首页 > 最新文献

npj Computational Materials最新文献

英文 中文
Cutting soft materials: how material differences shape the response 切割软质材料:材料差异如何形成反应
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-06 DOI: 10.1038/s41524-025-01869-y
Miguel Angel Moreno-Mateos, Paul Steinmann
Cutting soft materials is a complex process governed by the interplay of bulk large deformation, interfacial soft fracture, and contact forces with the cutting tool. Existing experimental characterizations and numerical models often fail to capture the variety of observed cutting behaviors, especially the transition from indentation to cutting and the roles of dissipative mechanisms. Here, we combine novel experimental cutting tests on three representative materials—a soft hydrogel, an elastomer, and food materials—with a coupled computational model that integrates soft fracture, adhesion, and frictional interactions. Our experiments reveal material-dependent cutting behaviors, with abrupt or smooth transitions from indentation to crack initiation, followed by distinct steady cutting regimes. The computational model captures these behaviors and shows that adhesion and damping contributions in the cohesive forces dominate tangential stresses, while Coulomb friction plays a negligible role due to low contact pressures. Together, these results provide new mechanistic insights into the physics of soft cutting and offer a unified framework for soft cutting mechanics to guide the design of soft materials, cutting tools, and cutting protocols, with direct relevance to surgical dissection and the engineering of food textures optimized for mastication.
软质材料的切削是一个复杂的过程,受大块大变形、界面软断裂和刀具接触力等因素的共同作用。现有的实验表征和数值模型往往不能捕捉到观察到的各种切削行为,特别是从压痕到切削的转变和耗散机制的作用。在这里,我们将三种代表性材料(软水凝胶、弹性体和食品材料)的新型实验切割测试与集成软断裂、粘附和摩擦相互作用的耦合计算模型相结合。我们的实验揭示了材料依赖的切削行为,从压痕到裂纹萌生的突然或平滑过渡,随后是明显的稳定切削机制。计算模型捕获了这些行为,并表明粘聚力中的粘附和阻尼贡献主导了切向应力,而由于低接触压力,库仑摩擦的作用可以忽略不计。总之,这些结果为软切割的物理机理提供了新的见解,并为软切割力学提供了一个统一的框架,以指导软材料、切割工具和切割方案的设计,与外科解剖和优化咀嚼食物纹理的工程直接相关。
{"title":"Cutting soft materials: how material differences shape the response","authors":"Miguel Angel Moreno-Mateos, Paul Steinmann","doi":"10.1038/s41524-025-01869-y","DOIUrl":"https://doi.org/10.1038/s41524-025-01869-y","url":null,"abstract":"Cutting soft materials is a complex process governed by the interplay of bulk large deformation, interfacial soft fracture, and contact forces with the cutting tool. Existing experimental characterizations and numerical models often fail to capture the variety of observed cutting behaviors, especially the transition from indentation to cutting and the roles of dissipative mechanisms. Here, we combine novel experimental cutting tests on three representative materials—a soft hydrogel, an elastomer, and food materials—with a coupled computational model that integrates soft fracture, adhesion, and frictional interactions. Our experiments reveal material-dependent cutting behaviors, with abrupt or smooth transitions from indentation to crack initiation, followed by distinct steady cutting regimes. The computational model captures these behaviors and shows that adhesion and damping contributions in the cohesive forces dominate tangential stresses, while Coulomb friction plays a negligible role due to low contact pressures. Together, these results provide new mechanistic insights into the physics of soft cutting and offer a unified framework for soft cutting mechanics to guide the design of soft materials, cutting tools, and cutting protocols, with direct relevance to surgical dissection and the engineering of food textures optimized for mastication.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"34 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145903516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The properties, thermodynamics and application prospects of diamanes 金刚石的性质、热力学及应用前景
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-06 DOI: 10.1038/s41524-025-01935-5
Pavel B. Sorokin, Boris I. Yakobson
{"title":"The properties, thermodynamics and application prospects of diamanes","authors":"Pavel B. Sorokin, Boris I. Yakobson","doi":"10.1038/s41524-025-01935-5","DOIUrl":"https://doi.org/10.1038/s41524-025-01935-5","url":null,"abstract":"","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"43 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145908182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Composition-dependent dislocation mobility in FeNiCrCoCu high-entropy alloys based on atomistic simulations and machine learning analysis 基于原子模拟和机器学习分析的FeNiCrCoCu高熵合金中成分依赖的位错迁移率
