首页 > 最新文献

npj Computational Materials最新文献

英文 中文
AI-assisted rapid crystal structure generation towards a target local environment 人工智能辅助快速晶体结构生成的目标局部环境
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-06 DOI: 10.1038/s41524-025-01931-9
Osman Goni Ridwan, Sylvain Pitié, Monish Soundar Raj, Dong Dai, Gilles Frapper, Hongfei Xue, Qiang Zhu
In material design, traditional crystal structure prediction approaches are expensive as they require extensive structural sampling through expensive energy minimization methods. Emerging artificial intelligence (AI) generative models have shown great promise in rapidly generating realistic crystals, but they typically handle only a few tens of atoms per unit cell. To overcome this limitation, we introduce a symmetry-informed approach, the Local Environment Geometry-Oriented Crystal Generator (LEGO-xtal). Our method generates initial structures using AI models trained on an augmented dataset, and then optimizes them using structure descriptors rather than energy-based optimization. We demonstrate its effectiveness by expanding from 25 known low-energy sp2 carbon allotropes to over 1700, all within 0.5 eV/atom of the ground-state energy of graphite. This framework offers a generalizable strategy for the targeted design of materials with modular building blocks, such as metal-organic frameworks and battery materials.
在材料设计中,传统的晶体结构预测方法是昂贵的,因为它们需要通过昂贵的能量最小化方法进行大量的结构采样。新兴的人工智能(AI)生成模型在快速生成现实晶体方面显示出巨大的希望,但它们通常每个单元只能处理几十个原子。为了克服这一限制,我们引入了一种对称信息方法,即局部环境几何定向晶体发生器(LEGO-xtal)。我们的方法使用在增强数据集上训练的人工智能模型生成初始结构,然后使用结构描述符而不是基于能量的优化来优化它们。我们证明了它的有效性,从25个已知的低能sp2碳同素异形体扩展到1700多个,所有这些都在石墨基态能量的0.5 eV/原子内。该框架为具有模块化构建块的材料的目标设计提供了一种通用策略,例如金属有机框架和电池材料。
{"title":"AI-assisted rapid crystal structure generation towards a target local environment","authors":"Osman Goni Ridwan, Sylvain Pitié, Monish Soundar Raj, Dong Dai, Gilles Frapper, Hongfei Xue, Qiang Zhu","doi":"10.1038/s41524-025-01931-9","DOIUrl":"https://doi.org/10.1038/s41524-025-01931-9","url":null,"abstract":"In material design, traditional crystal structure prediction approaches are expensive as they require extensive structural sampling through expensive energy minimization methods. Emerging artificial intelligence (AI) generative models have shown great promise in rapidly generating realistic crystals, but they typically handle only a few tens of atoms per unit cell. To overcome this limitation, we introduce a symmetry-informed approach, the Local Environment Geometry-Oriented Crystal Generator (LEGO-xtal). Our method generates initial structures using AI models trained on an augmented dataset, and then optimizes them using structure descriptors rather than energy-based optimization. We demonstrate its effectiveness by expanding from 25 known low-energy sp2 carbon allotropes to over 1700, all within 0.5 eV/atom of the ground-state energy of graphite. This framework offers a generalizable strategy for the targeted design of materials with modular building blocks, such as metal-organic frameworks and battery materials.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"18 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145903745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Micromagnetics of conical-helix textures in thin films with different kinds of Dzyaloshinskii-Moriya interactions 具有不同Dzyaloshinskii-Moriya相互作用的薄膜中锥形-螺旋织构的微磁学
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-05 DOI: 10.1038/s41524-025-01926-6
M. Cepeda-Arancibia, F. Brevis, S. J. R. Holt, D. Cortés-Ortuño, H. Fangohr, P. Landeros
Chiral spin textures in ferromagnetic materials with Dzyaloshinskii-Moriya interactions (DMIs) have attracted significant interest in recent years owing to their potential applications in nanodevices. This work focuses on describing stable conical-helix configurations hosted in ultrathin films with DMI and perpendicular anisotropy. These states are studied for different kinds of DMIs, including symmetry classes <jats:inline-formula> <jats:alternatives> <jats:tex-math>$${mathcal{T}}$$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>T</mml:mi> </mml:math> </jats:alternatives> </jats:inline-formula> , <jats:inline-formula> <jats:alternatives> <jats:tex-math>$${{mathcal{C}}}_{nv}$$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> <mml:mi>v</mml:mi> </mml:mrow> </mml:msub> </mml:math> </jats:alternatives> </jats:inline-formula> , isotropic and anisotropic <jats:inline-formula> <jats:alternatives> <jats:tex-math>$${{mathcal{D}}}_{2d}$$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>D</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>d</mml:mi> </mml:mrow> </mml:msub> </mml:math> </jats:alternatives> </jats:inline-formula> , <jats:inline-formula> <jats:alternatives> <jats:tex-math>$${{mathcal{D}}}_{n}$$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>D</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> </mml:math> </jats:alternatives> </jats:inline-formula> , <jats:inline-formula> <jats:alternatives> <jats:tex-math>$${{mathcal{C}}}_{n}$$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> </mml:math> </jats:alternatives> </jats:inline-formula> , and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$${{mathcal{S}}}_{4}$$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>S</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:math> </jats:alternatives> </jats:inline-formula> . A