Pub Date : 2025-01-07DOI: 10.1016/j.plaphy.2025.109480
Linsong Wang, Zhaoqian Fan, Kun Gao, Yukun Qin
Infections caused by root-knot nematodes (RKNs) significantly impair vegetable growth and crop yield, posing a severe threat to global food security. Our previous study indicated that fungal-derived 2-furoic acid was a promising lead compound for the exploitation of eco-friendly nematicides. However, the exact molecular mechanism remains poorly understood. In this study, we observed behavioral changes in the nematodes following treatment with 100 μg/mL of 2-furoic acid. Subsequently, transcriptomics and metabolomics were combined to identify changes in differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs). Transcriptome analysis revealed 199 up-regulated and 109 down-regulated DEGs. Metabolomics analysis indicated that 140 metabolites (72 up-regulated and 68 down-regulated) exhibited significant differences. Notably, the integrated transcriptomics and metabolomics analysis identified a total of 72 DEGs and 54 DEMs annotated across 51 pathways, including lipid metabolism and amino acid metabolism. Intriguingly, 14 out of the 51 pathways were simultaneously annotated to the downregulated calmodulin gene (cam). RNA interference (RNAi) results demonstrated that the down-regulated cam, a potential drug target for controlling RKNs, significantly reduced the motility, infectivity, and pathogenicity of M. incognita. Our results provide insights into the molecular basis of 2-furoic acid against M. incognita and offer a valuable theoretical foundation for the design of eco-friendly nematicides.
{"title":"Integration of transcriptomics and metabolomics of 2-furoic acid-treated Meloidogyne incognita reveals a calmodulin gene associated with motility and pathogenicity.","authors":"Linsong Wang, Zhaoqian Fan, Kun Gao, Yukun Qin","doi":"10.1016/j.plaphy.2025.109480","DOIUrl":"https://doi.org/10.1016/j.plaphy.2025.109480","url":null,"abstract":"<p><p>Infections caused by root-knot nematodes (RKNs) significantly impair vegetable growth and crop yield, posing a severe threat to global food security. Our previous study indicated that fungal-derived 2-furoic acid was a promising lead compound for the exploitation of eco-friendly nematicides. However, the exact molecular mechanism remains poorly understood. In this study, we observed behavioral changes in the nematodes following treatment with 100 μg/mL of 2-furoic acid. Subsequently, transcriptomics and metabolomics were combined to identify changes in differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs). Transcriptome analysis revealed 199 up-regulated and 109 down-regulated DEGs. Metabolomics analysis indicated that 140 metabolites (72 up-regulated and 68 down-regulated) exhibited significant differences. Notably, the integrated transcriptomics and metabolomics analysis identified a total of 72 DEGs and 54 DEMs annotated across 51 pathways, including lipid metabolism and amino acid metabolism. Intriguingly, 14 out of the 51 pathways were simultaneously annotated to the downregulated calmodulin gene (cam). RNA interference (RNAi) results demonstrated that the down-regulated cam, a potential drug target for controlling RKNs, significantly reduced the motility, infectivity, and pathogenicity of M. incognita. Our results provide insights into the molecular basis of 2-furoic acid against M. incognita and offer a valuable theoretical foundation for the design of eco-friendly nematicides.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109480"},"PeriodicalIF":6.1,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143010277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thioredoxin is a multifunctional acidic protein widely presented in organisms that regulates intracellular redox processes, participating in a series of biochemical reactions in cells to affect the growth and development of plants. Although the thioredoxin (TRX) gene family has been widespread recognized across various plant species, and the tomato genome has been sequenced for years now, of tomato (Solanum lycopersicum) has remained largely uncharted in terms of identifying and unraveling the functional intricacies of is TRX genes. In this study, 53 SlTRX genes were identified, unevenly distributed across 11 of the 12 tomato chromosomes. These 53 SlTRX genes were categorized into 4 distinct subfamilies based on their evolutionary kinship and phylogenetic development. Expression profiling reveals that most of SlTRX genes exhibited distinct expression patterns across various tissues and developmental stages. In addition, the gene structure, conserved protein motifs and cis-elements of 53 SlTRX genes were analyzed simultaneously. In our rigorous in silico expression analysis, 8 SlTRX genes were meticulously selected for subsequent experiments. Subcellular localization indicated that these 8 SlTRX genes were localized in chloroplasts. Furthermore, these 8 SlTRX genes were responsive to abiotic stress (salt, drought and cold stress) under the qRT-PCR analysis, and their different expression patterns under diverse types of treatments indicated their possible roles in stress tolerance in tomato. Based on these results, SlTRX2, whose expression level continued to increase under salt stress, was selected for silencing to further investigate its function, and furthermore, silencing SlTRX2 inhibited plant growth and led to a significant reduction in photosynthesis under salt stress. Yeast two-hybrid and luciferase complementation imaging assays demonstrated that SlTRX2 may regulate tomato salt resistance by affecting related photosynthetic genes. Thus, our study establishes a valuable resource for further analysis on biological functions of SlTRX genes and will provide important insights in the mechanism of action under stress.
