüdiger Ilg, Denis Jordan, Kanako Muta, Junichi Hata, Hideyuki Okano, Zhen-Qi Liu, Yohan Yee, Alain Destexhe, Rodrigo Cofre, David K. Menon, Alessandro Gozzi, Bechir Jarraya, Emmanuel A. Stamatakis","doi":"10.1038/s41562-025-02381-5","DOIUrl":"https://doi.org/10.1038/s41562-025-02381-5","url":null,"abstract":"The mammalian brain orchestrates the processing and integration of information to guide behaviour. Here, to characterize mammalian information-processing architecture, we combine functional neuroimaging and anaesthesia in humans, macaques, marmosets and mice. We show that breakdown of information integration is a convergent effect of diverse anaesthetics across mammalian species. As the system disintegrates, brain dynamics become more difficult to control. Both effects are reversed upon re-awakening induced by thalamic deep-brain stimulation in the macaque. Regional breakdown of integrated information coincides with the species-specific spatial topography of PVALB/Pvalb gene expression. To provide mechanistic insight beyond correlation, we develop computational models for humans, macaques and mice that integrate species-specific connectivity and transcriptomic gradients, demonstrating their respective roles for controlling brain dynamics and information integration. We reveal evolutionarily conserved controllers of information integration in the mammalian brain.","PeriodicalId":19074,"journal":{"name":"Nature Human Behaviour","volume":"15 1","pages":""},"PeriodicalIF":29.9,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146057205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Human Behaviour
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1