首页 > 最新文献

Powder Metallurgy最新文献

英文 中文
Study of mechanical and tribological properties of Ti–6Al–4V alloy fabricated by powder bed fusion laser beam 粉末床熔融激光束制备Ti–6Al–4V合金的力学和摩擦学性能研究
IF 1.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2022-08-30 DOI: 10.1080/00325899.2022.2116405
Xiaojie Shi, Peipei Lu, Xiu Ye, Shuai Ren, Yiyao Wang, Zi-hua Xie, Yiqing Ma, Xiaojin Miao, Meiping Wu
ABSTRACT Powder bed fusion laser beam, as one of the most promising forming technologies, offers unmatched benefits over traditional processing, particularly in the production of Ti–6Al–4V. The influence of laser line energy density (LLED) on the forming surface, phase composition, micro-hardness, tensile characteristics and wear resistance of Ti–6Al–4V alloy were explored to disclose the evolution of mechanical and tribological properties. According to the findings, the LLED causes ‘depressions’ and ‘highlands’ between nearby scanning tracks. The phase composition did not alter appreciably as LLED increased. Micro-hardness and tensile characteristics increased initially, then declined, and the value of maximum micro-hardness and ultimate tensile strength were 388.17 HV0.2 and 1197.5 MPa, respectively. Furthermore, when the LLED is 0.24 J mm–1, the wear resistance is optimal under the aviation lubricant medium, with an average friction coefficient of 0.1505 and volume wear rate of 6.95∗10−8 mm2∗N−1, and a wear mechanism of mild furrow wear and adhesion wear.
摘要:粉末床融合激光束作为最有前途的成形技术之一,与传统工艺相比,具有无与伦比的优势,尤其是在Ti–6Al–4V的生产中。探讨了激光线能量密度(LLED)对Ti–6Al–4V合金成形表面、相组成、显微硬度、拉伸特性和耐磨性的影响,揭示了其力学性能和摩擦学性能的演变。根据研究结果,LLED会导致附近扫描轨道之间出现“凹陷”和“高地”。随着LLED的增加,相组成没有明显变化。显微硬度和拉伸特性先增加后下降,最大显微硬度和极限拉伸强度分别为388.17HV0.2和1197.5 MPa。此外,当LLED为0.24 J时 mm–1,在航空润滑介质下的耐磨性最佳,平均摩擦系数为0.1505,体积磨损率为6.95*10−8 mm2*N−1,磨损机制为轻度沟槽磨损和粘着磨损。
{"title":"Study of mechanical and tribological properties of Ti–6Al–4V alloy fabricated by powder bed fusion laser beam","authors":"Xiaojie Shi, Peipei Lu, Xiu Ye, Shuai Ren, Yiyao Wang, Zi-hua Xie, Yiqing Ma, Xiaojin Miao, Meiping Wu","doi":"10.1080/00325899.2022.2116405","DOIUrl":"https://doi.org/10.1080/00325899.2022.2116405","url":null,"abstract":"ABSTRACT Powder bed fusion laser beam, as one of the most promising forming technologies, offers unmatched benefits over traditional processing, particularly in the production of Ti–6Al–4V. The influence of laser line energy density (LLED) on the forming surface, phase composition, micro-hardness, tensile characteristics and wear resistance of Ti–6Al–4V alloy were explored to disclose the evolution of mechanical and tribological properties. According to the findings, the LLED causes ‘depressions’ and ‘highlands’ between nearby scanning tracks. The phase composition did not alter appreciably as LLED increased. Micro-hardness and tensile characteristics increased initially, then declined, and the value of maximum micro-hardness and ultimate tensile strength were 388.17 HV0.2 and 1197.5 MPa, respectively. Furthermore, when the LLED is 0.24 J mm–1, the wear resistance is optimal under the aviation lubricant medium, with an average friction coefficient of 0.1505 and volume wear rate of 6.95∗10−8 mm2∗N−1, and a wear mechanism of mild furrow wear and adhesion wear.","PeriodicalId":20392,"journal":{"name":"Powder Metallurgy","volume":"66 1","pages":"116 - 128"},"PeriodicalIF":1.4,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49281926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effect of reuse times on H13 powder properties processed by selective electron beam melting 重复使用次数对选择性电子束熔炼H13粉末性能的影响