{"title":"Genome-wide identification and characterization of the thioredoxin (TRX) gene family in tomato (Solanum lycopersicum) and a functional analysis of SlTRX2 under salt stress.","authors":"Xiaoyu Cui, Jiamao Gu, Pengkun Liu, Ruiqin Lu, Zhen Ren, Yueqi Zhang, Feng Wang, Mingfang Qi, Yufeng Liu, Tianlai Li","doi":"10.1016/j.plaphy.2025.109478","DOIUrl":"https://doi.org/10.1016/j.plaphy.2025.109478","url":null,"abstract":"<p><p>Thioredoxin is a multifunctional acidic protein widely presented in organisms that regulates intracellular redox processes, participating in a series of biochemical reactions in cells to affect the growth and development of plants. Although the thioredoxin (TRX) gene family has been widespread recognized across various plant species, and the tomato genome has been sequenced for years now, of tomato (Solanum lycopersicum) has remained largely uncharted in terms of identifying and unraveling the functional intricacies of is TRX genes. In this study, 53 SlTRX genes were identified, unevenly distributed across 11 of the 12 tomato chromosomes. These 53 SlTRX genes were categorized into 4 distinct subfamilies based on their evolutionary kinship and phylogenetic development. Expression profiling reveals that most of SlTRX genes exhibited distinct expression patterns across various tissues and developmental stages. In addition, the gene structure, conserved protein motifs and cis-elements of 53 SlTRX genes were analyzed simultaneously. In our rigorous in silico expression analysis, 8 SlTRX genes were meticulously selected for subsequent experiments. Subcellular localization indicated that these 8 SlTRX genes were localized in chloroplasts. Furthermore, these 8 SlTRX genes were responsive to abiotic stress (salt, drought and cold stress) under the qRT-PCR analysis, and their different expression patterns under diverse types of treatments indicated their possible roles in stress tolerance in tomato. Based on these results, SlTRX2, whose expression level continued to increase under salt stress, was selected for silencing to further investigate its function, and furthermore, silencing SlTRX2 inhibited plant growth and led to a significant reduction in photosynthesis under salt stress. Yeast two-hybrid and luciferase complementation imaging assays demonstrated that SlTRX2 may regulate tomato salt resistance by affecting related photosynthetic genes. Thus, our study establishes a valuable resource for further analysis on biological functions of SlTRX genes and will provide important insights in the mechanism of action under stress.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109478"},"PeriodicalIF":6.1,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143009833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-07DOI: 10.1016/j.plaphy.2025.109490
Yajing Hao, Yujie Zhang, Yan Wang, Dandan Zhou, Kang Tu
In order to investigate the impact of hot air (HA) treatment on the sugars and volatiles in postharvest nectarine fruit, nectarines were treated with HA at 40 °C for 4 h and stored at 1 °C for 35 days. Changes of sugars, free and glycosidically bound volatiles, β-glucosidase (β-Glu) activity, and the gene expression of UGT (UDP-glucosyltransferase) in nectarine fruit were determined. The results showed that compared with CK, HA treatment delayed the firmness decline of 48.01%, weight loss of 32.13%, internal browning index of 58.03%, and maintained the high commodity quality of nectarine fruit at the end of storage. HA could reduce the content of aldehydes and increase the content of esters. The bound linalool in HA increased by 171.41% compared with the CK. In addition, the results of in vitro experiments showed that glucose and sucrose systems could increase the content of free and bound linalool by up-regulating the expression of PpUGT85A2, promoted the accumulation of bound benzaldehyde and nonanal, and reduced the corresponding free volatile compounds, it showed that free aldehydes can be synthesized from soluble sugars into bound aldehydes.