parameterised analytical model of these configurations is proposed, enabling the determination of optimal parameters characterising the magnetic texture, such as the pitch vector or nucleation field. To substantiate the results, micromagnetic simulations are developed for comparison with the theoretical solutions. Numerical solutions are optimised by implementing finite-difference codes that use next-nearest neighbours and explicit Robin boundary conditions stemming from symmetric exchange and DMI. It is shown that these numerical enhancements decrease anisotropic effects in helical solutions. This study establishes a method to analyse conical-helix textures in thin-film systems with
近年来,具有Dzyaloshinskii-Moriya相互作用的铁磁材料的手性自旋织构由于其在纳米器件中的潜在应用而引起了人们的极大兴趣。这项工作的重点是描述具有DMI和垂直各向异性的超薄膜中稳定的锥形螺旋结构。这些状态研究了不同类型的dmi,包括对称类$${mathcal{T}}$$ T, $${{mathcal{C}}}_{nv}$$ C n v,各向同性和各向异性$${{mathcal{D}}}_{2d}$$ d2 D, $${{mathcal{D}}}_{n}$$ D n, $${{mathcal{C}}}_{n}$$ C n和$${{mathcal{S}}}_{4}$$ s4。提出了这些构型的参数化分析模型,从而确定表征磁性织构的最佳参数,如节距矢量或成核场。为了证实结果,进行了微磁模拟,并与理论解进行了比较。数值解决方案是通过实现有限差分代码,使用下近邻和明确的罗宾边界条件源于对称交换和DMI优化。结果表明,这些数值增强降低了螺旋解的各向异性效应。本研究建立了一种分析具有任意DMI的薄膜系统中的锥形螺旋织构的方法,使用本文开发的开放获取代码可以以更高的精度模拟。
{"title":"Micromagnetics of conical-helix textures in thin films with different kinds of Dzyaloshinskii-Moriya interactions","authors":"M. Cepeda-Arancibia, F. Brevis, S. J. R. Holt, D. Cortés-Ortuño, H. Fangohr, P. Landeros","doi":"10.1038/s41524-025-01926-6","DOIUrl":"https://doi.org/10.1038/s41524-025-01926-6","url":null,"abstract":"Chiral spin textures in ferromagnetic materials with Dzyaloshinskii-Moriya interactions (DMIs) have attracted significant interest in recent years owing to their potential applications in nanodevices. This work focuses on describing stable conical-helix configurations hosted in ultrathin films with DMI and perpendicular anisotropy. These states are studied for different kinds of DMIs, including symmetry classes &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:tex-math&gt;$${mathcal{T}}$$&lt;/jats:tex-math&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mi&gt;T&lt;/mml:mi&gt; &lt;/mml:math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; , &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:tex-math&gt;$${{mathcal{C}}}_{nv}$$&lt;/jats:tex-math&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:msub&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;C&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;mml:mi&gt;v&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;/mml:msub&gt; &lt;/mml:math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; , isotropic and anisotropic &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:tex-math&gt;$${{mathcal{D}}}_{2d}$$&lt;/jats:tex-math&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:msub&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;D&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mrow&gt; &lt;mml:mn&gt;2&lt;/mml:mn&gt; &lt;mml:mi&gt;d&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;/mml:msub&gt; &lt;/mml:math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; , &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:tex-math&gt;$${{mathcal{D}}}_{n}$$&lt;/jats:tex-math&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:msub&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;D&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;/mml:msub&gt; &lt;/mml:math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; , &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:tex-math&gt;$${{mathcal{C}}}_{n}$$&lt;/jats:tex-math&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:msub&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;C&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;/mml:msub&gt; &lt;/mml:math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; , and &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:tex-math&gt;$${{mathcal{S}}}_{4}$$&lt;/jats:tex-math&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:msub&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;S&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mrow&gt; &lt;mml:mn&gt;4&lt;/mml:mn&gt; &lt;/mml:mrow&gt; &lt;/mml:msub&gt; &lt;/mml:math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; . A parameterised analytical model of these configurations is proposed, enabling the determination of optimal parameters characterising the magnetic texture, such as the pitch vector or nucleation field. To substantiate the results, micromagnetic simulations are developed for comparison with the theoretical solutions. Numerical solutions are optimised by implementing finite-difference codes that use next-nearest neighbours and explicit Robin boundary conditions stemming from symmetric exchange and DMI. It is shown that these numerical enhancements decrease anisotropic effects in helical solutions. This study establishes a method to analyse conical-helix textures in thin-film systems with ","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"27 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145903108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LAMBench: a benchmark for large atomistic models LAMBench:大型原子模型的基准测试
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-03 DOI: 10.1038/s41524-025-01929-3
Anyang Peng, Chun Cai, Mingyu Guo, Duo Zhang, Chengqian Zhang, Wanrun Jiang, Yinan Wang, Antoine Loew, Chengkun Wu, Weinan E, Linfeng Zhang, Han Wang
Large Atomistic Models (LAMs) have undergone remarkable progress recently, emerging as universal or fundamental representations of the potential energy surface defined by the first-principles calculations of atomistic systems. However, our understanding of the extent to which these models achieve true universality, as well as their comparative performance across different models, remains limited. This gap is largely due to the lack of comprehensive benchmarks capable of evaluating the effectiveness of LAMs as approximations to the universal potential energy surface. In this study, we introduce LAMBench, a benchmarking system designed to evaluate LAMs in terms of their generalizability, adaptability, and applicability. These attributes are crucial for deploying LAMs as ready-to-use tools across a diverse array of scientific discovery contexts. We benchmark ten state-of-the-art LAMs released prior to August 1, 2025, using LAMBench. Our findings reveal a significant gap between the current LAMs and the ideal universal potential energy surface. They also highlight the need for incorporating cross-domain training data, supporting multi-fidelity modeling, and ensuring the models’ conservativeness and differentiability. As a dynamic and extensible platform, LAMBench is intended to continuously evolve, thereby facilitating the development of robust and generalizable LAMs capable of significantly advancing scientific research. The LAMBench code is open-sourced at https://github.com/deepmodeling/lambench, and an interactive leaderboard is available at https://www.aissquare.com/openlam?tab=Benchmark.
大原子模型(Large Atomistic Models, lam)近年来取得了显著的进展,成为由原子系统第一性原理计算定义的势能面的普遍或基本表示。然而,我们对这些模型在多大程度上实现真正的普适性,以及它们在不同模型之间的比较性能的理解仍然有限。这一差距很大程度上是由于缺乏全面的基准,能够评估lam作为通用势能面近似值的有效性。在本研究中,我们介绍了LAMBench,这是一个基准测试系统,旨在评估lam的通用性、适应性和适用性。这些属性对于在各种科学发现环境中部署lam作为现成的工具至关重要。我们使用LAMBench对2025年8月1日之前发布的10个最先进的lam进行基准测试。我们的研究结果表明,目前的lam与理想的通用势能面之间存在显著的差距。他们还强调需要整合跨领域的训练数据,支持多保真度建模,并确保模型的保守性和可微分性。作为一个动态和可扩展的平台,LAMBench旨在不断发展,从而促进能够显著推进科学研究的鲁棒性和通用性LAMBench的发展。LAMBench代码在https://github.com/deepmodeling/lambench上开源,互动排行榜在https://www.aissquare.com/openlam?tab=Benchmark上可用。
{"title":"LAMBench: a benchmark for large atomistic models","authors":"Anyang Peng, Chun Cai, Mingyu Guo, Duo Zhang, Chengqian Zhang, Wanrun Jiang, Yinan Wang, Antoine Loew, Chengkun Wu, Weinan E, Linfeng Zhang, Han Wang","doi":"10.1038/s41524-025-01929-3","DOIUrl":"https://doi.org/10.1038/s41524-025-01929-3","url":null,"abstract":"Large Atomistic Models (LAMs) have undergone remarkable progress recently, emerging as universal or fundamental representations of the potential energy surface defined by the first-principles calculations of atomistic systems. However, our understanding of the extent to which these models achieve true universality, as well as their comparative performance across different models, remains limited. This gap is largely due to the lack of comprehensive benchmarks capable of evaluating the effectiveness of LAMs as approximations to the universal potential energy surface. In this study, we introduce LAMBench, a benchmarking system designed to evaluate LAMs in terms of their generalizability, adaptability, and applicability. These attributes are crucial for deploying LAMs as ready-to-use tools across a diverse array of scientific discovery contexts. We benchmark ten state-of-the-art LAMs released prior to August 1, 2025, using LAMBench. Our findings reveal a significant gap between the current LAMs and the ideal universal potential energy surface. They also highlight the need for incorporating cross-domain training data, supporting multi-fidelity modeling, and ensuring the models’ conservativeness and differentiability. As a dynamic and extensible platform, LAMBench is intended to continuously evolve, thereby facilitating the development of robust and generalizable LAMs capable of significantly advancing scientific research. The LAMBench code is open-sourced at https://github.com/deepmodeling/lambench, and an interactive leaderboard is available at https://www.aissquare.com/openlam?tab=Benchmark.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"15 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145893788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward high entropy material discovery for energy applications using computational and machine learning methods 利用计算和机器学习方法发现能量应用的高熵材料
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-12-30 DOI: 10.1038/s41524-025-01918-6
Hossein Mashhadimoslem, Peyman Karimi, Ali Elkamel, Aiping Yu
