首页 > 最新文献

Desalination最新文献

英文 中文
Integrating ZIF-90/zeolite-derived oxides and multifunctional polymers for multi-interaction adsorption of Pb2+ in wastewater ZIF-90/沸石衍生氧化物与多功能聚合物复合吸附废水中Pb2+的研究
IF 9.8 1区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2025-12-30 DOI: 10.1016/j.desal.2025.119821
Van-Doan Nguyen , Thi Giang Nguyen , Thi Phuong Nguyen , Anh-Tuan Vu , The-Anh Luu , Van-Giang Le
Currently, various carbon-, metal oxide-, and biopolymer-based adsorbents have been developed for heavy metal remediation. Nevertheless, most still exhibit low adsorption capacity, poor stability in complex ionic environments, and limited regeneration ability. This limitation underscores the urgent need to design hybrid adsorbents that combine the high chemical selectivity of biopolymers with the structural robustness of inorganic frameworks. In this study, a novel ZZO/A-D composite was fabricated by integrating an oxide–zeolite framework derived from ZIF-90 with a diethylenetriaminepentaacetic (DTPA)-modified alginate polymer, forming a hierarchical capillary network enriched with –COOH, –NH, and –OH functional groups capable of strong complexation with Pb2+. Under optimal conditions (pH = 6, Pb2+ amount of 200 mg/L, ZZO/A-D mass 0.1 g/L, and temperature 30 °C), ZZO/A-D exhibited an exceptionally high maximum uptake capability (qmax) of 1428.76 mg/g. The uptake process followed the Langmuir (R2 = 0.998) and second-order kinetics (R2 = 0.999), confirming the dominance of chemisorption via coordination and ion-exchange mechanisms. The presence of coexisting cations inhibited Pb2+ removal in the order K+ > Na+ > Mg2+ > Ca2+, whereas the anions SO42−, CO32−, and NO3 caused inhibition levels of 90.45, 85.43, and 75.34 %, respectively. Moreover, the material maintained over 80 % removal efficiency after five adsorption–desorption cycles, demonstrating excellent reusability and structural integrity. With its superior adsorption performance, high stability, and strong tolerance to competing ions, ZZO/A-D offers a promising strategy for developing next-generation oxide–biopolymer hybrid adsorbents for the efficient decotamination of heavy metal-contaminated wastewater.
目前,各种基于碳、金属氧化物和生物聚合物的吸附剂已被开发用于重金属修复。然而,大多数材料的吸附能力较低,在复杂离子环境中的稳定性较差,再生能力有限。这一限制强调了迫切需要设计混合吸附剂,结合生物聚合物的高化学选择性和无机框架的结构坚固性。在这项研究中,通过将ZIF-90衍生的氧化物分子筛框架与二乙烯三胺五乙酸(DTPA)修饰的海藻酸盐聚合物整合,形成了一种新型的ZZO/ a - d复合材料,形成了一个富含-COOH, - nhh和-OH官能团的分层毛细管网络,能够与Pb2+强络合。在最佳条件下(pH = 6, Pb2+用量为200 mg/L, ZZO/A-D质量为0.1 g/L,温度为30℃),ZZO/A-D的最大吸收能力(qmax)达到1428.76 mg/g。吸附过程遵循Langmuir (R2 = 0.998)和二阶动力学(R2 = 0.999),证实了化学吸附主要通过配位和离子交换机制进行。共存阳离子的存在抑制Pb2+去除的顺序为K+ >; Na+ > Mg2+ > Ca2+,而阴离子SO42−、CO32−和NO3−的抑制水平分别为90.45%、85.43%和75.34%。经过5次吸附-解吸循环后,该材料的去除率保持在80%以上,具有良好的可重复使用性和结构完整性。凭借其优异的吸附性能、高稳定性和对竞争离子的强耐受性,ZZO/ a - d为开发下一代氧化物-生物聚合物混合吸附剂提供了一种有前景的策略,可用于高效去除重金属污染废水。
{"title":"Integrating ZIF-90/zeolite-derived oxides and multifunctional polymers for multi-interaction adsorption of Pb2+ in wastewater","authors":"Van-Doan Nguyen ,&nbsp;Thi Giang Nguyen ,&nbsp;Thi Phuong Nguyen ,&nbsp;Anh-Tuan Vu ,&nbsp;The-Anh Luu ,&nbsp;Van-Giang Le","doi":"10.1016/j.desal.2025.119821","DOIUrl":"10.1016/j.desal.2025.119821","url":null,"abstract":"<div><div>Currently, various carbon-, metal oxide-, and biopolymer-based adsorbents have been developed for heavy metal remediation. Nevertheless, most still exhibit low adsorption capacity, poor stability in complex ionic environments, and limited regeneration ability. This limitation underscores the urgent need to design hybrid adsorbents that combine the high chemical selectivity of biopolymers with the structural robustness of inorganic frameworks. In this study, a novel ZZO/A-D composite was fabricated by integrating an oxide–zeolite framework derived from ZIF-90 with a diethylenetriaminepentaacetic (DTPA)-modified alginate polymer, forming a hierarchical capillary network enriched with –COOH, –NH, and –OH functional groups capable of strong complexation with Pb<sup>2+</sup>. Under optimal conditions (pH = 6, Pb<sup>2+</sup> amount of 200 mg/L, ZZO/A-D mass 0.1 g/L, and temperature 30 °C), ZZO/A-D exhibited an exceptionally high maximum uptake capability (q<sub>max</sub>) of 1428.76 mg/g. The uptake process followed the Langmuir (R<sup>2</sup> = 0.998) and second-order kinetics (R<sup>2</sup> = 0.999), confirming the dominance of chemisorption via coordination and ion-exchange mechanisms. The presence of coexisting cations inhibited Pb<sup>2+</sup> removal in the order K<sup>+</sup> &gt; Na<sup>+</sup> &gt; Mg<sup>2+</sup> &gt; Ca<sup>2+</sup>, whereas the anions SO<sub>4</sub><sup>2−</sup>, CO<sub>3</sub><sup>2−</sup>, and NO<sub>3</sub><sup>−</sup> caused inhibition levels of 90.45, 85.43, and 75.34 %, respectively. Moreover, the material maintained over 80 % removal efficiency after five adsorption–desorption cycles, demonstrating excellent reusability and structural integrity. With its superior adsorption performance, high stability, and strong tolerance to competing ions, ZZO/A-D offers a promising strategy for developing next-generation oxide–biopolymer hybrid adsorbents for the efficient decotamination of heavy metal-contaminated wastewater.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"623 ","pages":"Article 119821"},"PeriodicalIF":9.8,"publicationDate":"2025-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145882999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sulfonated poly(fluorenylene alkylene)-based cation-exchange ionomers enabling high-performance and stable capacitive deionization 磺化聚(氟炔-亚烯)基阳离子交换离聚体,实现高性能和稳定的电容去离子
IF 9.8 1区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2025-12-29 DOI: 10.1016/j.desal.2025.119817
Tao Jiang , Yuhan Du , Chenxi Wang , Xinghao Gao , Qianxi Li , Yingsheng Xu , Haibing Wei , Hongjian Zhou
Capacitive deionization (CDI) has gained attention as a promising desalination approach due to its simple operation and energy-saving advantages. This study demonstrates the novel preparation of sulfonated poly(fluorenylene alkylene) (SPFA) cation-exchange ionomers via superacid-catalyzed Friedel-Crafts polycondensation, specifically engineered for in-situ coated membrane capacitive deionization (MCDI) cathode systems. The optimized SPFA-70 ionomer exhibited exceptional ionic transport properties, achieving a Na+ conductivity of 43.1 mS cm−1 under fully hydrated conditions. This superior performance originates from the well-balanced combination of high ion exchange capacity, substantial fractional free volume (FFV = 26.3 %), and controlled water uptake, which synergistically enhance ion transport pathways. Remarkably, the SPFA-50 based MCDI device demonstrated excellent cycling stability, maintaining a consistent salt adsorption capacity of 19.1 mg g−1 throughout 1000 charge-discharge cycles without any observable capacity degradation. Our findings offer a promising strategy for designing high-performance ion exchange materials through rational molecular engineering. This synthesis strategy facilitates scalable MCDI electrode production using an eco-friendly, low-cost, and streamlined process, potentially addressing critical challenges in CDI technology commercialization.