IF 1.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2022-08-25 DOI: 10.1080/00325899.2022.2115758
Xin Yang, Chenhao Sun, Fenghui Wang, Yang-lan Lai, S. Liu, Yingkang Wei, J. Yang, Hui-ping Tang
ABSTRACT The inconsistency of high material cost and powder properties are the primary barriers to widespread adoption of metal additive manufacturing. Obviously, powder reuse without affecting the properties of the parts can reduce the cost burden. In this study, the properties of H13 (4Cr5MoSiV1) powder were evaluated 16 build cycles in selective electron beam melting. Results show that the crystal plane spacing and particle size of the powder increased with reuse. With the increase i reuse times, more irregular particles appeared and the flowability decreased. The oxygen and nitrogen content of powder gradually increases from 149 to 250 ppm and 237 ppm to 394 ppm, respectively, with reuse. The simulation results show that the wider particle size distribution, the better the relative packing performance of the powder layer. Powder reuse has no negative effect on the hardness of the as-built samples.
高材料成本和粉末性能的不一致性是金属增材制造广泛采用的主要障碍。显然,在不影响零件性能的情况下,粉末的重复使用可以减少成本负担。在本研究中,对H13 (4Cr5MoSiV1)粉末在选择性电子束熔炼中16次构建循环的性能进行了评价。结果表明,随着重复使用,粉末的晶面间距和粒度增大。随着重复使用次数的增加,不规则颗粒增多,流动性下降。粉末的氧和氮含量分别从149 ppm到250 ppm和237 ppm到394 ppm逐渐增加,重复使用。模拟结果表明,粒径分布越宽,粉末层的相对堆积性能越好。粉末的重复使用对成品样品的硬度没有负面影响。
{"title":"Effect of reuse times on H13 powder properties processed by selective electron beam melting","authors":"Xin Yang, Chenhao Sun, Fenghui Wang, Yang-lan Lai, S. Liu, Yingkang Wei, J. Yang, Hui-ping Tang","doi":"10.1080/00325899.2022.2115758","DOIUrl":"https://doi.org/10.1080/00325899.2022.2115758","url":null,"abstract":"ABSTRACT The inconsistency of high material cost and powder properties are the primary barriers to widespread adoption of metal additive manufacturing. Obviously, powder reuse without affecting the properties of the parts can reduce the cost burden. In this study, the properties of H13 (4Cr5MoSiV1) powder were evaluated 16 build cycles in selective electron beam melting. Results show that the crystal plane spacing and particle size of the powder increased with reuse. With the increase i reuse times, more irregular particles appeared and the flowability decreased. The oxygen and nitrogen content of powder gradually increases from 149 to 250 ppm and 237 ppm to 394 ppm, respectively, with reuse. The simulation results show that the wider particle size distribution, the better the relative packing performance of the powder layer. Powder reuse has no negative effect on the hardness of the as-built samples.","PeriodicalId":20392,"journal":{"name":"Powder Metallurgy","volume":"66 1","pages":"107 - 115"},"PeriodicalIF":1.4,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46089485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Investigation of mechanical properties and microstructure of Ti-15% Mo alloy produced by mechanical alloying and sintering with SPS (MA-SPS) SPS(MA-SPS)烧结Ti-15%Mo合金的力学性能和微观组织研究
IF 1.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2022-07-22 DOI: 10.1080/00325899.2022.2102839
Mahdi Mirzaaghaei, F. Qods, H. Arabi, M. Milani, B. Mohammad Sadeghi, M. Nourbakhsh