{"title":"The effect of hot air treatment on volatile compounds in nectarine fruit and the regulation of glycosidically bound compounds by sugar.","authors":"Yajing Hao, Yujie Zhang, Yan Wang, Dandan Zhou, Kang Tu","doi":"10.1016/j.plaphy.2025.109490","DOIUrl":"https://doi.org/10.1016/j.plaphy.2025.109490","url":null,"abstract":"<p><p>In order to investigate the impact of hot air (HA) treatment on the sugars and volatiles in postharvest nectarine fruit, nectarines were treated with HA at 40 °C for 4 h and stored at 1 °C for 35 days. Changes of sugars, free and glycosidically bound volatiles, β-glucosidase (β-Glu) activity, and the gene expression of UGT (UDP-glucosyltransferase) in nectarine fruit were determined. The results showed that compared with CK, HA treatment delayed the firmness decline of 48.01%, weight loss of 32.13%, internal browning index of 58.03%, and maintained the high commodity quality of nectarine fruit at the end of storage. HA could reduce the content of aldehydes and increase the content of esters. The bound linalool in HA increased by 171.41% compared with the CK. In addition, the results of in vitro experiments showed that glucose and sucrose systems could increase the content of free and bound linalool by up-regulating the expression of PpUGT85A2, promoted the accumulation of bound benzaldehyde and nonanal, and reduced the corresponding free volatile compounds, it showed that free aldehydes can be synthesized from soluble sugars into bound aldehydes.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109490"},"PeriodicalIF":6.1,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142979720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-06DOI: 10.1016/j.plaphy.2025.109479
Ved Parkash, John L Snider, Kelvin Jimmy Awori, Cristiane Pilon, Nino Brown, Ingrid Brito Almeida, Viktor Tishchenko
In some peanut (Arachis hypogaea L.) producing regions, growth and photosynthesis-limiting low and high temperature extremes are common. Heat acclimation potential of photosynthesis and respiration is a coping mechanism that is species-dependent and should be further explored for peanut. The objectives of the current study are (1) to evaluate the response of photosynthesis, its component processes, and respiration to low and high temperatures, and (2) to determine the heat acclimation potential of photosynthesis and respiration during early vegetative growth of peanut. Peanut was exposed to four different growth temperature regimes: (1) optimum temperature (30/20 °C day/night), (2) low temperature (20/15 °C), (3) moderately high temperature (35/25 °C), and (4) a high temperature extreme (40/30 °C). Low temperature and both high temperatures caused substantial reductions in growth and net photosynthetic rate. Mesophyll conductance and RuBP regeneration co-limited net photosynthetic rate under low temperature. Rubisco carboxylation was the most negatively impacted biochemical processes by high temperatures; however, diffusional limitations were not evident under high temperature conditions. Photosynthesis did not acclimate to high temperatures, while respiration and photorespiration exhibited heat acclimation. The inability of photosynthesis to acclimate to high temperature is likely a major constraint to early season growth in peanut.
{"title":"Peanut (Arachis hypogaea L.) growth and photosynthetic response to high and low temperature extremes.","authors":"Ved Parkash, John L Snider, Kelvin Jimmy Awori, Cristiane Pilon, Nino Brown, Ingrid Brito Almeida, Viktor Tishchenko","doi":"10.1016/j.plaphy.2025.109479","DOIUrl":"https://doi.org/10.1016/j.plaphy.2025.109479","url":null,"abstract":"<p><p>In some peanut (Arachis hypogaea L.) producing regions, growth and photosynthesis-limiting low and high temperature extremes are common. Heat acclimation potential of photosynthesis and respiration is a coping mechanism that is species-dependent and should be further explored for peanut. The objectives of the current study are (1) to evaluate the response of photosynthesis, its component processes, and respiration to low and high temperatures, and (2) to determine the heat acclimation potential of photosynthesis and respiration during early vegetative growth of peanut. Peanut was exposed to four different growth temperature regimes: (1) optimum temperature (30/20 °C day/night), (2) low temperature (20/15 °C), (3) moderately high temperature (35/25 °C), and (4) a high temperature extreme (40/30 °C). Low temperature and both high temperatures caused substantial reductions in growth and net photosynthetic rate. Mesophyll conductance and RuBP regeneration co-limited net photosynthetic rate under low temperature. Rubisco carboxylation was the most negatively impacted biochemical processes by high temperatures; however, diffusional limitations were not evident under high temperature conditions. Photosynthesis did not acclimate to high temperatures, while respiration and photorespiration exhibited heat acclimation. The inability of photosynthesis to acclimate to high temperature is likely a major constraint to early season growth in peanut.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109479"},"PeriodicalIF":6.1,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142953835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-06DOI: 10.1016/j.plaphy.2025.109483
Fangfang Cai, Xin Jin, Linshan Han, Xiaoli Wang, Changsheng Shao, Yanyan Zhao, Jun Mei, Dongliang Yu, Liping Ke, Yuqiang Sun
The pigments present in the fibers of naturally colored cotton provide excellent antibacterial and environmentally friendly properties, making these colored fibers increasingly favored by the textile industry and consumers. Proanthocyanidins (PAs), the critical pigments responsible for the color of brown cotton fiber, are produced on the endoplasmic reticulum and subsequently transported to the vacuole for polymerization and/or storage. Previous studies have identified GhTT12 as a potential transmembrane transporter of PAs in Gossypium hirsutum, with GhTT12 being a homolog of Arabidopsis Transparent Testa 12 (TT12). Here, we analyzed the spatiotemporal expression pattern of GhTT12, silenced and transiently overexpressed GhTT12 in cotton to confirm its biological function. The GhTT12 protein contains two Multidrug and toxic compound extrusion (MATE) domains and 12 transmembrane helices, and the GhTT12 gene displayed predominant expressions in flowers and fibers of cotton that had higher contents of PAs, particularly in brown cotton, suggesting that GhTT12 may play a role in the transport of PAs in cotton. Silencing or transient overexpression of GhTT12 in cotton resulted in decreased or increased accumulation levels of PAs and anthocyanins (Ans), respectively, accompanied by correspondingly down- or up-regulation of genes involved in PAs synthesis (GhANR) and oxidative polymerization (GhTT10). These findings indicate that GhTT12 may also participate in the biosynthesis of PAs and Ans. Moreover, the silencing of GhTT12 led to a lightening of the color of brown cotton fibers, probably due to the reductions in both PAs content and PAs oxidation. Overall, this study, along with previous research, provides compelling evidence to support the hypothesis that GhTT12 transports PAs and Ans while also regulating their biosynthesis and oxidative polymerization, thereby promoting the accumulation of PAs and Ans in cotton and ultimately affecting the fiber coloration.