{"title":"Toward high entropy material discovery for energy applications using computational and machine learning methods","authors":"Hossein Mashhadimoslem, Peyman Karimi, Ali Elkamel, Aiping Yu","doi":"10.1038/s41524-025-01918-6","DOIUrl":"https://doi.org/10.1038/s41524-025-01918-6","url":null,"abstract":"","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"94 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2025-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145893798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward a robust and generalizable metamaterial foundation model 建立一个稳健的、可推广的超材料基础模型
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-12-29 DOI: 10.1038/s41524-025-01925-7
Namjung Kim, Dongseok Lee, Jongbin Yu, Sung Woong Cho, Dosung Lee, Yesol Park, Youngjoon Hong
Advances in material functionalities drive innovations across various fields, where metamaterials—defined by structure rather than composition—are leading the way. Despite the rise of artificial intelligence (AI)-driven design strategies, their impact is limited by task-specific retraining, poor out-of-distribution (OOD) generalization, and the need for separate models for forward and inverse design. To address these limitations, we introduce the Metamaterial FOundation Model (MetaFO), a Bayesian transformer-based foundation model inspired by large language models. MetaFO learns the underlying mechanics of metamaterials, enabling probabilistic, zero-shot predictions across diverse, unseen combinations of material properties and structural responses. It also excels in nonlinear inverse design, even under OOD conditions. By treating metamaterials as an operator that maps material properties to structural responses, MetaFO uncovers intricate structure-property relationships and significantly expands the design space. This scalable and generalizable framework marks a paradigm shift in AI-driven metamaterial discovery, paving the way for next-generation innovations.
材料功能的进步推动了各个领域的创新,其中由结构而不是成分定义的超材料正在引领潮流。尽管人工智能(AI)驱动的设计策略正在兴起,但它们的影响受到特定任务再训练、差的分布外(OOD)泛化以及需要独立的正向和反向设计模型的限制。为了解决这些限制,我们引入了超材料基础模型(MetaFO),这是一种受大型语言模型启发的基于贝叶斯变换的基础模型。MetaFO学习超材料的潜在力学,实现对材料特性和结构响应的各种未知组合的概率、零概率预测。即使在OOD条件下,它也擅长非线性逆设计。通过将超材料视为将材料属性映射到结构响应的操作符,MetaFO揭示了复杂的结构-属性关系,并显着扩展了设计空间。这种可扩展和可推广的框架标志着人工智能驱动的超材料发现的范式转变,为下一代创新铺平了道路。
{"title":"Toward a robust and generalizable metamaterial foundation model","authors":"Namjung Kim, Dongseok Lee, Jongbin Yu, Sung Woong Cho, Dosung Lee, Yesol Park, Youngjoon Hong","doi":"10.1038/s41524-025-01925-7","DOIUrl":"https://doi.org/10.1038/s41524-025-01925-7","url":null,"abstract":"Advances in material functionalities drive innovations across various fields, where metamaterials—defined by structure rather than composition—are leading the way. Despite the rise of artificial intelligence (AI)-driven design strategies, their impact is limited by task-specific retraining, poor out-of-distribution (OOD) generalization, and the need for separate models for forward and inverse design. To address these limitations, we introduce the Metamaterial FOundation Model (MetaFO), a Bayesian transformer-based foundation model inspired by large language models. MetaFO learns the underlying mechanics of metamaterials, enabling probabilistic, zero-shot predictions across diverse, unseen combinations of material properties and structural responses. It also excels in nonlinear inverse design, even under OOD conditions. By treating metamaterials as an operator that maps material properties to structural responses, MetaFO uncovers intricate structure-property relationships and significantly expands the design space. This scalable and generalizable framework marks a paradigm shift in AI-driven metamaterial discovery, paving the way for next-generation innovations.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"36 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2025-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145895481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A framework of active data selection and quantum-enhanced regression for predicting magnetic properties of sintered NdFeB magnets 基于主动数据选择和量子增强回归预测烧结钕铁硼磁体磁性能的框架
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-12-29 DOI: 10.1038/s41524-025-01914-w
Lianhua He, Qichao Liang, Kaifan Pan, Tianyan Li, Qiang Ma, Xin Wang, Haibo Xu, Yingjin Ma
Sintered neodymium-iron-boron (NdFeB) magnets are indispensable in high-performance applications, but their optimization is challenged by complex structure-property relationships and limited data. In this work, we curate the first multi-domain database for this system (1994 industrial and academic samples) and systematically evaluate active learning (AL) strategies on classical and quantum-enhanced regressors. First, our “domain-aware” analysis reveals quantitative differences in design heuristics between industrial and academic data. Second, we present a methodological blueprint for integrating quantum kernel regression into an AL framework using a bootstrapped ensemble for uncertainty quantification. Finally, and most significantly, our results reveal AL effectiveness is strongly model-dependent. Its advantage ranges from significant acceleration (Random Forest, SVR) to being diminished (XGBoost), or even inverted—proving detrimental compared to random sampling—as shown in our quantum-enhanced SVR case study. This finding provides critical new insights for the strategic application of machine learning in materials discovery.