ABSTRACT The goal of this study was to investigate the mechanical properties and microstructure of Ti-15% Mo alloy fabricated using the mechanical alloying and spark plasma sintering (MA-SPS) method. Accordingly, Ti and Mo powders were milled for different times, including 5, 15, 25, 35, and 45 h, and the SPS technique for sintering under a pressure of 25 MPa at 1100°C was used. The X-ray diffraction (XRD) analysis, optical and electron microscopy (SEM), hardness measurements, and compression testing were used to study the phases formed, the morphology of powders, microstructure, and mechanical properties of the as-prepared samples, respectively. The results revealed that owing to increasing the mechanical milling time, the percentage of the beta phase formed was higher, and in addition, it influenced the microstructure and mechanical properties of the samples fabricated after the sintering process. GRAPHICAL ABSTRACT
摘要本研究的目的是研究采用机械合金化和火花等离子体烧结(MA-SPS)方法制备的Ti-15%Mo合金的力学性能和微观结构。因此,Ti和Mo粉末被研磨不同的时间,包括5、15、25、35和45 h、 以及在25压力下烧结的SPS技术 使用1100°C下的MPa。使用X射线衍射(XRD)分析、光学和电子显微镜(SEM)、硬度测量和压缩测试分别研究了所制备样品的相形成、粉末形态、微观结构和机械性能。结果表明,由于机械铣削时间的增加,β相的形成百分比更高,此外,它还影响了烧结过程后制备的样品的微观结构和力学性能。图形摘要
{"title":"Investigation of mechanical properties and microstructure of Ti-15% Mo alloy produced by mechanical alloying and sintering with SPS (MA-SPS)","authors":"Mahdi Mirzaaghaei, F. Qods, H. Arabi, M. Milani, B. Mohammad Sadeghi, M. Nourbakhsh","doi":"10.1080/00325899.2022.2102839","DOIUrl":"https://doi.org/10.1080/00325899.2022.2102839","url":null,"abstract":"ABSTRACT The goal of this study was to investigate the mechanical properties and microstructure of Ti-15% Mo alloy fabricated using the mechanical alloying and spark plasma sintering (MA-SPS) method. Accordingly, Ti and Mo powders were milled for different times, including 5, 15, 25, 35, and 45 h, and the SPS technique for sintering under a pressure of 25 MPa at 1100°C was used. The X-ray diffraction (XRD) analysis, optical and electron microscopy (SEM), hardness measurements, and compression testing were used to study the phases formed, the morphology of powders, microstructure, and mechanical properties of the as-prepared samples, respectively. The results revealed that owing to increasing the mechanical milling time, the percentage of the beta phase formed was higher, and in addition, it influenced the microstructure and mechanical properties of the samples fabricated after the sintering process. GRAPHICAL ABSTRACT","PeriodicalId":20392,"journal":{"name":"Powder Metallurgy","volume":"66 1","pages":"139 - 150"},"PeriodicalIF":1.4,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42151702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Binder-jetting of TiCN-based cermets TiCN基金属陶瓷的粘结剂喷射
IF 1.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2022-07-19 DOI: 10.1080/00325899.2022.2099636
Christian Berger, J. Pötschke, M. Fries, T. Moritz, A. Michaelis
ABSTRACT Additive Manufacturing is experiencing an upswing in many sectors of industry for a broad variety of materials. Processes are mainly developed for polymers and metals. For ceramics, hardmetals and especially cermets there are only a few additive processes suitable. The powder-based technique Binder-Jetting is one of these suitable processes with high productivity and relatively low green density. Within this study, TiCN-based cermets are printed by Binder-Jetting for the first time. The complexity of influences of the morphology and composition of cermet powders are discussed in regard to bulk density and material properties of printed and sintered parts. Studied TiCN-based cermet compositions represent different Ni and Mo2C contents. Main points of this investigation are further the adjustment of ratio of the raw materials for good sintering behaviour and their influence on the microstructures and as a function of varied sintering temperatures.