电容式去离子(CDI)因其操作简单、节能等优点而受到广泛关注。本研究展示了通过超酸催化Friedel-Crafts缩聚制备磺化聚氟炔亚烯(SPFA)阳离子交换离聚体的新方法,该方法专门用于原位涂覆膜电容性去离子(MCDI)阴极系统。优化后的SPFA-70离聚体表现出优异的离子传输性能,在完全水合条件下,Na+电导率达到43.1 mS cm−1。这种优异的性能源于高离子交换容量、大量自由体积分数(FFV = 26.3%)和控制水分摄取的良好平衡组合,它们协同增强了离子运输途径。值得注意的是,基于SPFA-50的MCDI装置表现出优异的循环稳定性,在1000次充放电循环中保持19.1 mg g - 1的盐吸附容量不变,没有任何可观察到的容量下降。我们的发现为通过合理的分子工程设计高性能离子交换材料提供了一个有希望的策略。这种合成策略促进了可扩展的MCDI电极生产,使用环保,低成本和简化的工艺,有可能解决CDI技术商业化的关键挑战。
{"title":"Sulfonated poly(fluorenylene alkylene)-based cation-exchange ionomers enabling high-performance and stable capacitive deionization","authors":"Tao Jiang ,&nbsp;Yuhan Du ,&nbsp;Chenxi Wang ,&nbsp;Xinghao Gao ,&nbsp;Qianxi Li ,&nbsp;Yingsheng Xu ,&nbsp;Haibing Wei ,&nbsp;Hongjian Zhou","doi":"10.1016/j.desal.2025.119817","DOIUrl":"10.1016/j.desal.2025.119817","url":null,"abstract":"<div><div>Capacitive deionization (CDI) has gained attention as a promising desalination approach due to its simple operation and energy-saving advantages. This study demonstrates the novel preparation of sulfonated poly(fluorenylene alkylene) (SPFA) cation-exchange ionomers via superacid-catalyzed Friedel-Crafts polycondensation, specifically engineered for in-situ coated membrane capacitive deionization (MCDI) cathode systems. The optimized SPFA-70 ionomer exhibited exceptional ionic transport properties, achieving a Na<sup>+</sup> conductivity of 43.1 mS cm<sup>−1</sup> under fully hydrated conditions. This superior performance originates from the well-balanced combination of high ion exchange capacity, substantial fractional free volume (FFV = 26.3 %), and controlled water uptake, which synergistically enhance ion transport pathways. Remarkably, the SPFA-50 based MCDI device demonstrated excellent cycling stability, maintaining a consistent salt adsorption capacity of 19.1 mg g<sup>−1</sup> throughout 1000 charge-discharge cycles without any observable capacity degradation. Our findings offer a promising strategy for designing high-performance ion exchange materials through rational molecular engineering. This synthesis strategy facilitates scalable MCDI electrode production using an eco-friendly, low-cost, and streamlined process, potentially addressing critical challenges in CDI technology commercialization.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"623 ","pages":"Article 119817"},"PeriodicalIF":9.8,"publicationDate":"2025-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145939837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering of catalytic Ce@SiC ceramic membranes with ozonation for efficient antibiotic degradation 臭氧氧化催化Ce@SiC陶瓷膜高效降解抗生素工程研究
IF 9.8 1区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2025-12-29 DOI: 10.1016/j.desal.2025.119815
Silin Li , Wenjie Zheng , Wenlan Ji , Yunfei Shi , Tian Ren , Shihao Zhang , Xiao Wei , Yibin Wei
Catalytic ceramic membranes with ozonation have been considered promising for efficient organic pollutants degradation in water. Herein, cerium oxide-doped silicon carbide (Ce@SiC) ceramic membranes were developed via in-situ embedding CeO2 nanoparticles into the porous SiC membrane that can be coupled with catalytic ozonation for efficient ciprofloxacin (CIP) degradation. Notably, the optimized Ce@SiC membrane with ozonation could achieve 94.3 % CIP degradation efficiency within 60 min, outperforming ozonation (63.4 %) or pristine SiC (66.1 %) alone. Meanwhile, the membrane showed excellent total organic carbon mineralization of 66.4 % for the CIP, which was significantly higher than that of using ozonation (19.8 %) or pristine SiC (30.1 %) alone, demonstrating enhanced oxidation efficiency. The high performance is attributed to the abundant oxygen vacancies on the Ce@SiC membrane surface, which facilitate ozone decomposition into hydroxyl (OH) and superoxide (O2) radicals, and the synergistic effect of the Ce3+/Ce4+ redox cycle. The membrane not only exhibited robust catalytic stability in cycling experiments, but also excellent resistance to ion interference. Furthermore, the high catalytic performance was mainly attributed to the rich oxygen vacancies on the Ce@SiC membrane surface, which facilitates ozone decomposition into OH and O2. This work offers a sustainable strategy of coupling catalytic ozonation with ceramic membrane for refractory antibiotics degradation.