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-06 DOI: 10.1038/s41524-025-01942-6
Jingya Zhang, Yin Zhang
Solid solution strengthening is a key mechanism for enhancing the strength of high-entropy alloys (HEAs). However, conventional strengthening theories fail to capture the complex environments in HEAs. Here, we present a data-driven framework to investigate the composition-dependent intrinsic strength of FCC HEAs. Using large-scale molecular dynamics simulations, we compute dislocation mobility under various temperatures and compositions, revealing jerky and wavy glide behavior due to fluctuating local pinning. The critical resolved shear stress (CRSS) at 0 K is extracted from these data, and a linear correlation is revealed between CRSS and the standard deviation of atomic pinning strength. Then, we propose atomic features describing local structural and compositional fluctuations and construct a symbolic model to predict the atomic pinning strength variability from these features, using the Sure Independence Screening and Sparsifying Operator method. This framework provides both mechanistic insight and predictive capability for the design of strong, compositionally complex alloys.
固溶体强化是提高高熵合金强度的关键机制。然而,传统的强化理论未能捕捉到高等教育机构的复杂环境。在这里,我们提出了一个数据驱动的框架来研究FCC HEAs的成分依赖的内在强度。通过大规模的分子动力学模拟,我们计算了位错在不同温度和成分下的迁移率,揭示了由于波动的局部钉住而导致的抖动和波浪滑动行为。从这些数据中提取了0 K时的临界分解剪切应力(CRSS), CRSS与原子钉钉强度的标准差呈线性相关。然后,我们提出了描述局部结构和成分波动的原子特征,并使用确定独立筛选和稀疏算子方法构建了一个符号模型来预测原子钉钉强度的变化。该框架为设计坚固、成分复杂的合金提供了机械洞察力和预测能力。
{"title":"Composition-dependent dislocation mobility in FeNiCrCoCu high-entropy alloys based on atomistic simulations and machine learning analysis","authors":"Jingya Zhang, Yin Zhang","doi":"10.1038/s41524-025-01942-6","DOIUrl":"https://doi.org/10.1038/s41524-025-01942-6","url":null,"abstract":"Solid solution strengthening is a key mechanism for enhancing the strength of high-entropy alloys (HEAs). However, conventional strengthening theories fail to capture the complex environments in HEAs. Here, we present a data-driven framework to investigate the composition-dependent intrinsic strength of FCC HEAs. Using large-scale molecular dynamics simulations, we compute dislocation mobility under various temperatures and compositions, revealing jerky and wavy glide behavior due to fluctuating local pinning. The critical resolved shear stress (CRSS) at 0 K is extracted from these data, and a linear correlation is revealed between CRSS and the standard deviation of atomic pinning strength. Then, we propose atomic features describing local structural and compositional fluctuations and construct a symbolic model to predict the atomic pinning strength variability from these features, using the Sure Independence Screening and Sparsifying Operator method. This framework provides both mechanistic insight and predictive capability for the design of strong, compositionally complex alloys.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"30 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145903738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI-assisted rapid crystal structure generation towards a target local environment 人工智能辅助快速晶体结构生成的目标局部环境
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-06 DOI: 10.1038/s41524-025-01931-9
Osman Goni Ridwan, Sylvain Pitié, Monish Soundar Raj, Dong Dai, Gilles Frapper, Hongfei Xue, Qiang Zhu
In material design, traditional crystal structure prediction approaches are expensive as they require extensive structural sampling through expensive energy minimization methods. Emerging artificial intelligence (AI) generative models have shown great promise in rapidly generating realistic crystals, but they typically handle only a few tens of atoms per unit cell. To overcome this limitation, we introduce a symmetry-informed approach, the Local Environment Geometry-Oriented Crystal Generator (LEGO-xtal). Our method generates initial structures using AI models trained on an augmented dataset, and then optimizes them using structure descriptors rather than energy-based optimization. We demonstrate its effectiveness by expanding from 25 known low-energy sp2 carbon allotropes to over 1700, all within 0.5 eV/atom of the ground-state energy of graphite. This framework offers a generalizable strategy for the targeted design of materials with modular building blocks, such as metal-organic frameworks and battery materials.