摘要增材制造业在许多行业中都在经历一场针对各种材料的崛起。工艺主要针对聚合物和金属开发。对于陶瓷、硬质合金,尤其是金属陶瓷,只有少数几种添加剂工艺适用。基于粉末的技术粘结剂喷射是这些合适的工艺之一,具有高生产率和相对低的生坯密度。在本研究中,首次通过粘结剂喷射法印刷了TiCN基金属陶瓷。讨论了金属陶瓷粉末的形态和成分对印刷和烧结零件的体积密度和材料性能的影响的复杂性。所研究的TiCN基金属陶瓷成分代表了不同的Ni和Mo2C含量。本研究的要点是进一步调整原材料的比例以获得良好的烧结性能,以及它们对微观结构的影响,以及作为不同烧结温度的函数。
{"title":"Binder-jetting of TiCN-based cermets","authors":"Christian Berger, J. Pötschke, M. Fries, T. Moritz, A. Michaelis","doi":"10.1080/00325899.2022.2099636","DOIUrl":"https://doi.org/10.1080/00325899.2022.2099636","url":null,"abstract":"ABSTRACT Additive Manufacturing is experiencing an upswing in many sectors of industry for a broad variety of materials. Processes are mainly developed for polymers and metals. For ceramics, hardmetals and especially cermets there are only a few additive processes suitable. The powder-based technique Binder-Jetting is one of these suitable processes with high productivity and relatively low green density. Within this study, TiCN-based cermets are printed by Binder-Jetting for the first time. The complexity of influences of the morphology and composition of cermet powders are discussed in regard to bulk density and material properties of printed and sintered parts. Studied TiCN-based cermet compositions represent different Ni and Mo2C contents. Main points of this investigation are further the adjustment of ratio of the raw materials for good sintering behaviour and their influence on the microstructures and as a function of varied sintering temperatures.","PeriodicalId":20392,"journal":{"name":"Powder Metallurgy","volume":"65 1","pages":"382 - 389"},"PeriodicalIF":1.4,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48883365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Crack initiation and early propagation in case hardened sintered PM steels under cyclic load 循环载荷作用下表面硬化烧结PM钢的裂纹萌生和早期扩展
IF 1.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2022-07-12 DOI: 10.1080/00325899.2022.2096194
A. Holmberg, U. Wiklund, P. Isaksson, Å. Kassman Rudolphi
ABSTRACT In the present study, crack propagation through the case hardened region of two different PM steels manufactured with different powder size distributions and sintered at different temperatures has been investigated. EBSD was used to study the microstructure before and after case hardening, revealing the relationship between powder particle grains after sintering and prior austenite grains after case hardening. A novel approach was used to achieve short cracks (10–20 µm) with high repeatability. The cracks were then analysed using EBSD and SEM, revealing detailed and novel information about the crack propagation route in the materials. Both tested materials show the same crack propagation behaviour. If a prior grain/prior austenite boundary is present within an angle from the crack initiation site, the cracks will follow the boundary and thus propagate intergranular, suggesting that the preferred route of crack propagation in case hardened sintered steel is along these boundaries.