{"title":"The Multidrug and toxin compound extrusion gene GhTT12 promotes the accumulation of both proanthocyanidins and anthocyanins in Gossypium hirsutum.","authors":"Fangfang Cai, Xin Jin, Linshan Han, Xiaoli Wang, Changsheng Shao, Yanyan Zhao, Jun Mei, Dongliang Yu, Liping Ke, Yuqiang Sun","doi":"10.1016/j.plaphy.2025.109483","DOIUrl":"https://doi.org/10.1016/j.plaphy.2025.109483","url":null,"abstract":"<p><p>The pigments present in the fibers of naturally colored cotton provide excellent antibacterial and environmentally friendly properties, making these colored fibers increasingly favored by the textile industry and consumers. Proanthocyanidins (PAs), the critical pigments responsible for the color of brown cotton fiber, are produced on the endoplasmic reticulum and subsequently transported to the vacuole for polymerization and/or storage. Previous studies have identified GhTT12 as a potential transmembrane transporter of PAs in Gossypium hirsutum, with GhTT12 being a homolog of Arabidopsis Transparent Testa 12 (TT12). Here, we analyzed the spatiotemporal expression pattern of GhTT12, silenced and transiently overexpressed GhTT12 in cotton to confirm its biological function. The GhTT12 protein contains two Multidrug and toxic compound extrusion (MATE) domains and 12 transmembrane helices, and the GhTT12 gene displayed predominant expressions in flowers and fibers of cotton that had higher contents of PAs, particularly in brown cotton, suggesting that GhTT12 may play a role in the transport of PAs in cotton. Silencing or transient overexpression of GhTT12 in cotton resulted in decreased or increased accumulation levels of PAs and anthocyanins (Ans), respectively, accompanied by correspondingly down- or up-regulation of genes involved in PAs synthesis (GhANR) and oxidative polymerization (GhTT10). These findings indicate that GhTT12 may also participate in the biosynthesis of PAs and Ans. Moreover, the silencing of GhTT12 led to a lightening of the color of brown cotton fibers, probably due to the reductions in both PAs content and PAs oxidation. Overall, this study, along with previous research, provides compelling evidence to support the hypothesis that GhTT12 transports PAs and Ans while also regulating their biosynthesis and oxidative polymerization, thereby promoting the accumulation of PAs and Ans in cotton and ultimately affecting the fiber coloration.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109483"},"PeriodicalIF":6.1,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142971936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To investigate the effect of combined action of discharge plasma (DP) and plasma-activated water (PAW) in mutagenesis breeding, this study focuses on Agropyron mongolicum. We utilized high-voltage DC pulsed dielectric barrier discharge for seed treatment, alone and in combination with PAW. The research focused on germination rates, evolution of physicochemical properties of imbibition residual solution, reactive oxygen species (ROS), malondialdehyde (MDA), and volatile organic compounds (VOCs) to assess DP-induced damage and variability in Agropyron mongolicum. Results indicated that after 18 h of combined treatment, the germination rate of Agropyron mongolicum dropped to 29.67%, below the LD50 threshold. Treated seedlings exhibited elevated ROS and MDA levels compared to controls. The concentration of reactive nitrogen and oxygen species (RONS) in the imbibition residual solution of the combined treatment group was lower than in freshly prepared PAW, indicating RONS penetration into the seed embryo via water, leading to oxidative damage. Enhanced lateral root differentiation, early tillering, increased biomass, and albino variant plants were observed in the surviving seedlings post-treatment. Transmission electron microscope (TEM) and Gas Chromatography-Ion Mobility Spectrometry (GC-IMS) analysis confirmed that plasma treatment induced oxidative damage in Agropyron mongolicum. In conclusion, high-power, long-duration direct DP treatment caused oxidative damage and reduced germination rates in Agropyron mongolicum, with PAW intensifying these effects. PAW was identified as the main driver of variation and lethality, while DP played a supportive role. Combined DP and PAW treatment induced variations in Agropyron mongolicum, providing experimental evidence and theoretical insights for applying DP treatment in plant mutagenesis breeding.
