Pub Date : 2024-11-20DOI: 10.1016/j.envpol.2024.125315
Mengyu Liu, Yao Yu, Ying Liu, Sha Xue, Darrell W.S. Tang, Xiaomei Yang
To address plastic pollution in agricultural soils due to polyethylene plastic film mulch used, biodegradable film is being studied as a promising alternative material for sustainable agriculture. However, the impact of biodegradable and polyethylene microplastics on soil carbon remains unclear. The field experiment was conducted with Poly (butyleneadipate-co-terephthalate) debris (PBAT-D, 0.5-2 cm), low-density polyethylene debris (LDPE-D, 0.5-2 cm) and microplastic (LDPE-Mi, 500-1000 μm) contaminated soil (0% (control), 0.05%, 0.1%, 0.2%, 0.5%, 1% and 2% w:w) planted with soybean, to explore potential impacts on soil respiration (Rs), soil organic carbon (SOC) and carbon fractions (microbial biomass carbon (MBC), dissolved organic carbon (DOC), easily oxidizable carbon (EOC), particulate organic carbon (POC), mineral-associated organic carbon (MAOC)), and C-enzymes (β-glucosidase, β-xylosidase, cellobiohydrolase). Results showed that PBAT-D, LDPE-D and LDPE-Mi significantly inhibited Rs compared with the control during the flowering and harvesting stages (p<0.05). SOC significantly increased in the PBAT-D treatments at both stages, and in the LDPE-Mi treatments at the harvesting stage, but decreased in the LDPE-D treatments at the flowering stage. In the PBAT-D treatments, POC increased but DOC and MAOC decreased at both stages. In the LDPE-D treatments, MBC, DOC and EOC significantly decreased but POC increased at both stages. In the LDPE-Mi treatments, MBC and DOC significantly decreased at the harvesting stage, while EOC and MAOC decreased but POC increased at the flowering stage. For C-enzymes, no significant inhibition was observed at the flowering stage, but they were significantly inhibited in all treatments at the harvesting stage. It is concluded that PBAT-D facilitates soil carbon sequestration, which may potentially alter the soil carbon pool and carbon emissions. The key significance of this study is to explore the overall effects of different forms of plastic pollution on soil carbon dynamics, and to inform future efforts to control plastic pollution in farmlands.
{"title":"Effects of Polyethylene and Poly (butyleneadipate-co-terephthalate) contamination on soil respiration and carbon sequestration","authors":"Mengyu Liu, Yao Yu, Ying Liu, Sha Xue, Darrell W.S. Tang, Xiaomei Yang","doi":"10.1016/j.envpol.2024.125315","DOIUrl":"https://doi.org/10.1016/j.envpol.2024.125315","url":null,"abstract":"To address plastic pollution in agricultural soils due to polyethylene plastic film mulch used, biodegradable film is being studied as a promising alternative material for sustainable agriculture. However, the impact of biodegradable and polyethylene microplastics on soil carbon remains unclear. The field experiment was conducted with Poly (butyleneadipate-co-terephthalate) debris (PBAT-D, 0.5-2 cm), low-density polyethylene debris (LDPE-D, 0.5-2 cm) and microplastic (LDPE-Mi, 500-1000 μm) contaminated soil (0% (control), 0.05%, 0.1%, 0.2%, 0.5%, 1% and 2% w:w) planted with soybean, to explore potential impacts on soil respiration (Rs), soil organic carbon (SOC) and carbon fractions (microbial biomass carbon (MBC), dissolved organic carbon (DOC), easily oxidizable carbon (EOC), particulate organic carbon (POC), mineral-associated organic carbon (MAOC)), and C-enzymes (β-glucosidase, β-xylosidase, cellobiohydrolase). Results showed that PBAT-D, LDPE-D and LDPE-Mi significantly inhibited Rs compared with the control during the flowering and harvesting stages (<em>p</em><0.05). SOC significantly increased in the PBAT-D treatments at both stages, and in the LDPE-Mi treatments at the harvesting stage, but decreased in the LDPE-D treatments at the flowering stage. In the PBAT-D treatments, POC increased but DOC and MAOC decreased at both stages. In the LDPE-D treatments, MBC, DOC and EOC significantly decreased but POC increased at both stages. In the LDPE-Mi treatments, MBC and DOC significantly decreased at the harvesting stage, while EOC and MAOC decreased but POC increased at the flowering stage. For C-enzymes, no significant inhibition was observed at the flowering stage, but they were significantly inhibited in all treatments at the harvesting stage. It is concluded that PBAT-D facilitates soil carbon sequestration, which may potentially alter the soil carbon pool and carbon emissions. The key significance of this study is to explore the overall effects of different forms of plastic pollution on soil carbon dynamics, and to inform future efforts to control plastic pollution in farmlands.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"14 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1016/j.envpol.2024.125348
Bronwyn K. Brew, Vanessa E. Murphy, Adam M. Collison, Joerg Mattes, Wilfried Karmaus, Geoffrey Morgan, Bin Jalaludin, Graeme Zosky, Yuming Guo, Peter G. Gibson