本文研究了两种粉末粒度分布不同、烧结温度不同的PM钢在淬火区的裂纹扩展情况。利用EBSD对淬火前后的组织进行了研究,揭示了烧结后的粉末颗粒与淬火后的奥氏体晶粒之间的关系。采用了一种新颖的方法来获得短裂纹(10-20µm),具有高重复性。然后使用EBSD和SEM对裂纹进行分析,揭示了材料中裂纹扩展路径的详细和新颖信息。两种材料均表现出相同的裂纹扩展行为。如果在裂纹起始点的一个角度内存在晶粒/奥氏体边界,则裂纹将沿着边界扩展,从而沿晶扩展,这表明硬化烧结钢的裂纹扩展的首选路线是沿着这些边界。
{"title":"Crack initiation and early propagation in case hardened sintered PM steels under cyclic load","authors":"A. Holmberg, U. Wiklund, P. Isaksson, Å. Kassman Rudolphi","doi":"10.1080/00325899.2022.2096194","DOIUrl":"https://doi.org/10.1080/00325899.2022.2096194","url":null,"abstract":"ABSTRACT In the present study, crack propagation through the case hardened region of two different PM steels manufactured with different powder size distributions and sintered at different temperatures has been investigated. EBSD was used to study the microstructure before and after case hardening, revealing the relationship between powder particle grains after sintering and prior austenite grains after case hardening. A novel approach was used to achieve short cracks (10–20 µm) with high repeatability. The cracks were then analysed using EBSD and SEM, revealing detailed and novel information about the crack propagation route in the materials. Both tested materials show the same crack propagation behaviour. If a prior grain/prior austenite boundary is present within an angle from the crack initiation site, the cracks will follow the boundary and thus propagate intergranular, suggesting that the preferred route of crack propagation in case hardened sintered steel is along these boundaries.","PeriodicalId":20392,"journal":{"name":"Powder Metallurgy","volume":"66 1","pages":"164 - 175"},"PeriodicalIF":1.4,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41597611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research priorities for the surgical care of patients taking opioids preoperatively. 术前服用阿片类药物患者的手术护理研究重点。
4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2022-06-17 DOI: 10.1136/rapm-2022-103584
Jayson S Marwaha, Brendin R Beaulieu-Jones, Chris J Kennedy, Mark C Bicket, Gabriel A Brat
{"title":"Research priorities for the surgical care of patients taking opioids preoperatively.","authors":"Jayson S Marwaha, Brendin R Beaulieu-Jones, Chris J Kennedy, Mark C Bicket, Gabriel A Brat","doi":"10.1136/rapm-2022-103584","DOIUrl":"10.1136/rapm-2022-103584","url":null,"abstract":"","PeriodicalId":20392,"journal":{"name":"Powder Metallurgy","volume":"62 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91048708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Growth inhibiting during ultra-high temperature sintering of injection moulded 17-4 PH stainless steel through the dispersion of ZrO2 particle as a thermal stabiliser 通过分散ZrO2颗粒作为热稳定剂在注射成型17-4PH不锈钢的超高温烧结过程中抑制生长
IF 1.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2022-05-31 DOI: 10.1080/00325899.2022.2069076
Masoud Moradjoy, H. Khorsand
ABSTRACT The present work deals with the metal injection moulding and ultra-high temperature sintering of 17-4 PH powder. Purposefully, 5 mass% ZrO2 particles were dispersed by applying high shear stress during feedstock preparation. Uniformly distributed particles effectively hindered the powder boundary migration and limited their growth during ultra-high sintering temperatures. The achieved thermal stability provided a proper condition for reducing the final porosity to 3% and significantly improved the ultimate strength to 1070 MPa after sintering at 1380°C. Also, the ZrO2 particles acted as facilitators of sliding between solid powders and substantially reduced the required pressure for injecting to 700 Bar. Through introducing such a new approach in the field of powder injection moulding by ZrO2 particles, the amount of anisotropic shrinkage was reduced to 2%.