为探讨放电等离子体(DP)和等离子体活化水(PAW)联合作用在蒙古草诱变育种中的效果。采用高压直流脉冲介质阻挡放电对种子进行单独和联合处理。通过对萌发率、渗吸残液理化性质演变、活性氧(ROS)、丙二醛(MDA)和挥发性有机物(VOCs)的研究,探讨了dp对蒙古农草(Agropyron mongolicum)的危害及其变异。结果表明,联合处理18 h后,沙草的发芽率降至29.67%,低于LD50阈值;与对照相比,处理过的幼苗表现出较高的ROS和MDA水平。联合处理组吸胀残液中活性氮氧(reactive nitrogen and oxygen species, RONS)浓度低于新鲜制备的木瓜,表明活性氧通过水分渗透到种子胚中,导致氧化损伤。在处理后的存活幼苗中,侧根分化增强,分蘖提前,生物量增加,白化变异植株增加。透射电镜(TEM)和气相色谱-离子迁移谱(GC-IMS)分析证实,血浆处理诱导了蒙古草的氧化损伤。综上所述,高功率、长时间的直接DP处理对沙草有氧化损伤和发芽率降低的作用,而PAW则加重了这一作用。PAW是变异和致死的主要驱动因素,而DP则起辅助作用。DP与PAW联合处理对沙草产生变异,为DP处理在植物诱变育种中的应用提供了实验依据和理论见解。
{"title":"Study on the damage and variation of Agropyron mongolicum induced by the combined action of discharge plasma and plasma-activated water.","authors":"Bufan Li, Zhiqing Song, Mingjie Zhang, Qingjie Ma, Wenhao Hu, Changjiang Ding, Hao Chen","doi":"10.1016/j.plaphy.2025.109486","DOIUrl":"https://doi.org/10.1016/j.plaphy.2025.109486","url":null,"abstract":"<p><p>To investigate the effect of combined action of discharge plasma (DP) and plasma-activated water (PAW) in mutagenesis breeding, this study focuses on Agropyron mongolicum. We utilized high-voltage DC pulsed dielectric barrier discharge for seed treatment, alone and in combination with PAW. The research focused on germination rates, evolution of physicochemical properties of imbibition residual solution, reactive oxygen species (ROS), malondialdehyde (MDA), and volatile organic compounds (VOCs) to assess DP-induced damage and variability in Agropyron mongolicum. Results indicated that after 18 h of combined treatment, the germination rate of Agropyron mongolicum dropped to 29.67%, below the LD50 threshold. Treated seedlings exhibited elevated ROS and MDA levels compared to controls. The concentration of reactive nitrogen and oxygen species (RONS) in the imbibition residual solution of the combined treatment group was lower than in freshly prepared PAW, indicating RONS penetration into the seed embryo via water, leading to oxidative damage. Enhanced lateral root differentiation, early tillering, increased biomass, and albino variant plants were observed in the surviving seedlings post-treatment. Transmission electron microscope (TEM) and Gas Chromatography-Ion Mobility Spectrometry (GC-IMS) analysis confirmed that plasma treatment induced oxidative damage in Agropyron mongolicum. In conclusion, high-power, long-duration direct DP treatment caused oxidative damage and reduced germination rates in Agropyron mongolicum, with PAW intensifying these effects. PAW was identified as the main driver of variation and lethality, while DP played a supportive role. Combined DP and PAW treatment induced variations in Agropyron mongolicum, providing experimental evidence and theoretical insights for applying DP treatment in plant mutagenesis breeding.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109486"},"PeriodicalIF":6.1,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142966425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Melatonin (MT) serves as a potent antioxidant in plant organisms, bolstering their resilience to temperature stress. In this study, the impact of MT on various buckwheat varieties under high-temperature stress conditions (40 °C) was investigated. Specifically, five buckwheat seedling varieties, comprising three sweet buckwheat variants (Fagopyrum esculentum) and two bitter buckwheat types (Fagopyrum tataricum), were subjected to foliar sprays of melatonin at concentrations of 50, 100 and 200 μM, with water at 25 °C employed as a control. Results demonstrated that exogenous MT at different concentrations improved the growth and physiological parameters of buckwheats, ameliorating damage induced by high-temperature stress. Notably, the application of 100 μM MT significantly augmented shoot biomasses of buckwheat seedlings under high-temperature conditions. Furthermore, the MT significantly increased the levels of osmotic adjustment substances and chlorophyll concentrations, enhanced antioxidant enzyme activities, chlorophyll fluorescence parameters, and improved photosynthetic gas exchange parameters in five different varieties of buckwheat. This led to the alleviation of damage to buckwheat seedlings subjected to high-temperature stress. Subsequently, five advanced statistical analysis methods: Principal Component Analysis, Grey Relational Analysis, Path Coefficient Analysis, Membership Function Method, and Coupling Coordination Analysis were employed to delve deeper into the existing data indicators. To summarize, the beneficial effect of exogenous melatonin on seedling growth is primarily achieved through the coordination and regulation of the antioxidant enzyme system and osmotic regulatory substances, ensuring the growth and development of buckwheat seedlings while also improving their heat tolerance. The treatment with a concentration of 100 μM of MT was the most effective.
{"title":"Exogenous melatonin enhances heat tolerance in buckwheat seedlings by modulating physiological response mechanisms.","authors":"Zemiao Tian, Jiadong He, Zhanyu Wang, Qian Yang, Luping Ma, Yongzhi Qi, Jinbo Li, Yu Meng, Muriel Quinet","doi":"10.1016/j.plaphy.2025.109487","DOIUrl":"https://doi.org/10.1016/j.plaphy.2025.109487","url":null,"abstract":"<p><p>Melatonin (MT) serves as a potent antioxidant in plant organisms, bolstering their resilience to temperature stress. In this study, the impact of MT on various buckwheat varieties under high-temperature stress conditions (40 °C) was investigated. Specifically, five buckwheat seedling varieties, comprising three sweet buckwheat variants (Fagopyrum esculentum) and two bitter buckwheat types (Fagopyrum tataricum), were subjected to foliar sprays of melatonin at concentrations of 50, 100 and 200 μM, with water at 25 °C employed as a control. Results demonstrated that exogenous MT at different concentrations improved the growth and physiological parameters of buckwheats, ameliorating damage induced by high-temperature stress. Notably, the application of 100 μM MT significantly augmented shoot biomasses of buckwheat seedlings under high-temperature conditions. Furthermore, the MT significantly increased the levels of osmotic adjustment substances and chlorophyll concentrations, enhanced antioxidant enzyme activities, chlorophyll fluorescence parameters, and improved photosynthetic gas exchange parameters in five different varieties of buckwheat. This led to the alleviation of damage to buckwheat seedlings subjected to high-temperature stress. Subsequently, five advanced statistical analysis methods: Principal Component Analysis, Grey Relational Analysis, Path Coefficient Analysis, Membership Function Method, and Coupling Coordination Analysis were employed to delve deeper into the existing data indicators. To summarize, the beneficial effect of exogenous melatonin on seedling growth is primarily achieved through the coordination and regulation of the antioxidant enzyme system and osmotic regulatory substances, ensuring the growth and development of buckwheat seedlings while also improving their heat tolerance. The treatment with a concentration of 100 μM of MT was the most effective.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109487"},"PeriodicalIF":6.1,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142966422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alkaline salts have more severe adverse effects on plant growth and development than neutral salts do. However, the adaptive mechanisms of plants to alkaline salt stress remain poorly understood, especially at the molecular level. The Songnen Plain in northeast China is composed of typical 'soda' saline-alkali soil, with NaHCO3 and Na2CO3 as the predominant alkaline salts (pH ≥ 9.2). Leymus chinensis can grow on this saline-alkali land, showing strong adaptability. We investigated the role of succinic acid and genes regulating its synthesis in the response to alkaline salt stress in L. chinensis roots. Compared to the neutral salt (NaCl) and high pH treatments, the alkaline salt (NaHCO3 and Na2CO3) treatment specifically caused changes in 11 organic acids, of which the increase in succinic acid was the greatest. The exogenous addition of succinic acid alleviates the damage of alkaline salt to L. chinensis roots. Further, two genes encoding succinyl-coenzyme A ligase (SUCLA) subunits that regulate succinic acid synthesis, LcSUCLAα and LcSUCLAβ, were identified; these genes interact and were localized within mitochondria. Overexpression of LcSUCLAα and LcSUCLAβ caused an increase in succinic acid and enhanced tolerance of NaHCO3 in transgenic rice seedlings. These results suggest that LcSUCLAα and LcSUCLAβ may be involved in the response to alkaline salt stress through the regulation of succinic acid synthesis.