在材料设计中,传统的晶体结构预测方法是昂贵的,因为它们需要通过昂贵的能量最小化方法进行大量的结构采样。新兴的人工智能(AI)生成模型在快速生成现实晶体方面显示出巨大的希望,但它们通常每个单元只能处理几十个原子。为了克服这一限制,我们引入了一种对称信息方法,即局部环境几何定向晶体发生器(LEGO-xtal)。我们的方法使用在增强数据集上训练的人工智能模型生成初始结构,然后使用结构描述符而不是基于能量的优化来优化它们。我们证明了它的有效性,从25个已知的低能sp2碳同素异形体扩展到1700多个,所有这些都在石墨基态能量的0.5 eV/原子内。该框架为具有模块化构建块的材料的目标设计提供了一种通用策略,例如金属有机框架和电池材料。
{"title":"AI-assisted rapid crystal structure generation towards a target local environment","authors":"Osman Goni Ridwan, Sylvain Pitié, Monish Soundar Raj, Dong Dai, Gilles Frapper, Hongfei Xue, Qiang Zhu","doi":"10.1038/s41524-025-01931-9","DOIUrl":"https://doi.org/10.1038/s41524-025-01931-9","url":null,"abstract":"In material design, traditional crystal structure prediction approaches are expensive as they require extensive structural sampling through expensive energy minimization methods. Emerging artificial intelligence (AI) generative models have shown great promise in rapidly generating realistic crystals, but they typically handle only a few tens of atoms per unit cell. To overcome this limitation, we introduce a symmetry-informed approach, the Local Environment Geometry-Oriented Crystal Generator (LEGO-xtal). Our method generates initial structures using AI models trained on an augmented dataset, and then optimizes them using structure descriptors rather than energy-based optimization. We demonstrate its effectiveness by expanding from 25 known low-energy sp2 carbon allotropes to over 1700, all within 0.5 eV/atom of the ground-state energy of graphite. This framework offers a generalizable strategy for the targeted design of materials with modular building blocks, such as metal-organic frameworks and battery materials.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"18 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145903745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Micromagnetics of conical-helix textures in thin films with different kinds of Dzyaloshinskii-Moriya interactions 具有不同Dzyaloshinskii-Moriya相互作用的薄膜中锥形-螺旋织构的微磁学
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-05 DOI: 10.1038/s41524-025-01926-6
M. Cepeda-Arancibia, F. Brevis, S. J. R. Holt, D. Cortés-Ortuño, H. Fangohr, P. Landeros
Chiral spin textures in ferromagnetic materials with Dzyaloshinskii-Moriya interactions (DMIs) have attracted significant interest in recent years owing to their potential applications in nanodevices. This work focuses on describing stable conical-helix configurations hosted in ultrathin films with DMI and perpendicular anisotropy. These states are studied for different kinds of DMIs, including symmetry classes <jats:inline-formula> <jats:alternatives> <jats:tex-math>$${mathcal{T}}$$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>T</mml:mi> </mml:math> </jats:alternatives> </jats:inline-formula> , <jats:inline-formula> <jats:alternatives> <jats:tex-math>$${{mathcal{C}}}_{nv}$$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> <mml:mi>v</mml:mi> </mml:mrow> </mml:msub> </mml:math> </jats:alternatives> </jats:inline-formula> , isotropic and anisotropic <jats:inline-formula> <jats:alternatives> <jats:tex-math>$${{mathcal{D}}}_{2d}$$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>D</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>d</mml:mi> </mml:mrow> </mml:msub> </mml:math> </jats:alternatives> </jats:inline-formula> , <jats:inline-formula> <jats:alternatives> <jats:tex-math>$${{mathcal{D}}}_{n}$$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>D</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> </mml:math> </jats:alternatives> </jats:inline-formula> , <jats:inline-formula> <jats:alternatives> <jats:tex-math>$${{mathcal{C}}}_{n}$$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> </mml:math> </jats:alternatives> </jats:inline-formula> , and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$${{mathcal{S}}}_{4}$$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>S</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:math> </jats:alternatives> </jats:inline-formula> . A