本文研究了17-4PH粉末的金属注射成型和超高温烧结。有目的地,通过在原料制备过程中施加高剪切应力来分散5质量%的ZrO2颗粒。在超高烧结温度下,均匀分布的颗粒有效地阻碍了粉末边界的迁移并限制了它们的生长。所获得的热稳定性为将最终孔隙率降低至3%提供了合适的条件,并显著提高了极限强度至1070 在1380°C下烧结后的MPa。此外,ZrO2颗粒起到促进固体粉末之间滑动的作用,并显著降低了注射所需的压力至700巴。通过在ZrO2颗粒粉末注射成型领域引入这种新方法,各向异性收缩量减少到2%。
{"title":"Growth inhibiting during ultra-high temperature sintering of injection moulded 17-4 PH stainless steel through the dispersion of ZrO2 particle as a thermal stabiliser","authors":"Masoud Moradjoy, H. Khorsand","doi":"10.1080/00325899.2022.2069076","DOIUrl":"https://doi.org/10.1080/00325899.2022.2069076","url":null,"abstract":"ABSTRACT The present work deals with the metal injection moulding and ultra-high temperature sintering of 17-4 PH powder. Purposefully, 5 mass% ZrO2 particles were dispersed by applying high shear stress during feedstock preparation. Uniformly distributed particles effectively hindered the powder boundary migration and limited their growth during ultra-high sintering temperatures. The achieved thermal stability provided a proper condition for reducing the final porosity to 3% and significantly improved the ultimate strength to 1070 MPa after sintering at 1380°C. Also, the ZrO2 particles acted as facilitators of sliding between solid powders and substantially reduced the required pressure for injecting to 700 Bar. Through introducing such a new approach in the field of powder injection moulding by ZrO2 particles, the amount of anisotropic shrinkage was reduced to 2%.","PeriodicalId":20392,"journal":{"name":"Powder Metallurgy","volume":"66 1","pages":"20 - 28"},"PeriodicalIF":1.4,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43429300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance improvement and microstructure evolution of powder metallurgy high silicon steel with phosphorus addition 添加磷对粉末冶金高硅钢性能的改善及组织演变
IF 1.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2022-05-26 DOI: 10.1080/00325899.2022.2080156
Q. Qin, Fang Yang, Cun-guang Chen, Junjie Hao, Zhimeng Guo
ABSTRACT In this study, phosphorus-containing Fe-5 wt.% Si silicon steel sheet was prepared by powder loose sintering followed by hot rolling. Defect-free sheet with high P content was achieved. The study found that P effects on sintering promotion and processing deterioration were significantly suppressed by the presence of Si in steel. Appropriate P content would significantly improve the mechanical and magnetic properties of the sample. Under a comprehensive consideration, P content of 0.3-0.5 wt.% was suitable for silicon steel. Compared with P-free silicon steel, with 0.3 wt.% P addition, the tensile strength of silicon steel increased from 521 MPa to 680 MPa. As to the magnetic performance, the sample with 0.5 wt.% P had B8 of 1370.5 mT, and W10/50 0f 1.16 W·kg−1, while those for P-free sample were 1332.3 mT, and 1.46 W·kg−1, respectively. FeP phase with special morphology would be precipitated in samples with P addition.
摘要在本研究中,含磷的Fe-5 通过粉末松散烧结然后热轧制备wt.%Si硅钢片。实现了具有高P含量的无缺陷片材。研究发现,钢中Si的存在显著抑制了P对烧结促进和工艺劣化的影响。适当的P含量将显著改善样品的机械和磁性能。综合考虑,P含量为0.3-0.5 wt.%适用于硅钢。与无磷硅钢相比,添加0.3wt.%P后,硅钢的抗拉强度从521MPa提高到680MPa。关于磁性性能,0.5 wt.%P的B8为1370.5 mT和W10/50 0f 1.16 Wõkg−1,而无磷样品为1332.3 mT和1.46 Wõkg−1。在添加磷的样品中会析出具有特殊形态的FeP相。
