Pub Date : 2014-04-13DOI: 10.1109/NEMS.2014.6908801
Wang Pan, Yang Li, Wuzhu Deng, Yangyang Chen, Wenli Zhou
A Dual-gate graphene field effect transistor was fabricated with HfO2 and SiO2 as the back and top dielectric layers on silicon substrate, respectively. The CVD grown graphene was transferred a process by spin-coating a PMMA layer. The electrical properties of the graphene transistors were investigated. Ambipolar behavior of field effect transistor is demonstrated with the carrier mobility of the channel between 3000 to 4500cm2/Vs. It is found that the AZ5214 photoresist covered on graphene during the fabrication process induces its p-type doping and annealing can reduce the impurity concentration dramatically.
{"title":"A dual-gate ambipolar graphene field effect transistor","authors":"Wang Pan, Yang Li, Wuzhu Deng, Yangyang Chen, Wenli Zhou","doi":"10.1109/NEMS.2014.6908801","DOIUrl":"https://doi.org/10.1109/NEMS.2014.6908801","url":null,"abstract":"A Dual-gate graphene field effect transistor was fabricated with HfO2 and SiO2 as the back and top dielectric layers on silicon substrate, respectively. The CVD grown graphene was transferred a process by spin-coating a PMMA layer. The electrical properties of the graphene transistors were investigated. Ambipolar behavior of field effect transistor is demonstrated with the carrier mobility of the channel between 3000 to 4500cm2/Vs. It is found that the AZ5214 photoresist covered on graphene during the fabrication process induces its p-type doping and annealing can reduce the impurity concentration dramatically.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"9 1","pages":"247-250"},"PeriodicalIF":0.0,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75300375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-04-13DOI: 10.1109/NEMS.2014.6908858
Q. Mao, P. Deng
Heat accumulation has become an important cause for the degradation of high power LEDs, and micro-channel cooler (MCC) is believed to be a promising solution for this issue. In this paper, a 3D transient heat transfer finite element model was established to investigate the cross-section shape and material of the MCC on cooling performance of high power LED chips. For comparison, three cross-section shapes (regular triangle, square and circle) and materials (Al, Cu and Si) were studied. We found that the Cu MCC with a regular triangular cross-section presented the best cooling performance among the others, indicating the lowest maximum and averaged temperature in the LED chip. As to the time response, the Si MCC with a regular triangular cross-section showed the fastest transient temperature response.
{"title":"Study of micro-channel shape and material property on cooling performance of high power LED chips","authors":"Q. Mao, P. Deng","doi":"10.1109/NEMS.2014.6908858","DOIUrl":"https://doi.org/10.1109/NEMS.2014.6908858","url":null,"abstract":"Heat accumulation has become an important cause for the degradation of high power LEDs, and micro-channel cooler (MCC) is believed to be a promising solution for this issue. In this paper, a 3D transient heat transfer finite element model was established to investigate the cross-section shape and material of the MCC on cooling performance of high power LED chips. For comparison, three cross-section shapes (regular triangle, square and circle) and materials (Al, Cu and Si) were studied. We found that the Cu MCC with a regular triangular cross-section presented the best cooling performance among the others, indicating the lowest maximum and averaged temperature in the LED chip. As to the time response, the Si MCC with a regular triangular cross-section showed the fastest transient temperature response.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"78 1","pages":"498-501"},"PeriodicalIF":0.0,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87075144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-04-13DOI: 10.1109/NEMS.2014.6908853
P. Lin, C. Pan, Y. C. Chen, F. Hsu, S. Shen, J. Huang, C. M. Chang
This UV LED lighting technology developed in this study is expected to be applied to photolithography industry. Since the accuracy of the degree of cross linking and sidewall profile could be affected by intensity of UV light dosage, this research proposes optical design and fabrication of free-curved lens for light source element of UV LED for exposure machines. In this study, the optical intensity distributions of the lens with TFMG were determined by using commercial optical simulation FRED software. Based on the design, the lenses were fabricated using thermoforming of optical glass and PMMA, respectively. Then the lens is selectively coated with thin film metallic glasses (TFMG, Ag30 Mg45 Al25). For the TFMG coating, multi-target sputtering system is applied to sputter TFMG reflecting film on the surface of lens with thickness of 100 nm to 300 nm. With the both design of TFMG selective deposition and lens curve, the optical field of Lambertian emission patterns of UV LED can be transformed to uniform profile. Through this design of reflection of UV LED light source, the intensity and uniformity could be enhanced. UV LED light source with 360 to 390 nm in wavelength was chosen as light source to simulate the effects of I-line and G-line. The specific wavelength of UV light is measured by spectrometer (USB2000+VIS-NIR, Ocean Optics) and BM7.