parameterised analytical model of these configurations is proposed, enabling the determination of optimal parameters characterising the magnetic texture, such as the pitch vector or nucleation field. To substantiate the results, micromagnetic simulations are developed for comparison with the theoretical solutions. Numerical solutions are optimised by implementing finite-difference codes that use next-nearest neighbours and explicit Robin boundary conditions stemming from symmetric exchange and DMI. It is shown that these numerical enhancements decrease anisotropic effects in helical solutions. This study establishes a method to analyse conical-helix textures in thin-film systems with
近年来,具有Dzyaloshinskii-Moriya相互作用的铁磁材料的手性自旋织构由于其在纳米器件中的潜在应用而引起了人们的极大兴趣。这项工作的重点是描述具有DMI和垂直各向异性的超薄膜中稳定的锥形螺旋结构。这些状态研究了不同类型的dmi,包括对称类$${mathcal{T}}$$ T, $${{mathcal{C}}}_{nv}$$ C n v,各向同性和各向异性$${{mathcal{D}}}_{2d}$$ d2 D, $${{mathcal{D}}}_{n}$$ D n, $${{mathcal{C}}}_{n}$$ C n和$${{mathcal{S}}}_{4}$$ s4。提出了这些构型的参数化分析模型,从而确定表征磁性织构的最佳参数,如节距矢量或成核场。为了证实结果,进行了微磁模拟,并与理论解进行了比较。数值解决方案是通过实现有限差分代码,使用下近邻和明确的罗宾边界条件源于对称交换和DMI优化。结果表明,这些数值增强降低了螺旋解的各向异性效应。本研究建立了一种分析具有任意DMI的薄膜系统中的锥形螺旋织构的方法,使用本文开发的开放获取代码可以以更高的精度模拟。
{"title":"Micromagnetics of conical-helix textures in thin films with different kinds of Dzyaloshinskii-Moriya interactions","authors":"M. Cepeda-Arancibia, F. Brevis, S. J. R. Holt, D. Cortés-Ortuño, H. Fangohr, P. Landeros","doi":"10.1038/s41524-025-01926-6","DOIUrl":"https://doi.org/10.1038/s41524-025-01926-6","url":null,"abstract":"Chiral spin textures in ferromagnetic materials with Dzyaloshinskii-Moriya interactions (DMIs) have attracted significant interest in recent years owing to their potential applications in nanodevices. This work focuses on describing stable conical-helix configurations hosted in ultrathin films with DMI and perpendicular anisotropy. These states are studied for different kinds of DMIs, including symmetry classes &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:tex-math&gt;$${mathcal{T}}$$&lt;/jats:tex-math&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mi&gt;T&lt;/mml:mi&gt; &lt;/mml:math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; , &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:tex-math&gt;$${{mathcal{C}}}_{nv}$$&lt;/jats:tex-math&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:msub&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;C&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;mml:mi&gt;v&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;/mml:msub&gt; &lt;/mml:math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; , isotropic and anisotropic &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:tex-math&gt;$${{mathcal{D}}}_{2d}$$&lt;/jats:tex-math&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:msub&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;D&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mrow&gt; &lt;mml:mn&gt;2&lt;/mml:mn&gt; &lt;mml:mi&gt;d&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;/mml:msub&gt; &lt;/mml:math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; , &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:tex-math&gt;$${{mathcal{D}}}_{n}$$&lt;/jats:tex-math&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:msub&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;D&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;/mml:msub&gt; &lt;/mml:math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; , &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:tex-math&gt;$${{mathcal{C}}}_{n}$$&lt;/jats:tex-math&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:msub&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;C&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;/mml:msub&gt; &lt;/mml:math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; , and &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:tex-math&gt;$${{mathcal{S}}}_{4}$$&lt;/jats:tex-math&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:msub&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;S&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mrow&gt; &lt;mml:mn&gt;4&lt;/mml:mn&gt; &lt;/mml:mrow&gt; &lt;/mml:msub&gt; &lt;/mml:math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; . A parameterised analytical model of these configurations is proposed, enabling the determination of optimal parameters characterising the magnetic texture, such as the pitch vector or nucleation field. To substantiate the results, micromagnetic simulations are developed for comparison with the theoretical solutions. Numerical solutions are optimised by implementing finite-difference codes that use next-nearest neighbours and explicit Robin boundary conditions stemming from symmetric exchange and DMI. It is shown that these numerical enhancements decrease anisotropic effects in helical solutions. This study establishes a method to analyse conical-helix textures in thin-film systems with ","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"27 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145903108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LAMBench: a benchmark for large atomistic models LAMBench:大型原子模型的基准测试
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-03 DOI: 10.1038/s41524-025-01929-3
Anyang Peng, Chun Cai, Mingyu Guo, Duo Zhang, Chengqian Zhang, Wanrun Jiang, Yinan Wang, Antoine Loew, Chengkun Wu, Weinan E, Linfeng Zhang, Han Wang
Large Atomistic Models (LAMs) have undergone remarkable progress recently, emerging as universal or fundamental representations of the potential energy surface defined by the first-principles calculations of atomistic systems. However, our understanding of the extent to which these models achieve true universality, as well as their comparative performance across different models, remains limited. This gap is largely due to the lack of comprehensive benchmarks capable of evaluating the effectiveness of LAMs as approximations to the universal potential energy surface. In this study, we introduce LAMBench, a benchmarking system designed to evaluate LAMs in terms of their generalizability, adaptability, and applicability. These attributes are crucial for deploying LAMs as ready-to-use tools across a diverse array of scientific discovery contexts. We benchmark ten state-of-the-art LAMs released prior to August 1, 2025, using LAMBench. Our findings reveal a significant gap between the current LAMs and the ideal universal potential energy surface. They also highlight the need for incorporating cross-domain training data, supporting multi-fidelity modeling, and ensuring the models’ conservativeness and differentiability. As a dynamic and extensible platform, LAMBench is intended to continuously evolve, thereby facilitating the development of robust and generalizable LAMs capable of significantly advancing scientific research. The LAMBench code is open-sourced at https://github.com/deepmodeling/lambench, and an interactive leaderboard is available at https://www.aissquare.com/openlam?tab=Benchmark.
大原子模型(Large Atomistic Models, lam)近年来取得了显著的进展,成为由原子系统第一性原理计算定义的势能面的普遍或基本表示。然而,我们对这些模型在多大程度上实现真正的普适性,以及它们在不同模型之间的比较性能的理解仍然有限。这一差距很大程度上是由于缺乏全面的基准,能够评估lam作为通用势能面近似值的有效性。在本研究中,我们介绍了LAMBench,这是一个基准测试系统,旨在评估lam的通用性、适应性和适用性。这些属性对于在各种科学发现环境中部署lam作为现成的工具至关重要。我们使用LAMBench对2025年8月1日之前发布的10个最先进的lam进行基准测试。我们的研究结果表明,目前的lam与理想的通用势能面之间存在显著的差距。他们还强调需要整合跨领域的训练数据,支持多保真度建模,并确保模型的保守性和可微分性。作为一个动态和可扩展的平台,LAMBench旨在不断发展,从而促进能够显著推进科学研究的鲁棒性和通用性LAMBench的发展。LAMBench代码在https://github.com/deepmodeling/lambench上开源,互动排行榜在https://www.aissquare.com/openlam?tab=Benchmark上可用。