烧结钕铁硼(NdFeB)磁体在高性能应用中是必不可少的,但其优化受到复杂的结构-性能关系和有限的数据的挑战。在这项工作中,我们为该系统策划了第一个多领域数据库(1994年工业和学术样本),并系统地评估了经典和量子增强回归的主动学习(AL)策略。首先,我们的“领域感知”分析揭示了工业和学术数据之间设计启发式的定量差异。其次,我们提出了一种方法蓝图,将量子核回归集成到使用自举集成进行不确定性量化的人工智能框架中。最后,也是最重要的是,我们的结果表明人工智能的有效性强烈依赖于模型。它的优势从显著加速(Random Forest, SVR)到减少(XGBoost),甚至是反向的——与随机抽样相比是有害的——正如我们的量子增强SVR案例研究所示。这一发现为机器学习在材料发现中的战略应用提供了重要的新见解。
{"title":"A framework of active data selection and quantum-enhanced regression for predicting magnetic properties of sintered NdFeB magnets","authors":"Lianhua He, Qichao Liang, Kaifan Pan, Tianyan Li, Qiang Ma, Xin Wang, Haibo Xu, Yingjin Ma","doi":"10.1038/s41524-025-01914-w","DOIUrl":"https://doi.org/10.1038/s41524-025-01914-w","url":null,"abstract":"Sintered neodymium-iron-boron (NdFeB) magnets are indispensable in high-performance applications, but their optimization is challenged by complex structure-property relationships and limited data. In this work, we curate the first multi-domain database for this system (1994 industrial and academic samples) and systematically evaluate active learning (AL) strategies on classical and quantum-enhanced regressors. First, our “domain-aware” analysis reveals quantitative differences in design heuristics between industrial and academic data. Second, we present a methodological blueprint for integrating quantum kernel regression into an AL framework using a bootstrapped ensemble for uncertainty quantification. Finally, and most significantly, our results reveal AL effectiveness is strongly model-dependent. Its advantage ranges from significant acceleration (Random Forest, SVR) to being diminished (XGBoost), or even inverted—proving detrimental compared to random sampling—as shown in our quantum-enhanced SVR case study. This finding provides critical new insights for the strategic application of machine learning in materials discovery.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"24 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2025-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145895519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-efficiency computational methodologies for electronic properties and structural characterization of Ge-Sb-Te based phase-change materials Ge-Sb-Te基相变材料电子性能和结构表征的高效计算方法
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-12-29 DOI: 10.1038/s41524-025-01922-w
Shanzhong Xie, Kan-Hao Xue, Shaojie Yuan, Zijian Zhou, Shengxin Yang, Heng Yu, Rongchuan Gu, Ming Xu, Xiangshui Miao
Theoretical simulation of phase change materials such as Ge-Sb-Te has suffered from two methodological issues. On the one hand, there is a lack of efficient band gap correction method for density functional theory that is suitable for these materials in both crystalline and amorphous phases, while maintaining the computational complexity comparable to local density approximation. On the other hand, analysis of the coordination number in amorphous phases relies on an integration involving the radial distribution function, which adds to the complexity. In this work, we find that the shell DFT-1/2 method offers overall band gap accuracy for phase-change materials comparable to that of the HSE06 hybrid functional, while its computational cost is orders of magnitude lower. Moreover, the mixed length-angle coordination number theory enables calculating the coordination numbers in the amorphous phase directly from the structure, with definite outcomes. The two methodologies could be helpful for high-throughput simulations of phase change materials.