{"title":"Performance improvement and microstructure evolution of powder metallurgy high silicon steel with phosphorus addition","authors":"Q. Qin, Fang Yang, Cun-guang Chen, Junjie Hao, Zhimeng Guo","doi":"10.1080/00325899.2022.2080156","DOIUrl":"https://doi.org/10.1080/00325899.2022.2080156","url":null,"abstract":"ABSTRACT In this study, phosphorus-containing Fe-5 wt.% Si silicon steel sheet was prepared by powder loose sintering followed by hot rolling. Defect-free sheet with high P content was achieved. The study found that P effects on sintering promotion and processing deterioration were significantly suppressed by the presence of Si in steel. Appropriate P content would significantly improve the mechanical and magnetic properties of the sample. Under a comprehensive consideration, P content of 0.3-0.5 wt.% was suitable for silicon steel. Compared with P-free silicon steel, with 0.3 wt.% P addition, the tensile strength of silicon steel increased from 521 MPa to 680 MPa. As to the magnetic performance, the sample with 0.5 wt.% P had B8 of 1370.5 mT, and W10/50 0f 1.16 W·kg−1, while those for P-free sample were 1332.3 mT, and 1.46 W·kg−1, respectively. FeP phase with special morphology would be precipitated in samples with P addition.","PeriodicalId":20392,"journal":{"name":"Powder Metallurgy","volume":"66 1","pages":"43 - 53"},"PeriodicalIF":1.4,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48504069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In situ TEM observation of the microstructure characteristics of the vacuum sintering, sub-zero and heat treatments of Vanadis 23 high-speed steel by adding Cr3C2–TaC–TiC powders 添加Cr3C2–TaC–TiC粉末对钒23高速钢真空烧结、亚零度和热处理组织特征的原位TEM观察
IF 1.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2022-05-26 DOI: 10.1080/00325899.2022.2080157
Shih-Hsien Chang, C. Chang, K. Huang
ABSTRACT This research added different ratios of chromium carbides, tantalum carbide, and titanium carbide powders to Vanadis 23 high-speed steel powders. The composite powders utilised vacuum sintering at 1230, 1245, 1260, and 1275°C for 1 h, respectively, and the experimental results show that good mechanical properties were obtained by the addition of 0.6 mass% Cr3C2–0.2 mass% TaC–0.2 mass% TiC sintered at 1245°C for 1 h. Meanwhile, the apparent porosity was decreased to 0.23%, and the transverse rupture strength and hardness reached 2470.7 MPa and 78.5 HRA, respectively. When optimally sintered Vanadis 23 composites (0.2 T) underwent a series of heat treatments, the transverse rupture strength and hardness values were obviously enhanced to 2693.6 MPa and 84.0 HRA after quenching, and sub-zero and tempering treatments. The EBSD and TEM results confirm that the MC, M 6C, M 7C3, and M 23C6-type carbides appeared in the 0.2 T specimen after vacuum sintering and sub-zero heat treatments.
摘要本研究在钒23高速钢粉末中添加了不同比例的碳化铬、碳化钽和碳化钛粉末。复合粉末在1230、1245、1260和1275°C下使用真空烧结1 h、 实验结果表明,添加0.6质量%Cr3C2–0.2质量%TaC–0.2质量%TiC在1245°C下烧结1 h.同时,表观孔隙率降至0.23%,横向断裂强度和硬度达到2470.7 MPa和78.5 HRA。最佳烧结的钒23复合材料(0.2 T) 经过一系列的热处理,横向断裂强度和硬度值明显提高到2693.6 MPa和84.0HRA。EBSD和TEM结果证实,在0.2 真空烧结和亚零度热处理后的T试样。
{"title":"In situ TEM observation of the microstructure characteristics of the vacuum sintering, sub-zero and heat treatments of Vanadis 23 high-speed steel by adding Cr3C2–TaC–TiC powders","authors":"Shih-Hsien Chang, C. Chang, K. Huang","doi":"10.1080/00325899.2022.2080157","DOIUrl":"https://doi.org/10.1080/00325899.2022.2080157","url":null,"abstract":"ABSTRACT This research added different ratios of chromium carbides, tantalum carbide, and titanium carbide powders to Vanadis 23 high-speed steel powders. The composite powders utilised vacuum sintering at 1230, 1245, 1260, and 1275°C for 1 h, respectively, and the experimental results show that good mechanical properties were obtained by the addition of 0.6 mass% Cr3C2–0.2 mass% TaC–0.2 mass% TiC sintered at 1245°C for 1 h. Meanwhile, the apparent porosity was decreased