{"title":"Succinic acid synthesis regulated by succinyl-coenzyme A ligase (SUCLA) plays an important role in root response to alkaline salt stress in Leymus chinensis.","authors":"Jing Wu, Mengtong Sun, Anqi Pang, Kaiman Ma, Xuefei Hu, Shuang Feng, Yue Wang, Aimin Zhou","doi":"10.1016/j.plaphy.2025.109485","DOIUrl":"https://doi.org/10.1016/j.plaphy.2025.109485","url":null,"abstract":"<p><p>Alkaline salts have more severe adverse effects on plant growth and development than neutral salts do. However, the adaptive mechanisms of plants to alkaline salt stress remain poorly understood, especially at the molecular level. The Songnen Plain in northeast China is composed of typical 'soda' saline-alkali soil, with NaHCO<sub>3</sub> and Na<sub>2</sub>CO<sub>3</sub> as the predominant alkaline salts (pH ≥ 9.2). Leymus chinensis can grow on this saline-alkali land, showing strong adaptability. We investigated the role of succinic acid and genes regulating its synthesis in the response to alkaline salt stress in L. chinensis roots. Compared to the neutral salt (NaCl) and high pH treatments, the alkaline salt (NaHCO<sub>3</sub> and Na<sub>2</sub>CO<sub>3</sub>) treatment specifically caused changes in 11 organic acids, of which the increase in succinic acid was the greatest. The exogenous addition of succinic acid alleviates the damage of alkaline salt to L. chinensis roots. Further, two genes encoding succinyl-coenzyme A ligase (SUCLA) subunits that regulate succinic acid synthesis, LcSUCLAα and LcSUCLAβ, were identified; these genes interact and were localized within mitochondria. Overexpression of LcSUCLAα and LcSUCLAβ caused an increase in succinic acid and enhanced tolerance of NaHCO<sub>3</sub> in transgenic rice seedlings. These results suggest that LcSUCLAα and LcSUCLAβ may be involved in the response to alkaline salt stress through the regulation of succinic acid synthesis.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109485"},"PeriodicalIF":6.1,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142953837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-04DOI: 10.1016/j.plaphy.2025.109475
Hui Yan, Kai Fu, Xiaoli Liu, Zhiguang Dai, Chen Ru
In this research, we sought to investigate how high temperature, salinity, and CO2 affect endogenous phytohormones, photosynthesis, and redox homeostasis in Caragana korshinskii Kom (C. korshinskii) leaves, as well as to comprehensively evaluate the plant's physiological response to multiple environmental stressors. The elevated temperature (e[T]), elevated Na+ (e[Na]), and elevated temperature and Na+ (e[T-Na]) treatments increased abscisic acid (ABA) and reduced zeatin-riboside (ZR), indole-3-acetic acid (IAA), and gibberellic acid (GA3). These changes induced stomatal closure, and the subsequent reduction in photosynthetic rate triggered the generation of superoxide anion (O2·-) and hydrogen peroxide (H2O2). In response, superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activity increased, and free proline and total soluble sugars were accumulated. However, membrane lipid peroxidation was still aggravated. Under elevated CO2 (e[CO2]), the dramatic hormonal fluctuations and photosynthetic inhibition resulting from e[T], e[Na], and e[T-Na] were alleviated. Moreover, e[CO2] reduced ROS generation caused by e[T], e[Na], and e[T-Na], and stabilized antioxidant enzyme activities and non-enzymatic compound concentrations. Compared with e[T], e[Na], and e[T-Na], the increased malondialdehyde (MDA) content was effectively alleviated under elevated CO2 and temperature (e[CO2-T]), elevated CO2 and Na+ (e[CO2-Na]), and elevated CO2, temperature, and Na+ (e[CO2-T-Na]). Overall, our research suggest that e[CO2] may alleviate the negative impacts of e[T] and e[Na] on plant physiology.