{"title":"LAMBench: a benchmark for large atomistic models","authors":"Anyang Peng, Chun Cai, Mingyu Guo, Duo Zhang, Chengqian Zhang, Wanrun Jiang, Yinan Wang, Antoine Loew, Chengkun Wu, Weinan E, Linfeng Zhang, Han Wang","doi":"10.1038/s41524-025-01929-3","DOIUrl":"https://doi.org/10.1038/s41524-025-01929-3","url":null,"abstract":"Large Atomistic Models (LAMs) have undergone remarkable progress recently, emerging as universal or fundamental representations of the potential energy surface defined by the first-principles calculations of atomistic systems. However, our understanding of the extent to which these models achieve true universality, as well as their comparative performance across different models, remains limited. This gap is largely due to the lack of comprehensive benchmarks capable of evaluating the effectiveness of LAMs as approximations to the universal potential energy surface. In this study, we introduce LAMBench, a benchmarking system designed to evaluate LAMs in terms of their generalizability, adaptability, and applicability. These attributes are crucial for deploying LAMs as ready-to-use tools across a diverse array of scientific discovery contexts. We benchmark ten state-of-the-art LAMs released prior to August 1, 2025, using LAMBench. Our findings reveal a significant gap between the current LAMs and the ideal universal potential energy surface. They also highlight the need for incorporating cross-domain training data, supporting multi-fidelity modeling, and ensuring the models’ conservativeness and differentiability. As a dynamic and extensible platform, LAMBench is intended to continuously evolve, thereby facilitating the development of robust and generalizable LAMs capable of significantly advancing scientific research. The LAMBench code is open-sourced at https://github.com/deepmodeling/lambench, and an interactive leaderboard is available at https://www.aissquare.com/openlam?tab=Benchmark.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"15 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145893788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward high entropy material discovery for energy applications using computational and machine learning methods 利用计算和机器学习方法发现能量应用的高熵材料
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-12-30 DOI: 10.1038/s41524-025-01918-6
Hossein Mashhadimoslem, Peyman Karimi, Ali Elkamel, Aiping Yu
{"title":"Toward high entropy material discovery for energy applications using computational and machine learning methods","authors":"Hossein Mashhadimoslem, Peyman Karimi, Ali Elkamel, Aiping Yu","doi":"10.1038/s41524-025-01918-6","DOIUrl":"https://doi.org/10.1038/s41524-025-01918-6","url":null,"abstract":"","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"94 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2025-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145893798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward a robust and generalizable metamaterial foundation model 建立一个稳健的、可推广的超材料基础模型
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-12-29 DOI: 10.1038/s41524-025-01925-7
Namjung Kim, Dongseok Lee, Jongbin Yu, Sung Woong Cho, Dosung Lee, Yesol Park, Youngjoon Hong
Advances in material functionalities drive innovations across various fields, where metamaterials—defined by structure rather than composition—are leading the way. Despite the rise of artificial intelligence (AI)-driven design strategies, their impact is limited by task-specific retraining, poor out-of-distribution (OOD) generalization, and the need for separate models for forward and inverse design. To address these limitations, we introduce the Metamaterial FOundation Model (MetaFO), a Bayesian transformer-based foundation model inspired by large language models. MetaFO learns the underlying mechanics of metamaterials, enabling probabilistic, zero-shot predictions across diverse, unseen combinations of material properties and structural responses. It also excels in nonlinear inverse design, even under OOD conditions. By treating metamaterials as an operator that maps material properties to structural responses, MetaFO uncovers intricate structure-property relationships and significantly expands the design space. This scalable and generalizable framework marks a paradigm shift in AI-driven metamaterial discovery, paving the way for next-generation innovations.