相变材料(如锗锑钛)的理论模拟在方法论上存在两个问题。一方面,密度泛函理论缺乏有效的带隙校正方法,既适用于这些晶体和非晶相的材料,又能保持与局部密度近似相当的计算复杂度。另一方面,非晶相配位数的分析依赖于涉及径向分布函数的积分,这增加了分析的复杂性。在这项工作中,我们发现壳DFT-1/2方法提供了与HSE06混合函数相当的相变材料的整体带隙精度,而其计算成本要低几个数量级。此外,混合长角配位数理论可以直接从结构上计算非晶相的配位数,结果明确。这两种方法有助于相变材料的高通量模拟。
{"title":"High-efficiency computational methodologies for electronic properties and structural characterization of Ge-Sb-Te based phase-change materials","authors":"Shanzhong Xie, Kan-Hao Xue, Shaojie Yuan, Zijian Zhou, Shengxin Yang, Heng Yu, Rongchuan Gu, Ming Xu, Xiangshui Miao","doi":"10.1038/s41524-025-01922-w","DOIUrl":"https://doi.org/10.1038/s41524-025-01922-w","url":null,"abstract":"Theoretical simulation of phase change materials such as Ge-Sb-Te has suffered from two methodological issues. On the one hand, there is a lack of efficient band gap correction method for density functional theory that is suitable for these materials in both crystalline and amorphous phases, while maintaining the computational complexity comparable to local density approximation. On the other hand, analysis of the coordination number in amorphous phases relies on an integration involving the radial distribution function, which adds to the complexity. In this work, we find that the shell DFT-1/2 method offers overall band gap accuracy for phase-change materials comparable to that of the HSE06 hybrid functional, while its computational cost is orders of magnitude lower. Moreover, the mixed length-angle coordination number theory enables calculating the coordination numbers in the amorphous phase directly from the structure, with definite outcomes. The two methodologies could be helpful for high-throughput simulations of phase change materials.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"86 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2025-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145893799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Materials discovery acceleration by using conditional generative methodology 利用条件生成方法加速材料发现
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-12-26 DOI: 10.1038/s41524-025-01930-w
Caiyuan Ye, Yuzhi Wang, Xintian Xie, Tiannian Zhu, Jiaxuan Liu, Yuqing He, Lili Zhang, Junwei Zhang, Zhong Fang, Lei Wang, Zhipan Liu, Hongming Weng, Quansheng Wu
With the rapid advancement of AI technologies, generative models have been increasingly employed in the exploration of novel materials. By integrating traditional computational approaches such as density functional theory (DFT) and molecular dynamics (MD), existing generative models — including diffusion models and autoregressive models — have demonstrated remarkable potential in the discovery of novel materials. However, their efficiency in goal-directed materials design remains suboptimal. In this work we developed a highly transferable, efficient and robust conditional generation framework, PODGen, by integrating a general generative model with multiple property prediction models. Based on PODGen, we designed a workflow for the high-throughput crystals conditional generation which is used to search new topological insulators (TIs). Our results show that the success rate of generating TIs using our framework is approximately 5 times higher than that of the unconstrained approach. This demonstrates that conditional generation significantly enhances the efficiency of targeted material discovery. Using this method, we generated tens of thousands of new topological materials and conducted further first-principles calculations on those with promising application potential. Furthermore, we identified promising, synthesizable topological (crystalline) insulators such as CsHgSb, NaLaB12, Bi4Sb2Se3, Be3Ta2Si and Be2W.
随着人工智能技术的快速发展,生成模型越来越多地应用于新材料的探索。通过整合传统的计算方法,如密度泛函理论(DFT)和分子动力学(MD),现有的生成模型-包括扩散模型和自回归模型-在发现新材料方面显示出显着的潜力。然而,它们在目标导向材料设计中的效率仍然不是最佳的。在这项工作中,我们通过集成一个通用生成模型和多个属性预测模型,开发了一个高度可转移、高效和鲁棒的条件生成框架PODGen。基于PODGen,我们设计了一个高通量晶体条件生成的工作流程,用于搜索新的拓扑绝缘体。我们的结果表明,使用我们的框架生成ti的成功率大约是无约束方法的5倍。这表明条件生成显著提高了目标材料发现的效率。利用这种方法,我们生成了成千上万种新的拓扑材料,并对那些具有应用潜力的材料进行了进一步的第一性原理计算。此外,我们还发现了有前途的、可合成的拓扑(晶体)绝缘体,如CsHgSb、NaLaB12、Bi4Sb2Se3、Be3Ta2Si和Be2W。
{"title":"Materials discovery acceleration by using conditional generative methodology","authors":"Caiyuan Ye, Yuzhi Wang, Xintian Xie, Tiannian Zhu, Jiaxuan Liu, Yuqing He, Lili Zhang, Junwei Zhang, Zhong Fang, Lei Wang, Zhipan Liu, Hongming Weng, Quansheng Wu","doi":"10.1038/s41524-025-01930-w","DOIUrl":"https://doi.org/10.1038/s41524-025-01930-w","url":null,"abstract":"With the rapid advancement of AI technologies, generative models have been increasingly employed in the exploration of novel materials. By integrating traditional computational approaches such as density functional theory (DFT) and molecular dynamics (MD), existing generative models — including diffusion models and autoregressive models — have demonstrated remarkable potential in the discovery of novel materials. However, their efficiency in goal-directed materials design remains suboptimal. In this work we developed a highly transferable, efficient and robust conditional generation framework, PODGen, by integrating a general generative model with multiple property prediction models. Based on PODGen, we designed a workflow for the high-throughput crystals conditional generation which is used to search new topological insulators (TIs). Our results show that the success rate of generating TIs using our framework is approximately 5 times higher than that of the unconstrained approach. This demonstrates that conditional generation significantly enhances the efficiency of targeted material discovery. Using this method, we generated tens of thousands of new topological materials and conducted further first-principles calculations on those with promising application potential. Furthermore, we identified promising, synthesizable topological (crystalline) insulators such as CsHgSb, NaLaB12, Bi4Sb2Se3, Be3Ta2Si and Be2W.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"11 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2025-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145893800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-throughput computational framework for high-order anharmonic thermal transport in cubic and tetragonal crystals 立方和四方晶体中高阶非调和热输运的高通量计算框架
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-12-24 DOI: 10.1038/s41524-025-01920-y
Zhi Li, Huiju Lee, Chris Wolverton, Yi Xia
Accurate first-principles prediction of lattice thermal conductivity (κL) remains challenging in identifying materials with extreme thermal behavior. While the harmonic approximation with three-phonon scattering (HA + 3ph) is now routine, reliable κL prediction often requires higher-order anharmonic effects, including self-consistent phonon renormalization, three- and four-phonon scattering, and off-diagonal heat flux (SCPH + 3, 4ph + OD). We present a state-of-the-art high-throughput workflow that unifies these effects and apply it to 773 cubic and tetragonal crystals spanning diverse chemistries and structures. From 562 dynamically stable compounds, we assess the hierarchical impacts of higher-order anharmonicity. For around 60% of materials, HA + 3ph predictions closely match those from SCPH + 3, 4ph + OD. SCPH generally increases κL, by over 8 times in extreme cases, whereas four-phonon scattering universally suppresses κL, sometimes to 15% of the HA + 3ph value. Off-diagonal contributions are negligible in high-κL systems but can rival diagonal terms in highly anharmonic low-κL compounds. We highlight four case studies, Rb2TlAlH6, Cu3VSe4, CuBr, and KTlCl4, that exhibit distinct extreme behaviors. This work delivers not only a robust workflow for high-fidelity κL dataset but also a quantitative framework to determine when higher-order effects are essential. The hierarchy of κL results, from the HA + 3ph to SCPH + 3, 4ph + OD level, offers a scalable, interpretable route to discovering next-generation extreme thermal materials.
准确的第一性原理预测晶格导热系数(κL)在识别具有极端热行为的材料方面仍然具有挑战性。虽然三声子散射(HA + 3ph)的谐波近似现在是常规的,但可靠的κL预测通常需要高阶非谐波效应,包括自一致声子重正化、三声子和四声子散射以及非对角线热通量(SCPH + 3,4ph + OD)。我们提出了一个最先进的高通量工作流程,将这些效果统一起来,并将其应用于跨越不同化学和结构的773个立方和四方晶体。从562个动态稳定的化合物中,我们评估了高阶不谐性的层次影响。对于大约60%的材料,HA + 3ph的预测结果与SCPH + 3,4ph + OD的预测结果非常接近。SCPH一般会增加κL,在极端情况下可增加8倍以上,而四声子散射普遍抑制κL,有时可抑制HA + 3ph值的15%。非对角线贡献在高κ l体系中可以忽略不计,但在高非谐低κ l化合物中可以与对角线项相媲美。我们重点介绍了四个案例研究,Rb2TlAlH6、Cu3VSe4、cur和KTlCl4,它们表现出不同的极端行为。这项工作不仅为高保真的κL数据集提供了一个强大的工作流程,而且还提供了一个定量框架来确定何时需要高阶效应。从HA + 3ph到SCPH + 3,4ph + OD水平的κL结果等级,为发现下一代极热材料提供了可扩展、可解释的途径。
{"title":"High-throughput computational framework for high-order anharmonic thermal transport in cubic and tetragonal crystals","authors":"Zhi Li, Huiju Lee, Chris Wolverton, Yi Xia","doi":"10.1038/s41524-025-01920-y","DOIUrl":"https://doi.org/10.1038/s41524-025-01920-y","url":null,"abstract":"Accurate first-principles prediction of lattice thermal conductivity (κL) remains challenging in identifying materials with extreme thermal behavior. While the harmonic approximation with three-phonon scattering (HA + 3ph) is now routine, reliable κL prediction often requires higher-order anharmonic effects, including self-consistent phonon renormalization, three- and four-phonon scattering, and off-diagonal heat flux (SCPH + 3, 4ph + OD). We present a state-of-the-art high-throughput workflow that unifies these effects and apply it to 773 cubic and tetragonal crystals spanning diverse chemistries and structures. From 562 dynamically stable compounds, we assess the hierarchical impacts of higher-order anharmonicity. For around 