{"title":"Design and fabrication of lens selectively coated with TFMG for uniform intensity of UV LED","authors":"P. Lin, C. Pan, Y. C. Chen, F. Hsu, S. Shen, J. Huang, C. M. Chang","doi":"10.1109/NEMS.2014.6908853","DOIUrl":"https://doi.org/10.1109/NEMS.2014.6908853","url":null,"abstract":"This UV LED lighting technology developed in this study is expected to be applied to photolithography industry. Since the accuracy of the degree of cross linking and sidewall profile could be affected by intensity of UV light dosage, this research proposes optical design and fabrication of free-curved lens for light source element of UV LED for exposure machines. In this study, the optical intensity distributions of the lens with TFMG were determined by using commercial optical simulation FRED software. Based on the design, the lenses were fabricated using thermoforming of optical glass and PMMA, respectively. Then the lens is selectively coated with thin film metallic glasses (TFMG, Ag30 Mg45 Al25). For the TFMG coating, multi-target sputtering system is applied to sputter TFMG reflecting film on the surface of lens with thickness of 100 nm to 300 nm. With the both design of TFMG selective deposition and lens curve, the optical field of Lambertian emission patterns of UV LED can be transformed to uniform profile. Through this design of reflection of UV LED light source, the intensity and uniformity could be enhanced. UV LED light source with 360 to 390 nm in wavelength was chosen as light source to simulate the effects of I-line and G-line. The specific wavelength of UV light is measured by spectrometer (USB2000+VIS-NIR, Ocean Optics) and BM7.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"96 1","pages":"477-480"},"PeriodicalIF":0.0,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86987900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-04-13DOI: 10.1109/NEMS.2014.6908824
Pei Chen, Yulong Zhao, Yiyao Li
Numerical analysis and analog simulation are used to investigate the FSI (fluid structure interaction) characteristics of a differential pressure flow sensor. The FSI model is created using the hydromechanics and elastic mechanics, and a systematic theory is created to finish the numerical analysis. Then the working mechanism of the flow sensor is analyzed depend on the FSI results. The commercial software FLUENT and ANSYS are used to finish the analog simulation. The result of numerical analysis is similar to that of analog simulation. Depend on the results of numerical analysis and analog simulation, the shape and size of the flow sensor are optimized. The optimized flow sensor is fabricated and calibrated. The calibration results show that the cantilever based differential pressure flow sensor achieves ideal static characteristics and works well in the practical applications.
{"title":"Fluid structure interaction analysis and simulation of micromachined cantilever-based flow sensor","authors":"Pei Chen, Yulong Zhao, Yiyao Li","doi":"10.1109/NEMS.2014.6908824","DOIUrl":"https://doi.org/10.1109/NEMS.2014.6908824","url":null,"abstract":"Numerical analysis and analog simulation are used to investigate the FSI (fluid structure interaction) characteristics of a differential pressure flow sensor. The FSI model is created using the hydromechanics and elastic mechanics, and a systematic theory is created to finish the numerical analysis. Then the working mechanism of the flow sensor is analyzed depend on the FSI results. The commercial software FLUENT and ANSYS are used to finish the analog simulation. The result of numerical analysis is similar to that of analog simulation. Depend on the results of numerical analysis and analog simulation, the shape and size of the flow sensor are optimized. The optimized flow sensor is fabricated and calibrated. The calibration results show that the cantilever based differential pressure flow sensor achieves ideal static characteristics and works well in the practical applications.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"100 1","pages":"350-353"},"PeriodicalIF":0.0,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73636850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-04-13DOI: 10.1109/NEMS.2014.6908832
K. Tu, C. Chung
We report the experimental and analysis results of micro parts processing using 1064 nm Nd:YVO4 laser direct-write micro patterning of indium tin oxide (ITO) thin films and then followed by electroforming on the patterns. Compared with conventional photolithographic and etching technologies, direct-write micro-patterns of ITO using Nd:YVO4 laser at proper control can achieve high quality of surface without requiring numerous processing steps. Using diffractive multiple Nd:YVO4 beam, the ITO thin film could be removed without any damage to the glass structure. After laser patterning, a high overlapping area of laser spot was used to pattern the electrode layer on film surface for obtaining a fine ablated edge profile. Accordingly, the micro parts can be obtained using electroforming and release process via laser-patterned ITO films. The new micro parts processing is a maskless, dry and low-cost process instead of the complex photolithography, sputtering and sacrificial layer.
{"title":"Selective patterning of indium tin oxide films using 1064 nm laser for micro parts processing","authors":"K. Tu, C. Chung","doi":"10.1109/NEMS.2014.6908832","DOIUrl":"https://doi.org/10.1109/NEMS.2014.6908832","url":null,"abstract":"We report the experimental and analysis results of micro parts processing using 1064 nm Nd:YVO4 laser direct-write micro patterning of indium tin oxide (ITO) thin films and then followed by electroforming on the patterns. Compared with conventional photolithographic and etching technologies, direct-write micro-patterns of ITO using Nd:YVO4 laser at proper control can achieve high quality of surface without requiring numerous processing steps. Using diffractive multiple Nd:YVO4 beam, the ITO thin film could be removed without any damage to the glass structure. After laser patterning, a high overlapping area of laser spot was used to pattern the electrode layer on film surface for obtaining a fine ablated edge profile. Accordingly, the micro parts can be obtained using electroforming and release process via laser-patterned ITO films. The new micro parts processing is a maskless, dry and low-cost process instead of the complex photolithography, sputtering and sacrificial layer.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"17 1","pages":"382-385"},"PeriodicalIF":0.0,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75492491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-04-13DOI: 10.1109/NEMS.2014.6908899
Anju Toor, Jim C. Cheng, A. Pisano
A novel nanocomposite material was designed and synthesized for potential use in energy storage devices. It comprises of gold nanoparticles of diameter 5nm and SU-8 polymer. Scanning Electron Microscopy, Transmission Electron Microscopy and Energy Dispersive X-ray Spectroscopy techniques were used for the characterization of the nanocomposite material. The presented work represents a major first step toward creation of a superior metal-polymer nanocomposite solid-state dielectric for the development of a high energy and power density capacitor. A uniform dispersion of nanoparticles with low particle agglomerations and number of voids has been achieved. It is critical to reduce the number of voids through the nanocomposite film so the dielectric leakage can be minimized. Capacitor devices with nanocomposite material as dielectric exhibited higher dielectric constant values than the polymer only samples.
{"title":"Synthesis and characterization of gold nanoparticle/SU-8 polymer based nanocomposite","authors":"Anju Toor, Jim C. Cheng, A. Pisano","doi":"10.1109/NEMS.2014.6908899","DOIUrl":"https://doi.org/10.1109/NEMS.2014.6908899","url":null,"abstract":"A novel nanocomposite material was designed and synthesized for potential use in energy storage devices. It comprises of gold nanoparticles of diameter 5nm and SU-8 polymer. Scanning Electron Microscopy, Transmission Electron Microscopy and Energy Dispersive X-ray Spectroscopy techniques were used for the characterization of the nanocomposite material. The presented work represents a major first step toward creation of a superior metal-polymer nanocomposite solid-state dielectric for the development of a high energy and power density capacitor. A uniform dispersion of nanoparticles with low particle agglomerations and number of voids has been achieved. It is critical to reduce the number of voids through the nanocomposite film so the dielectric leakage can be minimized. Capacitor devices with nanocomposite material as dielectric exhibited higher dielectric constant values than the polymer only samples.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"26 1","pages":"664-668"},"PeriodicalIF":0.0,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73590234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-04-13DOI: 10.1109/NEMS.2014.6908869
E. Maeda
Optical resonances with light wave vectors in a photonic crystal (PhC) slabs depend on the shape, size, period, and thickness of the structures. In case of the metallic PhC, there has been a limitation to control the thickness of the metallic structures, more especially thick metallic structures. In this paper, the new fabrication technology for three dimensional metallic PhC with thick metallic structures has been demonstrated. To realize the thick metallic PhC, e-beam lithography with thick resist, gold sputtering with rotating tilted stage, and reactive ion etching with argon and tetrafuluoromethane were performed. The measured absolute reflectance spectra of fabricated three dimensional metallic PhC were studied as a function of the incident light wave angle from the visible region to near infrared region. It was found that fabricated three dimensional metallic PhCs show resonance peaks in the light wave region.
{"title":"Fabrication technology for three dimensional metallic photonic crystal slab","authors":"E. Maeda","doi":"10.1109/NEMS.2014.6908869","DOIUrl":"https://doi.org/10.1109/NEMS.2014.6908869","url":null,"abstract":"Optical resonances with light wave vectors in a photonic crystal (PhC) slabs depend on the shape, size, period, and thickness of the structures. In case of the metallic PhC, there has been a limitation to control the thickness of the metallic structures, more especially thick metallic structures. In this paper, the new fabrication technology for three dimensional metallic PhC with thick metallic structures has been demonstrated. To realize the thick metallic PhC, e-beam lithography with thick resist, gold sputtering with rotating tilted stage, and reactive ion etching with argon and tetrafuluoromethane were performed. The measured absolute reflectance spectra of fabricated three dimensional metallic PhC were studied as a function of the incident light wave angle from the visible region to near infrared region. It was found that fabricated three dimensional metallic PhCs show resonance peaks in the light wave region.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"53 1","pages":"540-543"},"PeriodicalIF":0.0,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78178824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-04-13DOI: 10.1109/NEMS.2014.6908902
Ting-Hsuan Chen, Wei Liu, Yuanhang Li
Single cell's left-right biased motion, or chirality, is recent finding that may explain the origin of left right asymmetry at tissue development. Yet sufficient tools are lack to enrich our understanding toward this field. Here, to characterize cytoskeletal chirality, we use nanotechnology that offers spatial cues in the scale similar to the size of cells. We applied ferromagnetic nickel nanowires as the sensors attached to living cells. Within a uniform, horizontal magnetic field, cellular chirality rotates the nanowires and generates a mechanical torque. This cellular torque is eventually balanced with the magnetic torque created from the horizontal magnetic field at a clockwise of counter-clockwise angle. As such, this angular alignment reveals a quantifiable value of cytoskeletal chirality. Importantly, the exhibition of cellular chirality is dependent on cell type and time. Also, as the key factor of cytoskeleton, actin plays an important role in this feature. These findings demonstrate a new approach for future investigation of cell mechanics, with implication for tissue regeneration.
{"title":"Characterization of cellular mechanical torque by rotation of ferromagnetic nanowire","authors":"Ting-Hsuan Chen, Wei Liu, Yuanhang Li","doi":"10.1109/NEMS.2014.6908902","DOIUrl":"https://doi.org/10.1109/NEMS.2014.6908902","url":null,"abstract":"Single cell's left-right biased motion, or chirality, is recent finding that may explain the origin of left right asymmetry at tissue development. Yet sufficient tools are lack to enrich our understanding toward this field. Here, to characterize cytoskeletal chirality, we use nanotechnology that offers spatial cues in the scale similar to the size of cells. We applied ferromagnetic nickel nanowires as the sensors attached to living cells. Within a uniform, horizontal magnetic field, cellular chirality rotates the nanowires and generates a mechanical torque. This cellular torque is eventually balanced with the magnetic torque created from the horizontal magnetic field at a clockwise of counter-clockwise angle. As such, this angular alignment reveals a quantifiable value of cytoskeletal chirality. Importantly, the exhibition of cellular chirality is dependent on cell type and time. Also, as the key factor of cytoskeleton, actin plays an important role in this feature. These findings demonstrate a new approach for future investigation of cell mechanics, with implication for tissue regeneration.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"56 1","pages":"678-681"},"PeriodicalIF":0.0,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78038976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-04-13DOI: 10.1109/NEMS.2014.6908881
K. Tseng, Te-Hsun Lin, N. Modsching, W. Fang, C. Fu
We will present a novel detecting principle for MEMS physical sensors based on contactless optical property through periodic sub-wavelength gratings formed by polymer material. This approach employs the wire-grid polarizer (WGP) structure which was fabricated by laser interference lithography (LIL) system and inductively coupled plasma (ICP) dry etching method on the silicon substrate. The WGP transform the deflection of the cantilever beam to the P-polarized of the transmitted light (Tp). In this way, we can get high sensitivity sensing signal directly by the photodetector without physical influence in the MEMS structure.
{"title":"Polymer material grating used on contactless sub-wavelength MEMS physical sensors","authors":"K. Tseng, Te-Hsun Lin, N. Modsching, W. Fang, C. Fu","doi":"10.1109/NEMS.2014.6908881","DOIUrl":"https://doi.org/10.1109/NEMS.2014.6908881","url":null,"abstract":"We will present a novel detecting principle for MEMS physical sensors based on contactless optical property through periodic sub-wavelength gratings formed by polymer material. This approach employs the wire-grid polarizer (WGP) structure which was fabricated by laser interference lithography (LIL) system and inductively coupled plasma (ICP) dry etching method on the silicon substrate. The WGP transform the deflection of the cantilever beam to the P-polarized of the transmitted light (Tp). In this way, we can get high sensitivity sensing signal directly by the photodetector without physical influence in the MEMS structure.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"16 1","pages":"592-595"},"PeriodicalIF":0.0,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80336578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-04-13DOI: 10.1109/NEMS.2014.6908790
Yuxian Liu, Weilei L. Feng, Chunhua He, Long Wang, Liguo G. Dong, Qiancheng Zhao, Zhenchuan Yang, G. Yan
This paper presents a digital closed loop control method for the sense mode of a mode-matching MEMS vibratory gyroscope. The sense closed loop system reported in our previous work is relatively complex and unreliable due to the existence of notch filter. In this work, a more simple and robust control system is realized with the help of mode-matching control. With a tuning voltage automatically applied on the tuning combs of the gyroscope, a frequency split of less than 0.3 Hz is achieved. Experimental results show that the mode-matched gyroscope achieves a scale factor of 18.5mV/deg/s with a nonlinearity of 0.088% and a bias instability of 2.7deg/h.
{"title":"Design of a digital closed control loop for the sense mode of a mode-matching MEMS vibratory gyroscope","authors":"Yuxian Liu, Weilei L. Feng, Chunhua He, Long Wang, Liguo G. Dong, Qiancheng Zhao, Zhenchuan Yang, G. Yan","doi":"10.1109/NEMS.2014.6908790","DOIUrl":"https://doi.org/10.1109/NEMS.2014.6908790","url":null,"abstract":"This paper presents a digital closed loop control method for the sense mode of a mode-matching MEMS vibratory gyroscope. The sense closed loop system reported in our previous work is relatively complex and unreliable due to the existence of notch filter. In this work, a more simple and robust control system is realized with the help of mode-matching control. With a tuning voltage automatically applied on the tuning combs of the gyroscope, a frequency split of less than 0.3 Hz is achieved. Experimental results show that the mode-matched gyroscope achieves a scale factor of 18.5mV/deg/s with a nonlinearity of 0.088% and a bias instability of 2.7deg/h.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"19 1","pages":"199-203"},"PeriodicalIF":0.0,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88766802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}