The increase in wildfires and bushfires due to climate change means that more people, including pregnant women and their fetuses will be exposed to landscape fire smoke. Although there is evidence to suggest that pregnancy landscape fire exposure is associated with lower birth weight, preterm birth and pregnancy loss, there is a lack of information on many other perinatal outcomes, as well as information on subsequent respiratory outcomes in children. Furthermore, due to the generally short term (hours/ days) and intermittent nature of landscape fire smoke exposure, the knowledge to date has largely relied on natural experiments and ecological studies which can be subject to misclassification of exposure and a lack of precision. On the other hand, general urban outdoor air pollution exposure during pregnancy and subsequent perinatal and respiratory effects has been well studied. In particular, as air exposure modelling has improved so have the adaptations of methods to analyze the effects of air pollution exposure during pregnancy enabling critical windows of exposure to be identified. In this narrative review we summarize the current state of knowledge about the perinatal and respiratory effects of pregnancy landscape fire and particulate matter <2.5μm in diameter (PM2.5) air pollution exposure, including a comment on analysis methods to date, and an assessment of how methodologies used in general air pollution research in relation to pregnancy exposure can be further harnessed for landscape fire smoke exposure pregnancy research.
{"title":"Approaches in landscape fire smoke pregnancy research and the impact on offspring: a review on knowledge gaps and recommendations","authors":"Bronwyn K. Brew, Vanessa E. Murphy, Adam M. Collison, Joerg Mattes, Wilfried Karmaus, Geoffrey Morgan, Bin Jalaludin, Graeme Zosky, Yuming Guo, Peter G. Gibson","doi":"10.1016/j.envpol.2024.125348","DOIUrl":"https://doi.org/10.1016/j.envpol.2024.125348","url":null,"abstract":"The increase in wildfires and bushfires due to climate change means that more people, including pregnant women and their fetuses will be exposed to landscape fire smoke. Although there is evidence to suggest that pregnancy landscape fire exposure is associated with lower birth weight, preterm birth and pregnancy loss, there is a lack of information on many other perinatal outcomes, as well as information on subsequent respiratory outcomes in children. Furthermore, due to the generally short term (hours/ days) and intermittent nature of landscape fire smoke exposure, the knowledge to date has largely relied on natural experiments and ecological studies which can be subject to misclassification of exposure and a lack of precision. On the other hand, general urban outdoor air pollution exposure during pregnancy and subsequent perinatal and respiratory effects has been well studied. In particular, as air exposure modelling has improved so have the adaptations of methods to analyze the effects of air pollution exposure during pregnancy enabling critical windows of exposure to be identified. In this narrative review we summarize the current state of knowledge about the perinatal and respiratory effects of <em>pregnancy</em> landscape fire and particulate matter <2.5μm in diameter (PM<sub>2.5</sub>) air pollution exposure, including a comment on analysis methods to date, and an assessment of how methodologies used in general air pollution research in relation to pregnancy exposure can be further harnessed for landscape fire smoke exposure pregnancy research.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"23 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1016/j.envpol.2024.125346
Xinyue Chen, Meie Wang, Tian Xie, Rong Jiang, Weiping Chen
An in-depth investigation of the maximum environmental load is crucial for soil security and pollution prevention. This research focused on soil environmental carrying capacity (SECC) for different risk receptors in a Chinese industrial city. By determining risk threshold for various land use types, we integrated mass balance and iterative models to capture dynamic net input fluxes with spatial heterogeneity. This enabled quantitative characterization of Benzo(a)pyrene (BaP) SECC through top-down and bottom-up approaches (corresponding to duration (D) and rate of regional emission, respectively). The thresholds were in the order of agricultural land < residential land < forest < industrial land < park. The top-down analysis showed D increased ∼1.5x with a 5% input flux decline until 2031. The bottom-up analysis suggested industrial emissions decreased by approximately 10% as the pollution control period was extended from 20 to 50 years. Both methods showed that at maximum background values (C0), D was ∼4x and the industrial emission rate was ∼10% higher than at minimum C0. SECC values near industrial areas significantly decreased, even reaching negative values, signifying complete carrying capacity loss. This study provided an approach to the dynamics of SECC under diverse scenarios, aiding informed decision-making for sustainable land management.