60% of materials, HA + 3ph predictions closely match those from SCPH + 3, 4ph + OD. SCPH generally increases κL, by over 8 times in extreme cases, whereas four-phonon scattering universally suppresses κL, sometimes to 15% of the HA + 3ph value. Off-diagonal contributions are negligible in high-κL systems but can rival diagonal terms in highly anharmonic low-κL compounds. We highlight four case studies, Rb2TlAlH6, Cu3VSe4, CuBr, and KTlCl4, that exhibit distinct extreme behaviors. This work delivers not only a robust workflow for high-fidelity κL dataset but also a quantitative framework to determine when higher-order effects are essential. The hierarchy of κL results, from the HA + 3ph to SCPH + 3, 4ph + OD level, offers a scalable, interpretable route to discovering next-generation extreme thermal materials.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"8 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2025-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145814067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive edge-aware graph convolutional with multi-task learning for simultaneous prediction of material properties 基于多任务学习的自适应边缘感知图卷积同时预测材料特性
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-12-24 DOI: 10.1038/s41524-025-01917-7
Yunhua Lu, Mingyue Chen, Qingwei Zhang, Junan Zhang, Chao Zhang, Shiai Xu, Qiuyan Bi
The targeted design of functional materials often requires the concurrent optimization of multiple interdependent properties. For boron-doped graphene (BDG), both the band gap and work function critically influence performance in electronic and catalytic applications, yet existing machine learning (ML) approaches typically focus on single-property prediction and rely on hand-crafted features, limiting their generality. Here we present an adaptive edge-aware graph convolutional neural network with multi-task learning (AEGCNN-MTL) for simultaneous prediction of multiple material properties. On a DFT-computed BDG dataset of 2613 structures, AEGCNN-MTL achieved high accuracy (R² = 0.9905 for band gap and 0.9778 for work function), and under identical training budgets, outperformed representative single-task GNN baselines. When transferred to the QM9 benchmark, the framework delivered competitive performance across 12 diverse quantum chemical properties, demonstrating strong generalization capability. These results highlight the potential of AEGCNN-MTL as a scalable and accurate tool for high-throughput, multi-property screening and the data-driven discovery of multifunctional materials.
功能材料的针对性设计往往需要对多种相互依赖的性能进行并行优化。对于掺硼石墨烯(BDG),带隙和工作功能对电子和催化应用的性能都有重要影响,但现有的机器学习(ML)方法通常侧重于单属性预测,并依赖于手工制作的特征,限制了它们的通用性。在这里,我们提出了一种具有多任务学习的自适应边缘感知图卷积神经网络(AEGCNN-MTL),用于同时预测多种材料的性能。在dft计算的2613个结构的BDG数据集上,AEGCNN-MTL获得了较高的准确率(带隙R²= 0.9905,工作函数R²= 0.9778),并且在相同的训练预算下,优于代表性的单任务GNN基线。当转移到QM9基准测试时,该框架在12种不同的量子化学性质中提供了具有竞争力的性能,显示出强大的泛化能力。这些结果突出了aegcn - mtl作为高通量、多属性筛选和数据驱动的多功能材料发现的可扩展和准确工具的潜力。
{"title":"Adaptive edge-aware graph convolutional with multi-task learning for simultaneous prediction of material properties","authors":"Yunhua Lu, Mingyue Chen, Qingwei Zhang, Junan Zhang, Chao Zhang, Shiai Xu, Qiuyan Bi","doi":"10.1038/s41524-025-01917-7","DOIUrl":"https://doi.org/10.1038/s41524-025-01917-7","url":null,"abstract":"The targeted design of functional materials often requires the concurrent optimization of multiple interdependent properties. For boron-doped graphene (BDG), both the band gap and work function critically influence performance in electronic and catalytic applications, yet existing machine learning (ML) approaches typically focus on single-property prediction and rely on hand-crafted features, limiting their generality. Here we present an adaptive edge-aware graph convolutional neural network with multi-task learning (AEGCNN-MTL) for simultaneous prediction of multiple material properties. On a DFT-computed BDG dataset of 2613 structures, AEGCNN-MTL achieved high accuracy (R² = 0.9905 for band gap and 0.9778 for work function), and under identical training budgets, outperformed representative single-task GNN baselines. When transferred to the QM9 benchmark, the framework delivered competitive performance across 12 diverse quantum chemical properties, demonstrating strong generalization capability. These results highlight the potential of AEGCNN-MTL as a scalable and accurate tool for high-throughput, multi-property screening and the data-driven discovery of multifunctional materials.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"28 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2025-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145814066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
npj Computational Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1