材料功能的进步推动了各个领域的创新,其中由结构而不是成分定义的超材料正在引领潮流。尽管人工智能(AI)驱动的设计策略正在兴起,但它们的影响受到特定任务再训练、差的分布外(OOD)泛化以及需要独立的正向和反向设计模型的限制。为了解决这些限制,我们引入了超材料基础模型(MetaFO),这是一种受大型语言模型启发的基于贝叶斯变换的基础模型。MetaFO学习超材料的潜在力学,实现对材料特性和结构响应的各种未知组合的概率、零概率预测。即使在OOD条件下,它也擅长非线性逆设计。通过将超材料视为将材料属性映射到结构响应的操作符,MetaFO揭示了复杂的结构-属性关系,并显着扩展了设计空间。这种可扩展和可推广的框架标志着人工智能驱动的超材料发现的范式转变,为下一代创新铺平了道路。
{"title":"Toward a robust and generalizable metamaterial foundation model","authors":"Namjung Kim, Dongseok Lee, Jongbin Yu, Sung Woong Cho, Dosung Lee, Yesol Park, Youngjoon Hong","doi":"10.1038/s41524-025-01925-7","DOIUrl":"https://doi.org/10.1038/s41524-025-01925-7","url":null,"abstract":"Advances in material functionalities drive innovations across various fields, where metamaterials—defined by structure rather than composition—are leading the way. Despite the rise of artificial intelligence (AI)-driven design strategies, their impact is limited by task-specific retraining, poor out-of-distribution (OOD) generalization, and the need for separate models for forward and inverse design. To address these limitations, we introduce the Metamaterial FOundation Model (MetaFO), a Bayesian transformer-based foundation model inspired by large language models. MetaFO learns the underlying mechanics of metamaterials, enabling probabilistic, zero-shot predictions across diverse, unseen combinations of material properties and structural responses. It also excels in nonlinear inverse design, even under OOD conditions. By treating metamaterials as an operator that maps material properties to structural responses, MetaFO uncovers intricate structure-property relationships and significantly expands the design space. This scalable and generalizable framework marks a paradigm shift in AI-driven metamaterial discovery, paving the way for next-generation innovations.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"36 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2025-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145895481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A framework of active data selection and quantum-enhanced regression for predicting magnetic properties of sintered NdFeB magnets 基于主动数据选择和量子增强回归预测烧结钕铁硼磁体磁性能的框架
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-12-29 DOI: 10.1038/s41524-025-01914-w
Lianhua He, Qichao Liang, Kaifan Pan, Tianyan Li, Qiang Ma, Xin Wang, Haibo Xu, Yingjin Ma
Sintered neodymium-iron-boron (NdFeB) magnets are indispensable in high-performance applications, but their optimization is challenged by complex structure-property relationships and limited data. In this work, we curate the first multi-domain database for this system (1994 industrial and academic samples) and systematically evaluate active learning (AL) strategies on classical and quantum-enhanced regressors. First, our “domain-aware” analysis reveals quantitative differences in design heuristics between industrial and academic data. Second, we present a methodological blueprint for integrating quantum kernel regression into an AL framework using a bootstrapped ensemble for uncertainty quantification. Finally, and most significantly, our results reveal AL effectiveness is strongly model-dependent. Its advantage ranges from significant acceleration (Random Forest, SVR) to being diminished (XGBoost), or even inverted—proving detrimental compared to random sampling—as shown in our quantum-enhanced SVR case study. This finding provides critical new insights for the strategic application of machine learning in materials discovery.
烧结钕铁硼(NdFeB)磁体在高性能应用中是必不可少的,但其优化受到复杂的结构-性能关系和有限的数据的挑战。在这项工作中,我们为该系统策划了第一个多领域数据库(1994年工业和学术样本),并系统地评估了经典和量子增强回归的主动学习(AL)策略。首先,我们的“领域感知”分析揭示了工业和学术数据之间设计启发式的定量差异。其次,我们提出了一种方法蓝图,将量子核回归集成到使用自举集成进行不确定性量化的人工智能框架中。最后,也是最重要的是,我们的结果表明人工智能的有效性强烈依赖于模型。它的优势从显著加速(Random Forest, SVR)到减少(XGBoost),甚至是反向的——与随机抽样相比是有害的——正如我们的量子增强SVR案例研究所示。这一发现为机器学习在材料发现中的战略应用提供了重要的新见解。