{"title":"Elevated CO<sub>2</sub> alleviates negative impacts of high temperature and salinity on phytohormones, photosynthesis, and redox reactions in leaves of Caragana korshinskii kom.","authors":"Hui Yan, Kai Fu, Xiaoli Liu, Zhiguang Dai, Chen Ru","doi":"10.1016/j.plaphy.2025.109475","DOIUrl":"https://doi.org/10.1016/j.plaphy.2025.109475","url":null,"abstract":"<p><p>In this research, we sought to investigate how high temperature, salinity, and CO<sub>2</sub> affect endogenous phytohormones, photosynthesis, and redox homeostasis in Caragana korshinskii Kom (C. korshinskii) leaves, as well as to comprehensively evaluate the plant's physiological response to multiple environmental stressors. The elevated temperature (e[T]), elevated Na<sup>+</sup> (e[Na]), and elevated temperature and Na<sup>+</sup> (e[T-Na]) treatments increased abscisic acid (ABA) and reduced zeatin-riboside (ZR), indole-3-acetic acid (IAA), and gibberellic acid (GA<sub>3</sub>). These changes induced stomatal closure, and the subsequent reduction in photosynthetic rate triggered the generation of superoxide anion (O<sub>2</sub><sup>·-</sup>) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). In response, superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activity increased, and free proline and total soluble sugars were accumulated. However, membrane lipid peroxidation was still aggravated. Under elevated CO<sub>2</sub> (e[CO<sub>2</sub>]), the dramatic hormonal fluctuations and photosynthetic inhibition resulting from e[T], e[Na], and e[T-Na] were alleviated. Moreover, e[CO<sub>2</sub>] reduced ROS generation caused by e[T], e[Na], and e[T-Na], and stabilized antioxidant enzyme activities and non-enzymatic compound concentrations. Compared with e[T], e[Na], and e[T-Na], the increased malondialdehyde (MDA) content was effectively alleviated under elevated CO<sub>2</sub> and temperature (e[CO<sub>2</sub>-T]), elevated CO<sub>2</sub> and Na<sup>+</sup> (e[CO<sub>2</sub>-Na]), and elevated CO<sub>2</sub>, temperature, and Na<sup>+</sup> (e[CO<sub>2</sub>-T-Na]). Overall, our research suggest that e[CO<sub>2</sub>] may alleviate the negative impacts of e[T] and e[Na] on plant physiology.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109475"},"PeriodicalIF":6.1,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142953817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-04DOI: 10.1016/j.plaphy.2024.109470
Zesmin Khan, Devasish Chowdhury, Hrishikesh Upadhyaya
Selenium nanoparticles are well known for their antioxidant and stress-mitigating properties. In our study, composite nanoformulations of selenium and chitosan have been synthesized. The synthesized composite nanoformulations were 50 nm in diameter, spherical in shape, and had higher antioxidant activities and stability than the selenium and chitosan nanoparticles. In our study, Luit rice seedlings grown in an arsenic-treated Hoagland solution showed a reduction of growth, decreased superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, ascorbate, and glutathione content. Otherwise, superoxide anion, hydrogen peroxide, and malondialdehyde content increased in arsenic-stressed conditions. The alone application of Selenium nanoparticles, chitosan nanoparticles, and their nanoformulation improved growth, reduced stress parameters, and enhanced enzymatic and non-enzymatic activity. Additionally, the reduction of superoxide anion, hydrogen peroxide, and malondialdehyde content was higher by applying composite nanoformulations in arsenic-stressed conditions than selenium and chitosan nanoparticles. The treatment of composite nanoformulation also regulated the enzymatic and non-enzymatic antioxidant activity higher than that of other nanoparticles. It might be due to the higher stability and antioxidant activity of composite nanoformulations than that of selenium and chitosan nanoparticles. Our study suggests that the composite nanoformulation enhanced the growth of rice plants by mitigating arsenic-induced reactive oxygen species and upregulating antioxidant activity.
{"title":"Application of the composite nanoparticles of selenium and chitosan for ameliorating arsenic stress in rice seedlings.","authors":"Zesmin Khan, Devasish Chowdhury, Hrishikesh Upadhyaya","doi":"10.1016/j.plaphy.2024.109470","DOIUrl":"https://doi.org/10.1016/j.plaphy.2024.109470","url":null,"abstract":"<p><p>Selenium nanoparticles are well known for their antioxidant and stress-mitigating properties. In our study, composite nanoformulations of selenium and chitosan have been synthesized. The synthesized composite nanoformulations were 50 nm in diameter, spherical in shape, and had higher antioxidant activities and stability than the selenium and chitosan nanoparticles. In our study, Luit rice seedlings grown in an arsenic-treated Hoagland solution showed a reduction of growth, decreased superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, ascorbate, and glutathione content. Otherwise, superoxide anion, hydrogen peroxide, and malondialdehyde content increased in arsenic-stressed conditions. The alone application of Selenium nanoparticles, chitosan nanoparticles, and their nanoformulation improved growth, reduced stress parameters, and enhanced enzymatic and non-enzymatic activity. Additionally, the reduction of superoxide anion, hydrogen peroxide, and malondialdehyde content was higher by applying composite nanoformulations in arsenic-stressed conditions than selenium and chitosan nanoparticles. The treatment of composite nanoformulation also regulated the enzymatic and non-enzymatic antioxidant activity higher than that of other nanoparticles. It might be due to the higher stability and antioxidant activity of composite nanoformulations than that of selenium and chitosan nanoparticles. Our study suggests that the composite nanoformulation enhanced the growth of rice plants by mitigating arsenic-induced reactive oxygen species and upregulating antioxidant activity.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109470"},"PeriodicalIF":6.1,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142971933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}