to 0.23%, and the transverse rupture strength and hardness reached 2470.7 MPa and 78.5 HRA, respectively. When optimally sintered Vanadis 23 composites (0.2 T) underwent a series of heat treatments, the transverse rupture strength and hardness values were obviously enhanced to 2693.6 MPa and 84.0 HRA after quenching, and sub-zero and tempering treatments. The EBSD and TEM results confirm that the MC, M 6C, M 7C3, and M 23C6-type carbides appeared in the 0.2 T specimen after vacuum sintering and sub-zero heat treatments.","PeriodicalId":20392,"journal":{"name":"Powder Metallurgy","volume":"66 1","pages":"151 - 163"},"PeriodicalIF":1.4,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48540164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Microstructure, mechanical and wear property correlation of Al bronze alloys 铝青铜合金的显微组织、力学性能和磨损性能的相关性
IF 1.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2022-05-23 DOI: 10.1080/00325899.2022.2079183
Mahammad Ali Shaik, Brahma Raju Golla
ABSTRACT In the present work, the effect of Al content (0, 3, 5, 10, 15 wt-%) on the microstructure, mechanical and wear properties of Cu was systematically studied. Interestingly, the core–shell microstructure was observed in the Cu–Al alloys or Al bronzes with different layers of α-Cu, and intermetallic phases. The Cu–Al alloys displayed good compressive yield strength of 174–653 MPa, in particular, the Cu samples with Al (upto 10 wt-%) did not show fracture upto strain of 40%. Abrasion wear was the predominant wear mechanism in pure Cu and Cu–Al alloys after sliding against SiC. The Al addition to Cu drastically decreased the wear rate (198 ×10−3 to 3.8 ×10−3 mm3 N–1m–1) of Cu–Al alloys. The present work demonstrates the advantage of the addition of (5–10 wt-%) Al to Cu in achieving good combination of mechanical and wear properties of Cu–Al alloys.
本文系统地研究了Al含量(0,3,5,10,15wt%)对Cu组织、力学性能和磨损性能的影响。有趣的是,在具有不同α-Cu层和金属间相的Cu–Al合金或Al青铜中观察到了核壳微观结构。Cu–Al合金显示出174–653的良好压缩屈服强度 MPa,特别是含Al(高达10wt%)的Cu样品在高达40%的应变下没有显示出断裂。磨损是纯Cu和Cu–Al合金在与SiC滑动后的主要磨损机制。在Cu中添加Al显著降低了磨损率(198×10−3至3.8×10−3mm3 N–1m–1)的Cu–Al合金。目前的工作证明了在Cu中添加(5–10wt%)Al在实现Cu–Al合金的机械性能和磨损性能的良好结合方面的优势。
{"title":"Microstructure, mechanical and wear property correlation of Al bronze alloys","authors":"Mahammad Ali Shaik, Brahma Raju Golla","doi":"10.1080/00325899.2022.2079183","DOIUrl":"https://doi.org/10.1080/00325899.2022.2079183","url":null,"abstract":"ABSTRACT In the present work, the effect of Al content (0, 3, 5, 10, 15 wt-%) on the microstructure, mechanical and wear properties of Cu was systematically studied. Interestingly, the core–shell microstructure was observed in the Cu–Al alloys or Al bronzes with different layers of α-Cu, and intermetallic phases. The Cu–Al alloys displayed good compressive yield strength of 174–653 MPa, in particular, the Cu samples with Al (upto 10 wt-%) did not show fracture upto strain of 40%. Abrasion wear was the predominant wear mechanism in pure Cu and Cu–Al alloys after sliding against SiC. The Al addition to Cu drastically decreased the wear rate (198 ×10−3 to 3.8 ×10−3 mm3 N–1m–1) of Cu–Al alloys. The present work demonstrates the advantage of the addition of (5–10 wt-%) Al to Cu in achieving good combination of mechanical and wear properties of Cu–Al alloys.","PeriodicalId":20392,"journal":{"name":"Powder Metallurgy","volume":"66 1","pages":"54 - 63"},"PeriodicalIF":1.4,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47765333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Powder Metallurgy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1