{"title":"A framework of active data selection and quantum-enhanced regression for predicting magnetic properties of sintered NdFeB magnets","authors":"Lianhua He, Qichao Liang, Kaifan Pan, Tianyan Li, Qiang Ma, Xin Wang, Haibo Xu, Yingjin Ma","doi":"10.1038/s41524-025-01914-w","DOIUrl":"https://doi.org/10.1038/s41524-025-01914-w","url":null,"abstract":"Sintered neodymium-iron-boron (NdFeB) magnets are indispensable in high-performance applications, but their optimization is challenged by complex structure-property relationships and limited data. In this work, we curate the first multi-domain database for this system (1994 industrial and academic samples) and systematically evaluate active learning (AL) strategies on classical and quantum-enhanced regressors. First, our “domain-aware” analysis reveals quantitative differences in design heuristics between industrial and academic data. Second, we present a methodological blueprint for integrating quantum kernel regression into an AL framework using a bootstrapped ensemble for uncertainty quantification. Finally, and most significantly, our results reveal AL effectiveness is strongly model-dependent. Its advantage ranges from significant acceleration (Random Forest, SVR) to being diminished (XGBoost), or even inverted—proving detrimental compared to random sampling—as shown in our quantum-enhanced SVR case study. This finding provides critical new insights for the strategic application of machine learning in materials discovery.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"24 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2025-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145895519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-efficiency computational methodologies for electronic properties and structural characterization of Ge-Sb-Te based phase-change materials Ge-Sb-Te基相变材料电子性能和结构表征的高效计算方法
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-12-29 DOI: 10.1038/s41524-025-01922-w
Shanzhong Xie, Kan-Hao Xue, Shaojie Yuan, Zijian Zhou, Shengxin Yang, Heng Yu, Rongchuan Gu, Ming Xu, Xiangshui Miao
Theoretical simulation of phase change materials such as Ge-Sb-Te has suffered from two methodological issues. On the one hand, there is a lack of efficient band gap correction method for density functional theory that is suitable for these materials in both crystalline and amorphous phases, while maintaining the computational complexity comparable to local density approximation. On the other hand, analysis of the coordination number in amorphous phases relies on an integration involving the radial distribution function, which adds to the complexity. In this work, we find that the shell DFT-1/2 method offers overall band gap accuracy for phase-change materials comparable to that of the HSE06 hybrid functional, while its computational cost is orders of magnitude lower. Moreover, the mixed length-angle coordination number theory enables calculating the coordination numbers in the amorphous phase directly from the structure, with definite outcomes. The two methodologies could be helpful for high-throughput simulations of phase change materials.
相变材料(如锗锑钛)的理论模拟在方法论上存在两个问题。一方面,密度泛函理论缺乏有效的带隙校正方法,既适用于这些晶体和非晶相的材料,又能保持与局部密度近似相当的计算复杂度。另一方面,非晶相配位数的分析依赖于涉及径向分布函数的积分,这增加了分析的复杂性。在这项工作中,我们发现壳DFT-1/2方法提供了与HSE06混合函数相当的相变材料的整体带隙精度,而其计算成本要低几个数量级。此外,混合长角配位数理论可以直接从结构上计算非晶相的配位数,结果明确。这两种方法有助于相变材料的高通量模拟。
{"title":"High-efficiency computational methodologies for electronic properties and structural characterization of Ge-Sb-Te based phase-change materials","authors":"Shanzhong Xie, Kan-Hao Xue, Shaojie Yuan, Zijian Zhou, Shengxin Yang, Heng Yu, Rongchuan Gu, Ming Xu, Xiangshui Miao","doi":"10.1038/s41524-025-01922-w","DOIUrl":"https://doi.org/10.1038/s41524-025-01922-w","url":null,"abstract":"Theoretical simulation of phase change materials such as Ge-Sb-Te has suffered from two methodological issues. On the one hand, there is a lack of efficient band gap correction method for density functional theory that is suitable for these materials in both crystalline and amorphous phases, while maintaining the computational complexity comparable to local density approximation. On the other hand, analysis of the coordination number in amorphous phases relies on an integration involving the radial distribution function, which adds to the complexity. In this work, we find that the shell DFT-1/2 method offers overall band gap accuracy for phase-change materials comparable to that of the HSE06 hybrid functional, while its computational cost is orders of magnitude lower. Moreover, the mixed length-angle coordination number theory enables calculating the coordination numbers in the amorphous phase directly from the structure, with definite outcomes. The two methodologies could be helpful for high-throughput simulations of phase change materials.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"86 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2025-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145893799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
npj Computational Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1