臭氧氧化催化陶瓷膜被认为是一种有效降解水中有机污染物的方法。本文通过原位包埋CeO2纳米颗粒到多孔SiC膜中,制备了氧化铈掺杂碳化硅(Ce@SiC)陶瓷膜,该陶瓷膜可与催化臭氧氧化相结合,有效降解环丙沙星(CIP)。值得注意的是,优化后的Ce@SiC膜在60 min内可达到94.3%的CIP降解效率,优于臭氧氧化(63.4%)或原始SiC(66.1%)。同时,该膜对CIP的总有机碳矿化率为66.4%,显著高于臭氧氧化处理(19.8%)或原始SiC氧化处理(30.1%),显示出较高的氧化效率。这主要归功于Ce@SiC膜表面丰富的氧空位,有利于臭氧分解为羟基(OH)和超氧(O2−)自由基,以及Ce3+/Ce4+氧化还原循环的协同作用。该膜不仅在循环实验中表现出良好的催化稳定性,而且具有良好的抗离子干扰能力。此外,Ce@SiC膜表面丰富的氧空位有助于臭氧分解为OH和O2−,这也是其高催化性能的主要原因。本研究为催化臭氧氧化与陶瓷膜耦合降解难降解抗生素提供了一种可持续的策略。
{"title":"Engineering of catalytic Ce@SiC ceramic membranes with ozonation for efficient antibiotic degradation","authors":"Silin Li ,&nbsp;Wenjie Zheng ,&nbsp;Wenlan Ji ,&nbsp;Yunfei Shi ,&nbsp;Tian Ren ,&nbsp;Shihao Zhang ,&nbsp;Xiao Wei ,&nbsp;Yibin Wei","doi":"10.1016/j.desal.2025.119815","DOIUrl":"10.1016/j.desal.2025.119815","url":null,"abstract":"<div><div>Catalytic ceramic membranes with ozonation have been considered promising for efficient organic pollutants degradation in water. Herein, cerium oxide-doped silicon carbide (Ce@SiC) ceramic membranes were developed via in-situ embedding CeO<sub>2</sub> nanoparticles into the porous SiC membrane that can be coupled with catalytic ozonation for efficient ciprofloxacin (CIP) degradation. Notably, the optimized Ce@SiC membrane with ozonation could achieve 94.3 % CIP degradation efficiency within 60 min, outperforming ozonation (63.4 %) or pristine SiC (66.1 %) alone. Meanwhile, the membrane showed excellent total organic carbon mineralization of 66.4 % for the CIP, which was significantly higher than that of using ozonation (19.8 %) or pristine SiC (30.1 %) alone, demonstrating enhanced oxidation efficiency. The high performance is attributed to the abundant oxygen vacancies on the Ce@SiC membrane surface, which facilitate ozone decomposition into hydroxyl (<img>OH) and superoxide (<img>O<sub>2</sub><sup>−</sup>) radicals, and the synergistic effect of the Ce<sup>3+</sup>/Ce<sup>4+</sup> redox cycle. The membrane not only exhibited robust catalytic stability in cycling experiments, but also excellent resistance to ion interference. Furthermore, the high catalytic performance was mainly attributed to the rich oxygen vacancies on the Ce@SiC membrane surface, which facilitates ozone decomposition into <img>OH and <img>O<sub>2</sub><sup>−</sup>. This work offers a sustainable strategy of coupling catalytic ozonation with ceramic membrane for refractory antibiotics degradation.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"623 ","pages":"Article 119815"},"PeriodicalIF":9.8,"publicationDate":"2025-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145939972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of co-ion transport in selectrodialysis for mono/divalent cation separation 共离子转运在选择性透析中对单/二价阳离子分离的作用
IF 9.8 1区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2025-12-26 DOI: 10.1016/j.desal.2025.119795
Xixi Ma , Qian Chen , Lanlan Zhang , Shanshan Liu , Zixuan Wu , Rui Li , Zhiguo Dong , Weiwei Li , Jinfeng He , Chuanrun Li , Liang Ge , Haiyang Yan
<div><div>Efficient separation of mono- and divalent cations can be achieved by a state-of-the-art selectrodialysis (SED) process owing to the excellent selectivity of monovalent cation perm-selective membranes (MCPMs). However, the selectivity between mono/divalent cations in SED process can also be affected by co-ion transport across the anion exchange membrane (AEM) in addition to the intrinsic selectivity of MCPMs. Therefore, we comprehensively investigated the effect of co-ion transport in mono- and divalent cations (e.g., Li<sup>+</sup>/Mg<sup>2+</sup> and Na<sup>+</sup>/Mg<sup>2+</sup>) separation by SED. Results indicated that when a commercial CXP paired with various AEMs for the separation of LiCl and MgCl<sub>2</sub>, a loose structure and high co-ion transport number (<span><math><msubsup><mi>t</mi><msub><mi>MgCl</mi><mn>2</mn></msub><mo>+</mo></msubsup></math></span>) of the A1RL membrane can significantly facilitate the co-ion transport of Mg<sup>2+</sup>, resulting in a high selectivity (<span><math><msubsup><mi>S</mi><msup><mi>Mg</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup><msup><mi>Li</mi><mo>+</mo></msup></msubsup></math></span>, 7.78); while a highly dense structure and a much low co-ion transport number (<span><math><msubsup><mi>t</mi><mi>LiCl</mi><mo>+</mo></msubsup></math></span>) of the QPAB membrane can significantly contribute to an extremely low co-ion transport of Li<sup>+</sup>, thereby obtaining a high <span><math><msubsup><mi>S</mi><msup><mi>Mg</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup><msup><mi>Li</mi><mo>+</mo></msup></msubsup></math></span> (8.16). Comparing Li<sup>+</sup>/Mg<sup>2+</sup> and Na<sup>+</sup>/Mg<sup>2+</sup> separations in Cl<sup>−</sup> system, the difference in Li<sup>+</sup> and Na<sup>+</sup> co-ion transport predominantly attributes to the electrostatic repulsion effect for the A1RL membrane due to its high IEC, while that should be ascribed to the pore size sieving effect for the QPAB membrane due to its highly dense structure. When it comes to the Na<sup>+</sup>/Mg<sup>2+</sup> separation paired with various anions that have different valences and ion sizes (i.e., Cl<sup>−</sup>, SO<sub>4</sub><sup>2−</sup>, and Glu<sup>−</sup>), the <span><math><msubsup><mi>t</mi><mrow><mi>Na</mi><msub><mi>A</mi><mrow><mn>1</mn><mo>/</mo><mi>x</mi></mrow></msub></mrow><mo>+</mo></msubsup></math></span> dominated the co-ion transport, and a low <span><math><msubsup><mi>t</mi><mrow><mi>Na</mi><msub><mi>A</mi><mrow><mn>1</mn><mo>/</mo><mi>x</mi></mrow></msub></mrow><mo>+</mo></msubsup></math></span> in monovalent anion systems resulted in a low co-ion transport of Na<sup>+</sup> and a high <span><math><msub><mi>J</mi><msup><mi>Na</mi><mo>+</mo></msup></msub></math></span>, and thus a high selectivity (<span><math><msubsup><mi>S</mi><msup><mi>Mg</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup><msup><mi>Na</mi><mo>+</mo></msup></msubsup></math></span>, 11.9–12.8). In addition, the economic evaluation indicated that
由于一价阳离子perm-selective membrane (mcpm)具有优异的选择性,一价阳离子和二价阳离子的有效分离可以通过最先进的选择透析(SED)工艺实现。然而,除了mcpm的固有选择性外,SED过程中单/二价阳离子之间的选择性还可能受到阴离子交换膜(AEM)上的共离子传输的影响。因此,我们全面研究了SED在单价和二价阳离子(如Li+/Mg2+和Na+/Mg2+)分离中的协同离子传输的影响。结果表明,当商用CXP与各种AEMs配合用于LiCl和MgCl2的分离时,A1RL膜的松散结构和高共离子传输数(tMgCl2+)可以显著促进Mg2+的共离子传输,从而产生高选择性(SMg2+Li+, 7.78);而QPAB膜的高密度结构和极低的共离子输运数(tLiCl+)可以显著促进极低的Li+共离子输运,从而获得高的SMg2+Li+(8.16)。比较Cl−体系中Li+/Mg2+和Na+/Mg2+的分离,发现Li+和Na+离子输运的差异主要归因于A1RL膜的高IEC对静电斥力的影响,而QPAB膜的高密度结构对孔径的筛分作用。当Na+/Mg2+与不同价和离子大小的阴离子(如Cl−、SO42−和Glu−)配对时,tNaA1/x+主导了共离子传输,单价阴离子体系中tNaA1/x+低导致Na+的低共离子传输和高JNa+,因此具有高选择性(SMg2+Na+, 11.9-12.8)。此外,经济评价表明,CXP/A1RL膜具有较高的SMg2+Li+(7.78)和SMg2+Na+(11.9),较高的电流效率(LiCl: 69.4%; NaCl: 77.8%)和较低的总成本(LiCl: 52.51 $ kmol−1;NaCl: 46.94 $ kmol−1),具有较好的Li+/Mg2+和Na+/Mg2+分离性能。这些发现对共离子转运机制及其在单/二价阳离子分离中的作用有了新的认识,为SED在各种工业场景中实现高选择性和低总成本提供了实践指导。
{"title":"The role of co-ion transport in selectrodialysis for mono/divalent cation separation","authors":"Xixi Ma ,&nbsp;Qian Chen ,&nbsp;Lanlan Zhang ,&nbsp;Shanshan Liu ,&nbsp;Zixuan Wu ,&nbsp;Rui Li ,&nbsp;Zhiguo Dong ,&nbsp;Weiwei Li ,&nbsp;Jinfeng He ,&nbsp;Chuanrun Li ,&nbsp;Liang Ge ,&nbsp;Haiyang Yan","doi":"10.1016/j.desal.2025.119795","DOIUrl":"10.1016/j.desal.2025.119795","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Efficient separation of mono- and divalent cations can be achieved by a state-of-the-art selectrodialysis (SED) process owing to the excellent selectivity of monovalent cation perm-selective membranes (MCPMs). However, the selectivity between mono/divalent cations in SED process can also be affected by co-ion transport across the anion exchange membrane (AEM) in addition to the intrinsic selectivity of MCPMs. Therefore, we comprehensively investigated the effect of co-ion transport in mono- and divalent cations (e.g., Li&lt;sup&gt;+&lt;/sup&gt;/Mg&lt;sup&gt;2+&lt;/sup&gt; and Na&lt;sup&gt;+&lt;/sup&gt;/Mg&lt;sup&gt;2+&lt;/sup&gt;) separation by SED. Results indicated that when a commercial CXP paired with various AEMs for the separation of LiCl and MgCl&lt;sub&gt;2&lt;/sub&gt;, a loose structure and high co-ion transport number (&lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;MgCl&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt;) of the A1RL membrane can significantly facilitate the co-ion transport of Mg&lt;sup&gt;2+&lt;/sup&gt;, resulting in a high selectivity (&lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;msup&gt;&lt;mi&gt;Mg&lt;/mi&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mi&gt;Li&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/msup&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt;, 7.78); while a highly dense structure and a much low co-ion transport number (&lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mi&gt;LiCl&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt;) of the QPAB membrane can significantly contribute to an extremely low co-ion transport of Li&lt;sup&gt;+&lt;/sup&gt;, thereby obtaining a high &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;msup&gt;&lt;mi&gt;Mg&lt;/mi&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mi&gt;Li&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/msup&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; (8.16). Comparing Li&lt;sup&gt;+&lt;/sup&gt;/Mg&lt;sup&gt;2+&lt;/sup&gt; and Na&lt;sup&gt;+&lt;/sup&gt;/Mg&lt;sup&gt;2+&lt;/sup&gt; separations in Cl&lt;sup&gt;−&lt;/sup&gt; system, the difference in Li&lt;sup&gt;+&lt;/sup&gt; and Na&lt;sup&gt;+&lt;/sup&gt; co-ion transport predominantly attributes to the electrostatic repulsion effect for the A1RL membrane due to its high IEC, while that should be ascribed to the pore size sieving effect for the QPAB membrane due to its highly dense structure. When it comes to the Na&lt;sup&gt;+&lt;/sup&gt;/Mg&lt;sup&gt;2+&lt;/sup&gt; separation paired with various anions that have different valences and ion sizes (i.e., Cl&lt;sup&gt;−&lt;/sup&gt;, SO&lt;sub&gt;4&lt;/sub&gt;&lt;sup&gt;2−&lt;/sup&gt;, and Glu&lt;sup&gt;−&lt;/sup&gt;), the &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;Na&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; dominated the co-ion transport, and a low &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;Na&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; in monovalent anion systems resulted in a low co-ion transport of Na&lt;sup&gt;+&lt;/sup&gt; and a high &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;msup&gt;&lt;mi&gt;Na&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/msup&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, and thus a high selectivity (&lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;msup&gt;&lt;mi&gt;Mg&lt;/mi&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mi&gt;Na&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/msup&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt;, 11.9–12.8). In addition, the economic evaluation indicated that","PeriodicalId":299,"journal":{"name":"Desalination","volume":"623 ","pages":"Article 119795"},"PeriodicalIF":9.8,"publicationDate":"2025-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145883074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of calcium carbonate deposition through a “sol-gel” coating containing an organic scale inhibitor 通过含有有机阻垢剂的“溶胶-凝胶”涂层抑制碳酸钙沉积
IF 9.8 1区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2025-12-26 DOI: 10.1016/j.desal.2025.119787
Soumaya Nouigues , Hélène Cheap-Charpentier , Catherine Debiemme-Chouvy , Christel Laberty-Robert , Hubert Perrot
In this study, coatings were elaborated by a sol-gel process from tetraethoxysilane (TEOS) and methacryloxypropyltrimethoxysilane (MEMO) precursors for anti-scaling applications. A scale inhibitor, diethylene triamine penta(methylene phosphonic acid) (DTPMPA), was immobilized in the sol-gel film by impregnation to enhance the inhibiting property of the prepared coating. The anti-scaling properties of the coatings were evaluated using a quartz crystal microbalance (QCM). The coatings were characterized by scanning electron microscopy, angle contact measurements, Fourier transformation infrared spectroscopy and X-ray photoelectron spectroscopy. It has been shown that the TEOS/MEMO coating formed a thin, homogeneous, stable and rigid film. In this work, the results show that the sol-gel film including DTPMPA acts as a smart coating by releasing deposited CaCO3 nuclei over time, preventing scale stagnation. The inhibition process takes place according to an interfacial reaction, due to the complexation between the DTPMPA molecules and the Ca2+ ions when the CaCO3 nuclei are deposited on the coating. It has been demonstrated by UV–visible spectroscopy that no release of DTPMPA occurs in solution, which avoids modification of the water composition during the inhibition process. The sol-gel coating with the scale inhibitor acted as a smart coating, cleaning the surface when scale deposition started.
在本研究中,采用溶胶-凝胶法制备了四乙氧基硅烷(TEOS)和甲基丙烯氧基三甲氧基硅烷(MEMO)前驱体的防垢涂料。采用浸渍法将阻垢剂二乙烯三胺五亚甲基膦酸(DTPMPA)固定在溶胶-凝胶膜中,提高了涂层的阻垢性能。采用石英晶体微天平(QCM)对涂层的抗垢性能进行了评价。采用扫描电镜、角接触测量、傅里叶变换红外光谱和x射线光电子能谱对涂层进行了表征。结果表明,TEOS/MEMO涂层形成了一层薄、均匀、稳定、刚性的薄膜。在这项工作中,结果表明,含有DTPMPA的溶胶-凝胶膜作为一种智能涂层,随着时间的推移释放沉积的CaCO3核,防止结垢停滞。当CaCO3核沉积在涂层上时,由于DTPMPA分子与Ca2+离子之间的络合作用,抑制过程根据界面反应发生。紫外可见光谱分析表明,溶液中没有DTPMPA的释放,从而避免了抑制过程中水成分的改变。带有阻垢剂的溶胶-凝胶涂层起到智能涂层的作用,在结垢开始时对表面进行清洁。
{"title":"Inhibition of calcium carbonate deposition through a “sol-gel” coating containing an organic scale inhibitor","authors":"Soumaya Nouigues ,&nbsp;Hélène Cheap-Charpentier ,&nbsp;Catherine Debiemme-Chouvy ,&nbsp;Christel Laberty-Robert ,&nbsp;Hubert Perrot","doi":"10.1016/j.desal.2025.119787","DOIUrl":"10.1016/j.desal.2025.119787","url":null,"abstract":"<div><div>In this study, coatings were elaborated by a sol-gel process from tetraethoxysilane (TEOS) and methacryloxypropyltrimethoxysilane (MEMO) precursors for anti-scaling applications. A scale inhibitor, diethylene triamine penta(methylene phosphonic acid) (DTPMPA), was immobilized in the sol-gel film by impregnation to enhance the inhibiting property of the prepared coating. The anti-scaling properties of the coatings were evaluated using a quartz crystal microbalance (QCM). The coatings were characterized by scanning electron microscopy, angle contact measurements, Fourier transformation infrared spectroscopy and X-ray photoelectron spectroscopy. It has been shown that the TEOS/MEMO coating formed a thin, homogeneous, stable and rigid film. In this work, the results show that the sol-gel film including DTPMPA acts as a smart coating by releasing deposited CaCO<sub>3</sub> nuclei over time, preventing scale stagnation. The inhibition process takes place according to an interfacial reaction, due to the complexation between the DTPMPA molecules and the Ca<sup>2+</sup> ions when the CaCO<sub>3</sub> nuclei are deposited on the coating. It has been demonstrated by UV–visible spectroscopy that no release of DTPMPA occurs in solution, which avoids modification of the water composition during the inhibition process. The sol-gel coating with the scale inhibitor acted as a smart coating, cleaning the surface when scale deposition started.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"623 ","pages":"Article 119787"},"PeriodicalIF":9.8,"publicationDate":"2025-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145883076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electric-field-induced ultrafast and selective ZIF-8 filling in graphene membrane pores for precision dye desalination 电场诱导超快选择性ZIF-8填充石墨烯膜孔用于染料精密脱盐
IF 9.8 1区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2025-12-25 DOI: 10.1016/j.desal.2025.119808
Jialu Li , Zhonghao Xu , Yangdong He , Sheng Shi , Sihan Ye , Liyun Zhang , Lan Ma , Jian Zhen Ou , Hao Yu
Integrating metal-organic-frameworks (MOFs) into graphene oxide (GO) membranes offers a pathway toward stable and highly selective nanofiltration, yet conventional blending or precursor-diffusion-driven in situ growth compromise structural integrity and is prohibitively slow (∼36 h). Here, we report an electric-field-driven strategy that induces electrophoretic migration of Zn2+ and 2-methylimidazole precursors, enabling ultrafast (<60 s) synthesis of ZIF-8 within the internal pores of ethylenediamine (EDA)-crosslinked GO-based membranes intercalated by arched graphene (WG). Growth is directed preferentially into high-permeability channels, sequentially plugging dominant and subdominant pores at a rate 2160 times faster than diffusion. This selective pore filling suppresses ZIF-8 overgrowth and minimizes structural disruption, while enhancing rejection performance. The resulting membrane exhibits exceptional dye rejection of 87.11 % (MB), 99.45 % (EBT), 97.39 % (CV), 99.21 % (CR), and 99.37 % (TB), surpassing pristine GO (36.90–91.07 %) and slightly outperforming diffusion-grown counterparts. Meanwhile, the intrinsic 0.7 nm pores of ZIF-8 permit nearly complete salt permeation (rejection <2.73 %), yielding practical dye/salt selectivity >8. Amine-functionalized ZIF-8 further promotes crosslinking, imparting remarkable stability: wet/dry interlayer spacing variation <1 Å and strong resistance to acid/base exposure, hydraulic flushing, and ultrasonication. This electric-field-guided, sub-nanopore engineering strategy thus establishes a generalizable platform for precision separation membranes using diverse substrates and porous framework.
将金属有机框架(MOFs)集成到氧化石墨烯(GO)膜中,为稳定和高选择性的纳滤提供了一条途径,但传统的混合或前体扩散驱动的原位生长会损害结构完整性,并且速度非常慢(约36小时)。在这里,我们报道了一种电场驱动的策略,诱导Zn2+和2-甲基咪唑前体的电泳迁移,使ZIF-8在由弯曲石墨烯(WG)嵌入的乙二胺(EDA)交联氧化石墨烯基膜的内部孔内超快(60秒)合成。生长优先进入高渗透率通道,以比扩散快2160倍的速度依次堵塞优势和次优势孔隙。这种选择性的孔隙填充抑制了ZIF-8的过度生长,最大限度地减少了结构破坏,同时提高了排阻性能。所得膜的染料去除率为87.11% (MB)、99.45% (EBT)、97.39% (CV)、99.21% (CR)和99.37% (TB),超过了原始氧化石墨烯(36.90 - 91.07%),略优于扩散生长膜。同时,ZIF-8固有的0.7 nm孔允许几乎完全的盐渗透(截留率<; 2.73%),产生实际的染料/盐选择性>;8。胺功能化的ZIF-8进一步促进了交联,赋予了显著的稳定性:湿/干层间距变化<;1 Å,以及对酸碱暴露、液压冲洗和超声波的强抗性。因此,这种电场引导的亚纳米孔工程策略为使用不同基质和多孔框架的精确分离膜建立了一个通用的平台。
{"title":"Electric-field-induced ultrafast and selective ZIF-8 filling in graphene membrane pores for precision dye desalination","authors":"Jialu Li ,&nbsp;Zhonghao Xu ,&nbsp;Yangdong He ,&nbsp;Sheng Shi ,&nbsp;Sihan Ye ,&nbsp;Liyun Zhang ,&nbsp;Lan Ma ,&nbsp;Jian Zhen Ou ,&nbsp;Hao Yu","doi":"10.1016/j.desal.2025.119808","DOIUrl":"10.1016/j.desal.2025.119808","url":null,"abstract":"<div><div>Integrating metal-organic-frameworks (MOFs) into graphene oxide (GO) membranes offers a pathway toward stable and highly selective nanofiltration, yet conventional blending or precursor-diffusion-driven in situ growth compromise structural integrity and is prohibitively slow (∼36 h). Here, we report an electric-field-driven strategy that induces electrophoretic migration of Zn<sup>2+</sup> and 2-methylimidazole precursors, enabling ultrafast (&lt;60 s) synthesis of ZIF-8 within the internal pores of ethylenediamine (EDA)-crosslinked GO-based membranes intercalated by arched graphene (WG). Growth is directed preferentially into high-permeability channels, sequentially plugging dominant and subdominant pores at a rate 2160 times faster than diffusion. This selective pore filling suppresses ZIF-8 overgrowth and minimizes structural disruption, while enhancing rejection performance. The resulting membrane exhibits exceptional dye rejection of 87.11 % (MB), 99.45 % (EBT), 97.39 % (CV), 99.21 % (CR), and 99.37 % (TB), surpassing pristine GO (36.90–91.07 %) and slightly outperforming diffusion-grown counterparts. Meanwhile, the intrinsic 0.7 nm pores of ZIF-8 permit nearly complete salt permeation (rejection &lt;2.73 %), yielding practical dye/salt selectivity &gt;8. Amine-functionalized ZIF-8 further promotes crosslinking, imparting remarkable stability: wet/dry interlayer spacing variation &lt;1 Å and strong resistance to acid/base exposure, hydraulic flushing, and ultrasonication. This electric-field-guided, sub-nanopore engineering strategy thus establishes a generalizable platform for precision separation membranes using diverse substrates and porous framework.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"622 ","pages":"Article 119808"},"PeriodicalIF":9.8,"publicationDate":"2025-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145881467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green solvent-driven engineering of cellulose acetate membranes: Sequential optimization of DMSO co-solvent ratio and ZrO2 nanoparticle reinforcement for enhanced desalination performance 醋酸纤维素膜的绿色溶剂驱动工程:DMSO共溶剂比的顺序优化和ZrO2纳米颗粒增强以提高脱盐性能
IF 9.8 1区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2025-12-25 DOI: 10.1016/j.desal.2025.119810
Sahar Saad Ali , Ghada Al Bazedi , Mohamed Hosni , Hani Sewilam
The performance of reverse osmosis (RO) membranes depends critically on their microstructural characteristics, which are substantially influenced by fabrication parameters and solvent compositions. This study introduces a green solvent–driven fabrication route coupling acetone/DMSO co-solvent optimization with post-thermal conditioning and minimal ZrO2 nanoparticle addition to achieve a reproducible, low-energy membrane engineering strategy that outperforms conventional CA membranes. The investigation examines the synthesis of cellulose acetate (CA) membranes with varying concentrations of dimethyl sulfoxide (DMSO) as a co-solvent to elucidate the relationship between DMSO content and membrane morphology, thermal stability, and desalination performance. The structure-performance relationship was comprehensively analyzed through FTIR, scanning electron microscopy (SEM), TGA and water flux/salt rejection assessments using saline feed solutions. Membrane fabrication employed a phase inversion technique with 20 % polymer concentration and DMSO concentrations ranging from 6 % to 40 %. The selected membranes underwent thermal treatment at temperatures between 70 °C and 85 °C. Rheological analysis, surface morphology characterization, and salt rejection performance were evaluated before and after thermal modification. Water permeation flux was assessed using saline solutions with concentrations ranging from 3000 to 20,000 ppm under operating pressures of 5–20 bar.
Morphological analysis revealed that membranes containing 28 % DMSO exhibited optimized pore size distribution, resulting in the formation of finger-like structures that enhanced water transport while maintaining selectivity. Conversely, membranes with 20 % and 40 % DMSO displayed sponge-like morphologies, characterized by improved salt rejection capabilities and enhanced structural integrity. The optimal thermal treatment temperature for CA membranes containing 20 % DMSO was determined to be 80 °C. Under these conditions, the membranes achieved maximum salt rejection efficiencies of 93–99 %, with optimal performance observed after 25–30 s of thermal treatment, demonstrating the temperature-dependent nature of membrane densification and the correlation between treatment duration and feed salinity.
反渗透(RO)膜的性能主要取决于其微观结构特征,而微观结构特征主要受制备参数和溶剂组成的影响。本研究介绍了一种绿色溶剂驱动的制造路线,将丙酮/DMSO共溶剂优化与热后调节和最小ZrO2纳米颗粒添加相结合,以实现优于传统CA膜的可重复、低能量的膜工程策略。本研究考察了以不同浓度的二甲亚砜(DMSO)作为共溶剂合成醋酸纤维素(CA)膜,以阐明DMSO含量与膜形态、热稳定性和脱盐性能之间的关系。通过红外光谱(FTIR)、扫描电镜(SEM)、热重分析仪(TGA)和含盐饲料溶液的水通量/盐阻性评估,综合分析了结构与性能之间的关系。膜制造采用相转化技术,聚合物浓度为20%,DMSO浓度为6%至40%。选择的膜在70°C到85°C的温度下进行热处理。热改性前后的流变学分析、表面形貌表征和防盐性能进行了评价。在5-20 bar的操作压力下,使用浓度为3000至20,000 ppm的盐水溶液评估水渗透通量。形态学分析表明,含有28% DMSO的膜具有优化的孔径分布,从而形成手指状结构,在保持选择性的同时增强了水的运输。相反,含有20%和40% DMSO的膜表现出海绵状形态,其特征是提高了盐排斥能力和增强了结构完整性。结果表明,含20% DMSO的CA膜的最佳热处理温度为80℃。在此条件下,膜的排盐效率最高,达到93 - 99%,在热处理25-30 s后表现最佳,这表明膜致密化的温度依赖性以及处理时间与饲料盐度之间的相关性。
{"title":"Green solvent-driven engineering of cellulose acetate membranes: Sequential optimization of DMSO co-solvent ratio and ZrO2 nanoparticle reinforcement for enhanced desalination performance","authors":"Sahar Saad Ali ,&nbsp;Ghada Al Bazedi ,&nbsp;Mohamed Hosni ,&nbsp;Hani Sewilam","doi":"10.1016/j.desal.2025.119810","DOIUrl":"10.1016/j.desal.2025.119810","url":null,"abstract":"<div><div>The performance of reverse osmosis (RO) membranes depends critically on their microstructural characteristics, which are substantially influenced by fabrication parameters and solvent compositions. This study introduces a green solvent–driven fabrication route coupling acetone/DMSO co-solvent optimization with post-thermal conditioning and minimal ZrO<sub>2</sub> nanoparticle addition to achieve a reproducible, low-energy membrane engineering strategy that outperforms conventional CA membranes. The investigation examines the synthesis of cellulose acetate (CA) membranes with varying concentrations of dimethyl sulfoxide (DMSO) as a co-solvent to elucidate the relationship between DMSO content and membrane morphology, thermal stability, and desalination performance. The structure-performance relationship was comprehensively analyzed through FTIR, scanning electron microscopy (SEM), TGA and water flux/salt rejection assessments using saline feed solutions. Membrane fabrication employed a phase inversion technique with 20 % polymer concentration and DMSO concentrations ranging from 6 % to 40 %. The selected membranes underwent thermal treatment at temperatures between 70 °C and 85 °C. Rheological analysis, surface morphology characterization, and salt rejection performance were evaluated before and after thermal modification. Water permeation flux was assessed using saline solutions with concentrations ranging from 3000 to 20,000 ppm under operating pressures of 5–20 bar.</div><div>Morphological analysis revealed that membranes containing 28 % DMSO exhibited optimized pore size distribution, resulting in the formation of finger-like structures that enhanced water transport while maintaining selectivity. Conversely, membranes with 20 % and 40 % DMSO displayed sponge-like morphologies, characterized by improved salt rejection capabilities and enhanced structural integrity. The optimal thermal treatment temperature for CA membranes containing 20 % DMSO was determined to be 80 °C. Under these conditions, the membranes achieved maximum salt rejection efficiencies of 93–99 %, with optimal performance observed after 25–30 s of thermal treatment, demonstrating the temperature-dependent nature of membrane densification and the correlation between treatment duration and feed salinity.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"623 ","pages":"Article 119810"},"PeriodicalIF":9.8,"publicationDate":"2025-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145939914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance-enhanced biomimetic reverse osmosis membranes prepared based on imidazole-ureido self-assembled interlayers with different alkyl chain lengths: Mechanistic insights 基于不同烷基链长度咪唑-脲基自组装中间层制备性能增强的仿生反渗透膜:机理研究
IF 9.8 1区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2025-12-24 DOI: 10.1016/j.desal.2025.119809
Hanjing Xue , Houkang Pu , Xiaojuan Wang , Xiaolai Zhang , Weizheng Zhang , Youxun Li , Fan Bu , Xuan Kan , Congjie Gao , Xueli Gao
Inspired by biological aquaporins, the fabrication of modified thin film nanocomposite (TFN) reverse osmosis (RO) membranes through the self–assembly of imidazole-ureido (IU) molecules to construct imidazole-quartet water channels provides an innovative strategy to improve the upper bound of membrane's trade-off performance. In this study, an IU self-assembled interlayer was formed in situ on the substrate by pre-deposition method, which not only constructed artificial water channels, but also optimized the physicochemical characteristics of polyamide (PA) layers by influencing the interfacial polymerization process. Additionally, theoretical calculations were performed to quantify the specific contribution of IU interlayers with different alkyl chain lengths to the performance of TFN membranes. Results revealed that the IU6 interlayer with longer alkyl chains improved the properties of PA layers much more than the IU4 interlayer. The membrane prepared based on IU6 interlayers exhibited the best performance (3.19 L·m−2·h−1·bar−1, 99.28 %), with the water permeance approximately more than two times that of the TFC-control membrane, due to its PA layer with thinner thickness, higher surface roughness and wettability, as well as larger internal pore radius size. Overall, this study provides both experimental and theoretical insights into the future development of biomimetic water channel membranes.
受生物水通道蛋白的启发,通过咪唑-脲基(IU)分子的自组装来构建咪唑-四联水通道,制备改性薄膜纳米复合材料(TFN)反渗透(RO)膜,为提高膜的权衡性能上界提供了一种创新策略。本研究通过预沉积法在衬底上原位形成IU自组装中间层,不仅构建了人工水渠,而且通过影响界面聚合过程,优化了聚酰胺(PA)层的理化特性。此外,还进行了理论计算来量化具有不同烷基链长度的IU间层对TFN膜性能的具体贡献。结果表明,具有较长烷基链的IU6中间层比IU4中间层更能改善PA层的性能。基于IU6中间层制备的膜性能最佳(3.19 L·m−2·h−1·bar−1,99.28%),其透水性约为tfc控制膜的两倍以上,因为其PA层厚度更薄,表面粗糙度和润湿性更高,内部孔半径更大。总的来说,本研究为仿生水通道膜的未来发展提供了实验和理论见解。
{"title":"Performance-enhanced biomimetic reverse osmosis membranes prepared based on imidazole-ureido self-assembled interlayers with different alkyl chain lengths: Mechanistic insights","authors":"Hanjing Xue ,&nbsp;Houkang Pu ,&nbsp;Xiaojuan Wang ,&nbsp;Xiaolai Zhang ,&nbsp;Weizheng Zhang ,&nbsp;Youxun Li ,&nbsp;Fan Bu ,&nbsp;Xuan Kan ,&nbsp;Congjie Gao ,&nbsp;Xueli Gao","doi":"10.1016/j.desal.2025.119809","DOIUrl":"10.1016/j.desal.2025.119809","url":null,"abstract":"<div><div>Inspired by biological aquaporins, the fabrication of modified thin film nanocomposite (TFN) reverse osmosis (RO) membranes through the self–assembly of imidazole-ureido (IU) molecules to construct imidazole-quartet water channels provides an innovative strategy to improve the upper bound of membrane's trade-off performance. In this study, an IU self-assembled interlayer was formed in situ on the substrate by pre-deposition method, which not only constructed artificial water channels, but also optimized the physicochemical characteristics of polyamide (PA) layers by influencing the interfacial polymerization process. Additionally, theoretical calculations were performed to quantify the specific contribution of IU interlayers with different alkyl chain lengths to the performance of TFN membranes. Results revealed that the IU6 interlayer with longer alkyl chains improved the properties of PA layers much more than the IU4 interlayer. The membrane prepared based on IU6 interlayers exhibited the best performance (3.19 L·m<sup>−2</sup>·h<sup>−1</sup>·bar<sup>−1</sup>, 99.28 %), with the water permeance approximately more than two times that of the TFC-control membrane, due to its PA layer with thinner thickness, higher surface roughness and wettability, as well as larger internal pore radius size. Overall, this study provides both experimental and theoretical insights into the future development of biomimetic water channel membranes.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"622 ","pages":"Article 119809"},"PeriodicalIF":9.8,"publicationDate":"2025-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145881468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering Cu-enhanced Mn-based Prussian blue analogue with boosted dual-redox activity for efficient and fast capacitive deionization 工程cu增强的mn基普鲁士蓝类似物具有增强的双氧化还原活性,用于高效和快速的电容去离子
IF 9.8 1区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2025-12-24 DOI: 10.1016/j.desal.2025.119803
Zhiqiang Wu , He Ren , Hao Zhou , Jianeng Ji , Haiyun Ding , Chunyan Li , Minjie Shi , Ying Hong , Jun Yang
Prussian Blue analogs (PBAs) have emerged as one of the promising materials for capacitive deionization (CDI) due to their excellent specific capacity and outstanding ion adsorption capability. However, Mn-based hexacyanoferrate Prussian Blue (MnHCF) suffers from insufficient utilization of active sites and poor ion kinetics during the electrochemical process, resulting in weak ion adsorption capacity and easy destruction of its stable structure. In this work, CuMnHCF was synthesized by incorporating Cu into the MnHCF framework via an in situ solvothermal approach. The appropriate introduction of Cu effectively occupied the interstitial sites of the MnHCF structure, optimized its electronic configuration, and successfully activated both the metal–N bonds and the Fe–CN dual redox-active sites within the framework (evidenced by in situ Raman measurements). These merits collectively led to a significant enhancement in the electrosorption capacity of CuMnHCF toward Na ions. The CuMnHCF electrode exhibits excellent cycling stability in aqueous NaCl electrolyte. After 5000 cycles, the specific capacitance decay is minimal, with a capacity retention rate of approximately 61.5% (5 A g−1). As applied in electrochemical desalination experiment at a voltage of 1.2 V for 50 cycles, the retention rate of CuMnHCF electrode reached as high as 82.2%. Additionally, it not only exhibits a high salt removal capacity of 58.4 mg g−1 (salt removal rate: 1.95 mg g−1 min−1), but also a peak salt removal rate of 15.7 mg g−1 min−1. As an application extension, the CuMnHCF electrode also shows excellent desalination performance for K+, Ca2+, and Mg2+.
普鲁士蓝类似物(PBAs)由于其优异的比容量和优异的离子吸附能力而成为电容性去离子(CDI)的一种有前景的材料。然而,锰基六氰高铁普鲁士蓝(MnHCF)在电化学过程中存在活性位点利用不足和离子动力学差的问题,导致其离子吸附能力弱,结构稳定易被破坏。在这项工作中,通过原位溶剂热方法将Cu加入MnHCF框架中合成了CuMnHCF。Cu的适当引入有效地占据了MnHCF结构的间隙位,优化了其电子构型,并成功激活了框架内的金属- n键和Fe-CN双氧化还原活性位点(通过原位拉曼测量证明)。这些优点共同导致了CuMnHCF对Na离子的电吸附能力的显著增强。CuMnHCF电极在NaCl水溶液中表现出良好的循环稳定性。经过5000次循环后,比电容衰减最小,容量保持率约为61.5% (5 a g−1)。在1.2 V电压下进行50次循环的电化学脱盐实验中,CuMnHCF电极的保留率高达82.2%。此外,它不仅具有58.4 mg g−1的高脱盐能力(脱盐速率为1.95 mg g−1 min−1),而且具有15.7 mg g−1 min−1的峰值脱盐速率。作为应用扩展,CuMnHCF电极对K+、Ca2+和Mg2+也表现出优异的脱盐性能。
{"title":"Engineering Cu-enhanced Mn-based Prussian blue analogue with boosted dual-redox activity for efficient and fast capacitive deionization","authors":"Zhiqiang Wu ,&nbsp;He Ren ,&nbsp;Hao Zhou ,&nbsp;Jianeng Ji ,&nbsp;Haiyun Ding ,&nbsp;Chunyan Li ,&nbsp;Minjie Shi ,&nbsp;Ying Hong ,&nbsp;Jun Yang","doi":"10.1016/j.desal.2025.119803","DOIUrl":"10.1016/j.desal.2025.119803","url":null,"abstract":"<div><div>Prussian Blue analogs (PBAs) have emerged as one of the promising materials for capacitive deionization (CDI) due to their excellent specific capacity and outstanding ion adsorption capability. However, Mn-based hexacyanoferrate Prussian Blue (MnHCF) suffers from insufficient utilization of active sites and poor ion kinetics during the electrochemical process, resulting in weak ion adsorption capacity and easy destruction of its stable structure. In this work, CuMnHCF was synthesized by incorporating Cu into the MnHCF framework via an in situ solvothermal approach. The appropriate introduction of Cu effectively occupied the interstitial sites of the MnHCF structure, optimized its electronic configuration, and successfully activated both the metal–N bonds and the Fe–CN dual redox-active sites within the framework (evidenced by in situ Raman measurements). These merits collectively led to a significant enhancement in the electrosorption capacity of CuMnHCF toward Na ions. The CuMnHCF electrode exhibits excellent cycling stability in aqueous NaCl electrolyte. After 5000 cycles, the specific capacitance decay is minimal, with a capacity retention rate of approximately 61.5% (5 A g<sup>−1</sup>). As applied in electrochemical desalination experiment at a voltage of 1.2 V for 50 cycles, the retention rate of CuMnHCF electrode reached as high as 82.2%. Additionally, it not only exhibits a high salt removal capacity of 58.4 mg g<sup>−1</sup> (salt removal rate: 1.95 mg g<sup>−1</sup> min<sup>−1</sup>), but also a peak salt removal rate of 15.7 mg g<sup>−1</sup> min<sup>−1</sup>. As an application extension, the CuMnHCF electrode also shows excellent desalination performance for K<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span>, Ca<sup>2+</sup>, and Mg<span><math><msup><mrow></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></math></span>.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"623 ","pages":"Article 119803"},"PeriodicalIF":9.8,"publicationDate":"2025-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145847710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructure-engineered NiFe-LDH composite membranes integrating high flux with visible-light-driven self-regeneration for sustainable treatment of complex oily water 集成高通量和可见光驱动自再生的微结构工程NiFe-LDH复合膜,用于复杂含油水的可持续处理
IF 9.8 1区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2025-12-23 DOI: 10.1016/j.desal.2025.119807
Hongyuan Zhu , Yifan Liu , Shasha Yuan , Liguo Shen , Hongjun Lin , Sui Zhang , Die Ling Zhao
This study presents innovative nickel‑iron-layered double hydroxides composite membranes fabricated via in-situ growth strategy with synergistic integration of high-flux oil-water separation and photocatalytic self-cleaning. By systematically regulating NiFe-LDH seed content (0–0.2 g) and growth duration (2–8 h), hierarchical nanosheet architectures with optimized surface hydrophilicity and roughness were engineered. The optimized membrane demonstrated an exceptional pure water flux of 6220.1 ± 41.9 L·m−2·h−1·bar−1 and a permeation flux of 3564.7±339.3 L·m−2·h−1·bar−1 for n-hexane/water emulsions with a rejection of 99.78 %. Remarkably, the membrane exhibited robust adaptability to complex oily wastewater, including real-world lab and kitchen wastewater containing oils, surfactants, and suspended solids. Under visible-light irradiation driven peroxymonosulfate (PMS) activation, the membrane achieved 93–100% flux recovery rates (FRR) over six cycles via radical-mediated degradation (·OH, SO4·, and 1O2), outperforming pristine membranes (81 % FRR). This dual-functional design addresses persistent challenges in oil fouling of membrane and real-wastewater complexity and thus offering a sustainable solution for industrial and domestic oily wastewater remediation. This work highlights the potential of microstructure-engineered photocatalytic membranes for scalable and sustainable wastewater remediation.
本研究采用原位生长策略制备了具有高通量油水分离和光催化自清洁协同集成的新型镍-铁层双氢氧化物复合膜。通过系统调节NiFe-LDH种子含量(0-0.2 g)和生长时间(2-8 h),设计了具有优化表面亲水性和粗糙度的层次化纳米片结构。优化后的膜对正己烷/水乳液的纯水通量为6220.1±41.9 L·m−2·h−1·bar−1,渗透通量为3564.7±339.3 L·m−2·h−1·bar−1,截除率为99.78%。值得注意的是,该膜对复杂含油废水表现出强大的适应性,包括现实世界的实验室和厨房废水,其中含有油、表面活性剂和悬浮物。在可见光照射驱动的过氧单硫酸盐(PMS)活化下,通过自由基介导的降解(·OH, SO4·−和1O2),膜在6个周期内达到93-100%的通量回收率(FRR),优于原始膜(81% FRR)。这种双重功能的设计解决了膜油污染和实际废水复杂性的持续挑战,从而为工业和家庭含油废水的修复提供了可持续的解决方案。这项工作强调了微结构工程光催化膜在可扩展和可持续的废水修复方面的潜力。
{"title":"Microstructure-engineered NiFe-LDH composite membranes integrating high flux with visible-light-driven self-regeneration for sustainable treatment of complex oily water","authors":"Hongyuan Zhu ,&nbsp;Yifan Liu ,&nbsp;Shasha Yuan ,&nbsp;Liguo Shen ,&nbsp;Hongjun Lin ,&nbsp;Sui Zhang ,&nbsp;Die Ling Zhao","doi":"10.1016/j.desal.2025.119807","DOIUrl":"10.1016/j.desal.2025.119807","url":null,"abstract":"<div><div>This study presents innovative nickel‑iron-layered double hydroxides composite membranes fabricated via in-situ growth strategy with synergistic integration of high-flux oil-water separation and photocatalytic self-cleaning. By systematically regulating NiFe-LDH seed content (0–0.2 g) and growth duration (2–8 h), hierarchical nanosheet architectures with optimized surface hydrophilicity and roughness were engineered. The optimized membrane demonstrated an exceptional pure water flux of 6220.1 ± 41.9 L·m<sup>−2</sup>·h<sup>−1</sup>·bar<sup>−1</sup> and a permeation flux of 3564.7±339.3 L·m<sup>−2</sup>·h<sup>−1</sup>·bar<sup>−1</sup> for n-hexane/water emulsions with a rejection of 99.78 %. Remarkably, the membrane exhibited robust adaptability to complex oily wastewater, including real-world lab and kitchen wastewater containing oils, surfactants, and suspended solids. Under visible-light irradiation driven peroxymonosulfate (PMS) activation, the membrane achieved 93–100% flux recovery rates (FRR) over six cycles via radical-mediated degradation (<span><math><mo>·</mo><mi>OH</mi></math></span>, <span><math><msub><mi>SO</mi><mn>4</mn></msub><msup><mo>·</mo><mo>−</mo></msup></math></span>, and <span><math><msup><mrow></mrow><mn>1</mn></msup><msub><mi>O</mi><mn>2</mn></msub></math></span>), outperforming pristine membranes (81 % FRR). This dual-functional design addresses persistent challenges in oil fouling of membrane and real-wastewater complexity and thus offering a sustainable solution for industrial and domestic oily wastewater remediation. This work highlights the potential of microstructure-engineered photocatalytic membranes for scalable and sustainable wastewater remediation.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"622 ","pages":"Article 119807"},"PeriodicalIF":9.8,"publicationDate":"2025-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145881552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Desalination
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1