{"title":"Dynamic estimation of the soil environmental carrying capacity for Benzo(a)pyrene in an industrial city, China: Insight from both duration and rate of regional emission","authors":"Xinyue Chen, Meie Wang, Tian Xie, Rong Jiang, Weiping Chen","doi":"10.1016/j.envpol.2024.125346","DOIUrl":"https://doi.org/10.1016/j.envpol.2024.125346","url":null,"abstract":"An in-depth investigation of the maximum environmental load is crucial for soil security and pollution prevention. This research focused on soil environmental carrying capacity (<em>SECC</em>) for different risk receptors in a Chinese industrial city. By determining risk threshold for various land use types, we integrated mass balance and iterative models to capture dynamic net input fluxes with spatial heterogeneity. This enabled quantitative characterization of Benzo(a)pyrene (BaP) <em>SECC</em> through top-down and bottom-up approaches (corresponding to duration (<em>D</em>) and rate of regional emission, respectively). The thresholds were in the order of agricultural land < residential land < forest < industrial land < park. The top-down analysis showed <em>D</em> increased ∼1.5x with a 5% input flux decline until 2031. The bottom-up analysis suggested industrial emissions decreased by approximately 10% as the pollution control period was extended from 20 to 50 years. Both methods showed that at maximum background values (<em>C</em><sub><em>0</em></sub>), <em>D</em> was ∼4x and the industrial emission rate was ∼10% higher than at minimum <em>C</em><sub><em>0</em></sub>. <em>SECC</em> values near industrial areas significantly decreased, even reaching negative values, signifying complete carrying capacity loss. This study provided an approach to the dynamics of <em>SECC</em> under diverse scenarios, aiding informed decision-making for sustainable land management.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"80 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daily dietary intake inevitably exposes individuals to various natural toxins, which may pose potential health threats. Focusing only on specific toxins could underestimate dietary risks. Therefore, we have developed a suspect and nontarget method based on ultrahigh-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) to screen both known and unknown natural toxins in various foodstuffs. An in-house database containing 2952 natural toxins including fungal toxins, phytotoxins, animal toxins and cyanotoxins was established, facilitating suspect screening. Predicted retention time and mass spectrometry data were employed to enhance the confidence levels. Subsequently, Nontarget screening method was conducted based on molecular network analysis, annotating the edges and nodes through modified types and fragmentation characteristics. Finally, we analyzed 102 foodstuff samples and identified a total of 90 natural toxins, including mycotoxins and phytotoxins, with 65 identified by suspect screening and 25 by nontarget screening. Based on measured concentrations, the daily per capita dietary intake of total natural toxins was estimated, it was below risk doses for natural toxins with available reference values. Overall, this work established a novel method for the comprehensive identification of natural toxins in foodstuffs and emphasized the importance of dietary risk assessment for natural toxins.
{"title":"High-resolution mass spectrometry-based suspect and nontarget screening of natural toxins in foodstuffs and risk assessment of dietary exposure","authors":"Yujie Zhang, Tiantian Chen, Zixuan Wang, Wenying Liang, Xinxin Wang, Xiuqiong Zhang, Xin Lu, Xinyu Liu, Chunxia Zhao, Guowang Xu","doi":"10.1016/j.envpol.2024.125338","DOIUrl":"https://doi.org/10.1016/j.envpol.2024.125338","url":null,"abstract":"Daily dietary intake inevitably exposes individuals to various natural toxins, which may pose potential health threats. Focusing only on specific toxins could underestimate dietary risks. Therefore, we have developed a suspect and nontarget method based on ultrahigh-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) to screen both known and unknown natural toxins in various foodstuffs. An in-house database containing 2952 natural toxins including fungal toxins, phytotoxins, animal toxins and cyanotoxins was established, facilitating suspect screening. Predicted retention time and mass spectrometry data were employed to enhance the confidence levels. Subsequently, Nontarget screening method was conducted based on molecular network analysis, annotating the edges and nodes through modified types and fragmentation characteristics. Finally, we analyzed 102 foodstuff samples and identified a total of 90 natural toxins, including mycotoxins and phytotoxins, with 65 identified by suspect screening and 25 by nontarget screening. Based on measured concentrations, the daily per capita dietary intake of total natural toxins was estimated, it was below risk doses for natural toxins with available reference values. Overall, this work established a novel method for the comprehensive identification of natural toxins in foodstuffs and emphasized the importance of dietary risk assessment for natural toxins.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"14 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1016/j.envpol.2024.125363
Yi Shen, Guorui Zhi, Yuzhe Zhang, Wenjing Jin, Yao Kong, Zhengying Li, Haitao Zhang
Carbonaceous aerosols primarily comprise organic carbon (OC) and black carbon (BC). Thermal-optical analysis (TOA) is the most commonly used method for separating carbonaceous aerosols into OC and EC (BC is referred to as elemental carbon EC, in this method). Advances in hardware design and algorithms have expanded the capabilities of TOA beyond just distinguishing OC and EC. However, a comprehensive understanding of the enhanced functionality of TOA is still lacking. This study provides the first comprehensive review of the TOA technique, highlighting expanded capabilities to measure brown carbon (BrC), mass-absorption efficiency, absorption enhancement, source contributions, and refined OC/EC split points. This review discusses the principles, advantages, and limitations of these advancements. Furthermore, the TOA system anticipates further advancements through integration with other instruments, establishing correlations between EC values obtained from different TOA instruments/protocols, correlating between BrC measurements from TOA and non-TOA methods, and developing an algorithm to quantify BrC from progressive absorption Ångström exponent (AAE) values. This review enhances the understanding of the TOA system and its implication for air quality and atmospheric radiation research.
碳质气溶胶主要包括有机碳(OC)和黑碳(BC)。热光学分析(TOA)是将碳质气溶胶分为有机碳(OC)和无机碳(EC)的最常用方法(在此方法中,BC 被称为元素碳 EC)。硬件设计和算法的进步扩大了 TOA 的功能,使其不仅仅局限于区分 OC 和 EC。然而,人们对 TOA 的增强功能仍缺乏全面的了解。本研究首次对 TOA 技术进行了全面回顾,重点介绍了该技术在测量褐碳 (BrC)、质量吸收效率、吸收增强、源贡献以及细化 OC/EC 分离点等方面的扩展功能。本综述讨论了这些进步的原理、优势和局限性。此外,TOA 系统还将通过与其他仪器的集成、建立不同 TOA 仪器/协议所获 EC 值之间的相关性、TOA 和非 TOA 方法所测 BrC 值之间的相关性,以及开发一种从渐进吸收 Ångström 指数 (AAE) 值量化 BrC 的算法,实现进一步的进步。本综述加深了人们对 TOA 系统及其对空气质量和大气辐射研究的影响的了解。
{"title":"An investigative review of the expanded capabilities of thermal/optical techniques for measuring carbonaceous aerosols and beyond","authors":"Yi Shen, Guorui Zhi, Yuzhe Zhang, Wenjing Jin, Yao Kong, Zhengying Li, Haitao Zhang","doi":"10.1016/j.envpol.2024.125363","DOIUrl":"https://doi.org/10.1016/j.envpol.2024.125363","url":null,"abstract":"Carbonaceous aerosols primarily comprise organic carbon (OC) and black carbon (BC). Thermal-optical analysis (TOA) is the most commonly used method for separating carbonaceous aerosols into OC and EC (BC is referred to as elemental carbon EC, in this method). Advances in hardware design and algorithms have expanded the capabilities of TOA beyond just distinguishing OC and EC. However, a comprehensive understanding of the enhanced functionality of TOA is still lacking. This study provides the first comprehensive review of the TOA technique, highlighting expanded capabilities to measure brown carbon (BrC), mass-absorption efficiency, absorption enhancement, source contributions, and refined OC/EC split points. This review discusses the principles, advantages, and limitations of these advancements. Furthermore, the TOA system anticipates further advancements through integration with other instruments, establishing correlations between EC values obtained from different TOA instruments/protocols, correlating between BrC measurements from TOA and non-TOA methods, and developing an algorithm to quantify BrC from progressive absorption Ångström exponent (<em>AAE</em>) values. This review enhances the understanding of the TOA system and its implication for air quality and atmospheric radiation research.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"99 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19DOI: 10.1016/j.envpol.2024.125334
Kuang Wang, Zhanqiang Fang
In the homologous series of polybrominated diphenyl ethers (PBDEs), the debromination of low-brominated diphenyl ethers with higher toxicity remains a challenge. Nano zero-valent iron (nZVI) has been extensively studied for the debromination of PBDEs, but its inherent direct electron transfer mechanism is less efficient for low-brominated diphenyl ethers, and there are issues with high preparation costs. In this work, we synthesize Ni-doped oxalated submicron ZVI (FeOXbm/Ni) using a low-cost ball-milling method. FeOXbm/Ni exhibits a debromination rate constant of 0.48 day-1 for 2,2’,4,4’-tetrabromodiphenyl ether (BDE-47) in tetrahydrofuran (THF)/water. The debromination rate of FeOXbm/Ni for BDE-47 in water is even faster (0.98 day-1), with the yield of the complete debromination product, diphenyl ether, reaching 76.71%. In real groundwater, FeOXbm/Ni also shows high reactivity toward BDE-47, with a rate constant of 0.33 day-1. Kinetic experiments, quenching experiments, and degradation pathway indicate that the attack of atomic hydrogen on C-Br bonds is the primary degradation mechanism. Electrochemical analysis further show that Ni0 sites could cleave hydrogen into absorbed atomic hydrogen (H*ABS) and adsorbed atomic hydrogen (H*ADS), with H*ADS playing the main role. These findings contribute valuable insights into advancing the large-scale application of ZVI and offer promising strategies for thorough remediation of PBDEs pollution.
{"title":"Catalytic generation of adsorbed atomic H for degradation of 2,2',4,4'-tetrabromodiphenyl ether by mechanochemically prepared Ni-doped oxalated zero-valent iron","authors":"Kuang Wang, Zhanqiang Fang","doi":"10.1016/j.envpol.2024.125334","DOIUrl":"https://doi.org/10.1016/j.envpol.2024.125334","url":null,"abstract":"In the homologous series of polybrominated diphenyl ethers (PBDEs), the debromination of low-brominated diphenyl ethers with higher toxicity remains a challenge. Nano zero-valent iron (nZVI) has been extensively studied for the debromination of PBDEs, but its inherent direct electron transfer mechanism is less efficient for low-brominated diphenyl ethers, and there are issues with high preparation costs. In this work, we synthesize Ni-doped oxalated submicron ZVI (Fe<sub>OX</sub><sup>bm</sup>/Ni) using a low-cost ball-milling method. Fe<sub>OX</sub><sup>bm</sup>/Ni exhibits a debromination rate constant of 0.48 day<sup>-1</sup> for 2,2’,4,4’-tetrabromodiphenyl ether (BDE-47) in tetrahydrofuran (THF)/water. The debromination rate of Fe<sub>OX</sub><sup>bm</sup>/Ni for BDE-47 in water is even faster (0.98 day<sup>-1</sup>), with the yield of the complete debromination product, diphenyl ether, reaching 76.71%. In real groundwater, Fe<sub>OX</sub><sup>bm</sup>/Ni also shows high reactivity toward BDE-47, with a rate constant of 0.33 day<sup>-1</sup>. Kinetic experiments, quenching experiments, and degradation pathway indicate that the attack of atomic hydrogen on C-Br bonds is the primary degradation mechanism. Electrochemical analysis further show that Ni<sup>0</sup> sites could cleave hydrogen into absorbed atomic hydrogen (H*<sub>ABS</sub>) and adsorbed atomic hydrogen (H*<sub>ADS</sub>), with H*<sub>ADS</sub> playing the main role. These findings contribute valuable insights into advancing the large-scale application of ZVI and offer promising strategies for thorough remediation of PBDEs pollution.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"35 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19DOI: 10.1016/j.envpol.2024.125337
Pablo Giráldez, Antón Vázquez-Arias, Flavia De Nicola, J. Ángel Fernández, Jesús R. Aboal
The leaves of trees and shrubs can capture atmospheric pollutants such as polycyclic aromatic hydrocarbons (PAHs), and the capacity of uptake depends on the leaf traits. Although numerous studies have measured PAH concentrations in leaves of woody plants and the variability in leaf traits, few have investigated the relationship between these factors. We conducted a literature review to summarize the available information on this topic and found that five types of leaf traits have been studied, with those associated with leaf morphology and gas exchange being the most common. However, the results of the studies are often contradictory. To address these discrepancies, we conducted a meta-analysis to examine how PAH uptake by woody species is affected by leaf ecological traits associated with morphology (leaf area, specific leaf area [SLA], leaf thickness and leaf width/length ratio [W/L]) and with gas exchange (stomatal conductance, leaf carbon isotopic signature [δ13C] and stomatal density). The meta-analysis included studies involving at least two different species with comparable PAH concentrations. Many of the studies did not examine the relationship between ecological traits and PAH concentration, and those that did often involve different traits. We therefore used the TRY Plant Trait Database data as the standard source of trait data. Relationships were analyzed by determining differences regarding PAHs and traits and calculating Spearman correlations and their significance. The leaf morphology traits were more closely correlated with PAH concentrations than the gas exchange traits. Thus, morphological traits such as SLA and leaf area can be considered significant predictors of PAH uptake, especially for particulate-associated PAHs. Gas exchange traits showed less consistent correlations, indicating the complexity of factors influencing PAH uptake in leaves. This study highlights the importance of considering multiple leaf traits in order to better understand and predict PAH uptake in woody plants.
{"title":"Leaf ecological traits (morphology and gas exchange) and polycyclic aromatic hydrocarbons concentrations in shrubs and trees: a meta-analysis approach","authors":"Pablo Giráldez, Antón Vázquez-Arias, Flavia De Nicola, J. Ángel Fernández, Jesús R. Aboal","doi":"10.1016/j.envpol.2024.125337","DOIUrl":"https://doi.org/10.1016/j.envpol.2024.125337","url":null,"abstract":"The leaves of trees and shrubs can capture atmospheric pollutants such as polycyclic aromatic hydrocarbons (PAHs), and the capacity of uptake depends on the leaf traits. Although numerous studies have measured PAH concentrations in leaves of woody plants and the variability in leaf traits, few have investigated the relationship between these factors. We conducted a literature review to summarize the available information on this topic and found that five types of leaf traits have been studied, with those associated with leaf morphology and gas exchange being the most common. However, the results of the studies are often contradictory. To address these discrepancies, we conducted a meta-analysis to examine how PAH uptake by woody species is affected by leaf ecological traits associated with morphology (leaf area, specific leaf area [SLA], leaf thickness and leaf width/length ratio [W/L]) and with gas exchange (stomatal conductance, leaf carbon isotopic signature [δ<sup>13</sup>C] and stomatal density). The meta-analysis included studies involving at least two different species with comparable PAH concentrations. Many of the studies did not examine the relationship between ecological traits and PAH concentration, and those that did often involve different traits. We therefore used the TRY Plant Trait Database data as the standard source of trait data. Relationships were analyzed by determining differences regarding PAHs and traits and calculating Spearman correlations and their significance. The leaf morphology traits were more closely correlated with PAH concentrations than the gas exchange traits. Thus, morphological traits such as SLA and leaf area can be considered significant predictors of PAH uptake, especially for particulate-associated PAHs. Gas exchange traits showed less consistent correlations, indicating the complexity of factors influencing PAH uptake in leaves. This study highlights the importance of considering multiple leaf traits in order to better understand and predict PAH uptake in woody plants.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"39 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mineral exploitation is one of the human activities that seriously affect freshwater ecosystems. It is of great significance to study the impact of mining on the α and β diversity of macroinvertebrates. This study reveals the response of taxonomic and functional α and β diversity of macroinvertebrates to mining activities in the Luanchuan molybdenum mining area. A total of 40 sets of macroinvertebrates, sediment and water samples in the Taowan North River (TR), Yu River (UR) and Hongluo River (HR) in the molybdenum mining area were collected. The results show that: 1) the mining activities led to obvious differences in the environmental factors of the three rivers. The heavy metals in the sediments and water bodies of TR and UR showed different degrees of exceedance, while there was no exceedance of heavy metals in HR; 2) The taxonomic and functional α diversity was much lower in the TR and the UR than in the HR. The concentrations of heavy metals in sediments and water bodies were significantly negatively correlated with the taxonomic and functional α diversity; 3) Mineral extraction resulted in significant differences in macroinvertebrate β diversity among the three rivers. The taxonomic and functional β diversity of the macroinvertebrate communities in TR and UR was much higher than that in HR. The turnover and nestedness of functional β diversity showed significant differences. Functional β diversity was more obviously affected by heavy metal exceedance than taxonomic β diversity. Nestedness were more sensitive to exceedance of heavy metals than turnover. The results of this study can provide a theoretical basis for ecological restoration and protection of rivers in mining areas.
{"title":"Impacts of mining on the diversity of benthic macroinvertebrates - A case study of molybdenum mining area in Luanchuan county","authors":"Na Zhao, Chenxi Sang, Ruixue Cao, Zhijun Yao, Feilong Gao, Shimin Tian, Yiming Hou","doi":"10.1016/j.envpol.2024.125335","DOIUrl":"https://doi.org/10.1016/j.envpol.2024.125335","url":null,"abstract":"Mineral exploitation is one of the human activities that seriously affect freshwater ecosystems. It is of great significance to study the impact of mining on the α and β diversity of macroinvertebrates. This study reveals the response of taxonomic and functional α and β diversity of macroinvertebrates to mining activities in the Luanchuan molybdenum mining area. A total of 40 sets of macroinvertebrates, sediment and water samples in the Taowan North River (TR), Yu River (UR) and Hongluo River (HR) in the molybdenum mining area were collected. The results show that: 1) the mining activities led to obvious differences in the environmental factors of the three rivers. The heavy metals in the sediments and water bodies of TR and UR showed different degrees of exceedance, while there was no exceedance of heavy metals in HR; 2) The taxonomic and functional α diversity was much lower in the TR and the UR than in the HR. The concentrations of heavy metals in sediments and water bodies were significantly negatively correlated with the taxonomic and functional α diversity; 3) Mineral extraction resulted in significant differences in macroinvertebrate β diversity among the three rivers. The taxonomic and functional β diversity of the macroinvertebrate communities in TR and UR was much higher than that in HR. The turnover and nestedness of functional β diversity showed significant differences. Functional β diversity was more obviously affected by heavy metal exceedance than taxonomic β diversity. Nestedness were more sensitive to exceedance of heavy metals than turnover. The results of this study can provide a theoretical basis for ecological restoration and protection of rivers in mining areas.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"55 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Groundwater is a vital natural resource that has been extensively used but, unfortunately, polluted by human activities, posing a potential threat to human health. Groundwater in the Yinchuan Region is contaminated with NO3-, which is harmful to the local population. This study utilized the eXtreme Gradient Boosting (XGBoost) model with the SHapley Additive exPlanations (SHAP) method to identify the key factors influencing groundwater nitrate pollution in the Yinchuan Region. The SHAP feature dependence plots revealed the intricate relationship between NO3- levels and TDS, Mn2+, TFe, and pH in complex groundwater systems. The results indicate that the high levels of groundwater NO3- are primarily caused by the combined effect of irrigation water from the Yellow River, shallow groundwater depth, unfavorable drainage, water recharge, overuse of fertilizers, and geological factors such as weathering nitrogen-bearing rocks. Hydrochemical parameters such as Mn2+, Fe2+, and pH create a strong reducing groundwater environment, resulting in lower NO3- concentrations in this region. Well depth and soil organic carbon at a depth of 80-100 cm have a negative impact on NO3- concentrations; conversely, sand in soil depths 0-20 cm and 100-150 cm and climatic factors such as precipitation have a weak but positive effect on the level of NO3- in groundwater in the region. The recommendation is to quickly and extensively implement a farming water-conservancy transformation project, reducing water-intensive crops, promoting groundwater use for irrigation in areas where soil salinization is a concern are proposed. This research could provide local agencies with a scientific foundation for sustainable management of farming and groundwater in the Yinchuan Region, ultimately benefiting the entire Yinchuan Plain.
{"title":"Key factors affecting groundwater nitrate levels in the Yinchuan Region, Northwest China: research using the eXtreme Gradient Boosting (XGBoost) model with the SHapley Additive exPlanations (SHAP) method","authors":"S.M.Khorshed Alam, Peiyue Li, Mahbubur Rahman, Misbah Fida, Vetrimurugan Elumalai","doi":"10.1016/j.envpol.2024.125336","DOIUrl":"https://doi.org/10.1016/j.envpol.2024.125336","url":null,"abstract":"Groundwater is a vital natural resource that has been extensively used but, unfortunately, polluted by human activities, posing a potential threat to human health. Groundwater in the Yinchuan Region is contaminated with NO<sub>3</sub><sup>-</sup>, which is harmful to the local population. This study utilized the eXtreme Gradient Boosting (XGBoost) model with the SHapley Additive exPlanations (SHAP) method to identify the key factors influencing groundwater nitrate pollution in the Yinchuan Region. The SHAP feature dependence plots revealed the intricate relationship between NO<sub>3</sub><sup>-</sup> levels and TDS, Mn<sup>2+</sup>, TFe, and pH in complex groundwater systems. The results indicate that the high levels of groundwater NO<sub>3</sub><sup>-</sup> are primarily caused by the combined effect of irrigation water from the Yellow River, shallow groundwater depth, unfavorable drainage, water recharge, overuse of fertilizers, and geological factors such as weathering nitrogen-bearing rocks. Hydrochemical parameters such as Mn<sup>2+</sup>, Fe<sup>2+</sup>, and pH create a strong reducing groundwater environment, resulting in lower NO<sub>3</sub><sup>-</sup> concentrations in this region. Well depth and soil organic carbon at a depth of 80-100 cm have a negative impact on NO<sub>3</sub><sup>-</sup> concentrations; conversely, sand in soil depths 0-20 cm and 100-150 cm and climatic factors such as precipitation have a weak but positive effect on the level of NO<sub>3</sub><sup>-</sup> in groundwater in the region. The recommendation is to quickly and extensively implement a farming water-conservancy transformation project, reducing water-intensive crops, promoting groundwater use for irrigation in areas where soil salinization is a concern are proposed. This research could provide local agencies with a scientific foundation for sustainable management of farming and groundwater in the Yinchuan Region, ultimately benefiting the entire Yinchuan Plain.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"7 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19DOI: 10.1016/j.envpol.2024.125345
Jorge Bernal-Alviz, Leonomir Córdoba-Tovar, Dianis Pastrana-Durango, Carlos Molina-Polo, Jorge Buelvas-Soto, Ángel Cruz-Esquivel, José Marrugo-Negrete, Sergi Díez
Understanding variations in total mercury (T-Hg) levels in fish is crucial for protecting aquatic biota and human health. This article evaluates the influence of environmental factors (temperature, pH) and biological variables (feeding habits, trophic level, total length, total weight), on T-Hg concentrations in fish from the Atrato River basin, Colombia. Utilizing a robust secondary data set of 842 fish samples from 16 species collected in 2019, we conducted a comprehensive analysis of these influences. We examined differences in T-Hg accumulation rates by habitat type (pelagic, benthopelagic and demersal) and probabilistically classified species based on their feeding habits and trophic levels. Our analysis identified a hierarchy of variables influencing T-Hg levels: feeding habits > total length > estimated total weight > trophic level > water temperature > pH, with temperature being the only predictor exerting a negative influence. Together, these variables accounted for over 60% of the variability in T-Hg accumulation in fish muscle tissue. Furthermore, fish in the Atrato River exhibited differential T-Hg based on habitat type, grouping into three distinct subpopulations stratified by feeding habits and trophic levels. These findings suggest that observed T-Hg accumulation patterns are driven by the functional ecology of the organisms, phenological characteristics, metabolism, contamination patterns, biogeography, land use, and the spatial and chemical configuration of the environmental matrices of the basin. Our results emphasize the importance of understand how biological and environmental factors influence T-Hg concentrations in fish, as these factors vary across aquatic systems. This knowledge is crucial for developing effective biodiversity management strategies. While we used a machine learning approach to identify key predictors of T-Hg accumulation, we also caution against potential biases in modeling T-Hg concentrations for aquatic biota management.
{"title":"Influence of environmental and biological factors on mercury accumulation in fish from the Atrato River basin, Colombia","authors":"Jorge Bernal-Alviz, Leonomir Córdoba-Tovar, Dianis Pastrana-Durango, Carlos Molina-Polo, Jorge Buelvas-Soto, Ángel Cruz-Esquivel, José Marrugo-Negrete, Sergi Díez","doi":"10.1016/j.envpol.2024.125345","DOIUrl":"https://doi.org/10.1016/j.envpol.2024.125345","url":null,"abstract":"Understanding variations in total mercury (T-Hg) levels in fish is crucial for protecting aquatic biota and human health. This article evaluates the influence of environmental factors (temperature, pH) and biological variables (feeding habits, trophic level, total length, total weight), on T-Hg concentrations in fish from the Atrato River basin, Colombia. Utilizing a robust secondary data set of 842 fish samples from 16 species collected in 2019, we conducted a comprehensive analysis of these influences. We examined differences in T-Hg accumulation rates by habitat type (pelagic, benthopelagic and demersal) and probabilistically classified species based on their feeding habits and trophic levels. Our analysis identified a hierarchy of variables influencing T-Hg levels: feeding habits > total length > estimated total weight > trophic level > water temperature > pH, with temperature being the only predictor exerting a negative influence. Together, these variables accounted for over 60% of the variability in T-Hg accumulation in fish muscle tissue. Furthermore, fish in the Atrato River exhibited differential T-Hg based on habitat type, grouping into three distinct subpopulations stratified by feeding habits and trophic levels. These findings suggest that observed T-Hg accumulation patterns are driven by the functional ecology of the organisms, phenological characteristics, metabolism, contamination patterns, biogeography, land use, and the spatial and chemical configuration of the environmental matrices of the basin. Our results emphasize the importance of understand how biological and environmental factors influence T-Hg concentrations in fish, as these factors vary across aquatic systems. This knowledge is crucial for developing effective biodiversity management strategies. While we used a machine learning approach to identify key predictors of T-Hg accumulation, we also caution against potential biases in modeling T-Hg concentrations for aquatic biota management.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"65 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}