Myostatin (MSTN) and Callipyge (CLPG) genes are key regulators of muscle growth. While MSTN inhibits muscle development, the CLPG mutation induces muscle hypertrophy through a specific imprinted genetic mechanism. The interaction between these genes remains of interest for improving livestock muscle traits. In this study, CRISPR/Cas9 was employed to edit MSTN and CLPG genes in goat fibroblast cells via electrotransfection. Cells were selected using puromycin antibiotic, and gene-editing efficiency was evaluated through Sanger sequencing. Gene expression changes were analyzed using RT-qPCR analysis. MSTN gene knockout resulted in significant downregulation of MSTN and CLPG, while GTL2 expression was upregulated by more than 50-fold. Additionally, myosin heavy chain genes (MYH1, MYH3, MYH4) were strongly upregulated, with MYH3 13-fold and MYH4 30-fold increase in the expression. In CLPG-edited cells, the expression of MSTN, TRIM28, and CLPG was reduced, while GTL2 was upregulated by 6-fold. MYH3 and MYH4 expression increased 4-fold in CLPG-edited cells, though the increase was less pronounced compared to MSTN-edited cells. DLK1 expression was undetectable in both non-edited control and gene-edited fibroblast cells. Our findings support the interaction between MSTN and CLPG, contributing to the regulation of muscle growth. Notably, the study also highlights the challenges associated with editing imprinted genes like CLPG and suggests that TRIM28 may play a role downstream of CLPG regulation. These results provide valuable insights into muscle development regulation, offering potential applications in livestock genetic improvement.
扫码关注我们
求助内容:
应助结果提醒方式:
