首页 > 最新文献

Carbon Energy最新文献

英文 中文
Sulfhydryl‐functionalized COF‐based electrolyte  strengthens chemical affinity toward polysulfides in quasi‐solid‐state Li‐S batteries 巯基官能化 COF 基电解质增强了准固态锂-S 电池对多硫化物的化学亲和力
IF 20.5 1区 材料科学 Q1 Materials Science Pub Date : 2024-04-17 DOI: 10.1002/cey2.544
Linnan Bi, Jie Xiao, Yaochen Song, Tianrui Sun, Mingkai Luo, Yi Wang, Peng Dong, Yingjie Zhang, Yao Yao, Jiaxuan Liao, Sizhe Wang, Shulei Chou
For lithium‐sulfur batteries (Li‐S batteries), a high‐content electrolyte typically can exacerbate the shuttle effect, while a lean electrolyte may lead to decreased Li‐ion conductivity and reduced catalytic conversion efficiency, so achieving an appropriate electrolyte‐to‐sulfur ratio (E/S ratio) is essential for improving the battery cycling efficiency. A quasi‐solid electrolyte (COF‐SH@PVDF‐HFP) with strong adsorption and high catalytic conversion was constructed for in situ covalent organic framework (COF) growth on highly polarized polyvinylidene fluoride‐hexafluoropropylene (PVDF‐HFP) fibers. COF‐SH@PVDF‐HFP enables efficient Li‐ion conductivity with low‐content liquid electrolyte and effectively suppresses the shuttle effect. The results based on in situ Fourier‐transform infrared, in situ Raman, UV–Vis, X‐ray photoelectron, and density functional theory calculations confirmed the high catalytic conversion of COF‐SH layer containing sulfhydryl and imine groups for the lithium polysulfides. Lithium plating/stripping tests based on Li/COF‐SH@PVDF‐HFP/Li show excellent lithium compatibility (5 mAh cm−2 for 1400 h). The assembled Li‐S battery exhibits excellent rate (2 C 688.7 mAh g−1) and cycle performance (at 2 C of 568.8 mAh g−1 with a capacity retention of 77.3% after 800 cycles). This is the first report to improve the cycling stability of quasi‐solid‐state Li‐S batteries by reducing both the E/S ratio and the designing strategy of sulfhydryl‐functionalized COF for quasi‐solid electrolytes. This process opens up the possibility of the high performance of solid‐state Li‐S batteries.
对于锂硫电池(Li-S 电池)而言,高含量电解质通常会加剧穿梭效应,而贫化电解质则可能导致锂离子电导率下降和催化转化效率降低,因此实现适当的电解质硫比(E/S 比)对于提高电池循环效率至关重要。为了在高极化聚偏氟乙烯-六氟丙烯(PVDF-HFP)纤维上原位生长共价有机框架(COF),我们构建了一种具有强吸附性和高催化转化率的准固体电解质(COF-SH@PVDF-HFP)。COF-SH@PVDF-HFP 可在低含量液态电解质中实现高效锂离子传导,并有效抑制穿梭效应。基于原位傅立叶变换红外光谱、原位拉曼光谱、紫外可见光谱、X 射线光电子学和密度泛函理论计算的结果证实,含有巯基和亚胺基团的 COF-SH 层对多硫化锂具有很高的催化转化率。基于锂/COF-SH@PVDF-HFP/Li 的锂镀层/剥离测试表明锂兼容性极佳(5 mAh cm-2 1400 小时)。组装后的锂-S 电池具有出色的速率(2 C 688.7 mAh g-1)和循环性能(2 C 时为 568.8 mAh g-1,800 次循环后容量保持率为 77.3%)。这是第一份通过降低 E/S 比和准固态电解质巯基官能化 COF 的设计策略来提高准固态锂-S 电池循环稳定性的报告。这一过程为实现固态锂-S 电池的高性能提供了可能。
{"title":"Sulfhydryl‐functionalized COF‐based electrolyte  strengthens chemical affinity toward polysulfides in quasi‐solid‐state Li‐S batteries","authors":"Linnan Bi, Jie Xiao, Yaochen Song, Tianrui Sun, Mingkai Luo, Yi Wang, Peng Dong, Yingjie Zhang, Yao Yao, Jiaxuan Liao, Sizhe Wang, Shulei Chou","doi":"10.1002/cey2.544","DOIUrl":"https://doi.org/10.1002/cey2.544","url":null,"abstract":"For lithium‐sulfur batteries (Li‐S batteries), a high‐content electrolyte typically can exacerbate the shuttle effect, while a lean electrolyte may lead to decreased Li‐ion conductivity and reduced catalytic conversion efficiency, so achieving an appropriate electrolyte‐to‐sulfur ratio (E/S ratio) is essential for improving the battery cycling efficiency. A quasi‐solid electrolyte (COF‐SH@PVDF‐HFP) with strong adsorption and high catalytic conversion was constructed for in situ covalent organic framework (COF) growth on highly polarized polyvinylidene fluoride‐hexafluoropropylene (PVDF‐HFP) fibers. COF‐SH@PVDF‐HFP enables efficient Li‐ion conductivity with low‐content liquid electrolyte and effectively suppresses the shuttle effect. The results based on in situ Fourier‐transform infrared, in situ Raman, UV–Vis, X‐ray photoelectron, and density functional theory calculations confirmed the high catalytic conversion of COF‐SH layer containing sulfhydryl and imine groups for the lithium polysulfides. Lithium plating/stripping tests based on Li/COF‐SH@PVDF‐HFP/Li show excellent lithium compatibility (5 mAh cm−2 for 1400 h). The assembled Li‐S battery exhibits excellent rate (2 C 688.7 mAh g−1) and cycle performance (at 2 C of 568.8 mAh g−1 with a capacity retention of 77.3% after 800 cycles). This is the first report to improve the cycling stability of quasi‐solid‐state Li‐S batteries by reducing both the E/S ratio and the designing strategy of sulfhydryl‐functionalized COF for quasi‐solid electrolytes. This process opens up the possibility of the high performance of solid‐state Li‐S batteries.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140690627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activating Ru in the pyramidal sites of Ru2P‐type structures with earth‐abundant transition metals for achieving extremely high HER activity while minimizing noble metal content 在 Ru2P 型结构的金字塔位点上用富含地球的过渡金属活化 Ru,以获得极高的 HER 活性,同时尽量减少贵金属含量
IF 20.5 1区 材料科学 Q1 Materials Science Pub Date : 2024-04-17 DOI: 10.1002/cey2.556
S. El-refaei, Patrícia A. Russo, T. Schultz, Zhe-ning Chen, P. Amsalem, Norbert Koch, Nicole Pinna
Rational design of efficient pH‐universal hydrogen evolution reaction catalysts to enable large‐scale hydrogen production via electrochemical water splitting is of great significance, yet a challenging task. Herein, Ru atoms in the Ru2P structure were replaced with M = Co, Ni, or Mo to produce M2−xRuxP nanocrystals. The metals show strong site preference, with Co and Ni occupying the tetrahedral sites and Ru the square pyramidal sites of the CoRuP and NiRuP Ru2P‐type structures. The presence of Co or Ni in the tetrahedral sites leads to charge redistribution for Ru and, according to density functional theory calculations, a significant increase in the Ru d‐band centers. As a result, the intrinsic activity of CoRuP and NiRuP increases considerably compared to Ru2P in both acidic and alkaline media. The effect is not observed for MoRuP, in which Mo prefers to occupy the pyramidal sites. In particular, CoRuP shows state‐of‐the‐art activity, outperforming Ru2P with Pt‐like activity in 0.5 M H2SO4 (η10 = 12.3 mV; η100 = 52 mV; turnover frequency (TOF) = 4.7 s−1). It remains extraordinarily active in alkaline conditions (η10 = 12.9 mV; η100 = 43.5 mV) with a TOF of 4.5 s−1, which is 4x higher than that of Ru2P and 10x that of Pt/C. Further increase in the Co content does not lead to drastic loss of activity, especially in alkaline medium, where, for example, the TOF of Co1.9Ru0.1P remains comparable to that of Ru2P and higher than that of Pt/C, highlighting the viability of the adopted approach to prepare cost‐efficient catalysts.
合理设计高效的 pH 值通用氢进化反应催化剂,通过电化学分水实现大规模制氢意义重大,但也是一项具有挑战性的任务。在这里,Ru2P 结构中的 Ru 原子被 M = Co、Ni 或 Mo 取代,从而产生 M2-xRuxP 纳米晶体。在 CoRuP 和 NiRuP Ru2P 型结构中,金属表现出强烈的位点偏好,Co 和 Ni 占据了四面体位点,Ru 占据了方形金字塔位点。四面体位点中 Co 或 Ni 的存在导致了 Ru 的电荷再分布,根据密度泛函理论计算,Ru 的 d 带中心显著增加。因此,与 Ru2P 相比,CoRuP 和 NiRuP 在酸性和碱性介质中的固有活性都大大提高。而 MoRuP 则没有观察到这种效应,因为 Mo 更倾向于占据金字塔形位点。CoRuP 尤其显示出了最先进的活性,在 0.5 M H2SO4 中比 Ru2P 更具有类似 Pt 的活性(η10 = 12.3 mV;η100 = 52 mV;翻转频率 (TOF) = 4.7 s-1)。在碱性条件下(η10 = 12.9 mV; η100 = 43.5 mV),它仍然异常活跃,TOF 为 4.5 s-1,是 Ru2P 的 4 倍,Pt/C 的 10 倍。Co 含量的进一步增加并不会导致活性的急剧下降,尤其是在碱性介质中,例如 Co1.9Ru0.1P 的 TOF 与 Ru2P 相当,而高于 Pt/C,这突出表明了采用这种方法制备具有成本效益的催化剂的可行性。
{"title":"Activating Ru in the pyramidal sites of Ru2P‐type structures with earth‐abundant transition metals for achieving extremely high HER activity while minimizing noble metal content","authors":"S. El-refaei, Patrícia A. Russo, T. Schultz, Zhe-ning Chen, P. Amsalem, Norbert Koch, Nicole Pinna","doi":"10.1002/cey2.556","DOIUrl":"https://doi.org/10.1002/cey2.556","url":null,"abstract":"Rational design of efficient pH‐universal hydrogen evolution reaction catalysts to enable large‐scale hydrogen production via electrochemical water splitting is of great significance, yet a challenging task. Herein, Ru atoms in the Ru2P structure were replaced with M = Co, Ni, or Mo to produce M2−xRuxP nanocrystals. The metals show strong site preference, with Co and Ni occupying the tetrahedral sites and Ru the square pyramidal sites of the CoRuP and NiRuP Ru2P‐type structures. The presence of Co or Ni in the tetrahedral sites leads to charge redistribution for Ru and, according to density functional theory calculations, a significant increase in the Ru d‐band centers. As a result, the intrinsic activity of CoRuP and NiRuP increases considerably compared to Ru2P in both acidic and alkaline media. The effect is not observed for MoRuP, in which Mo prefers to occupy the pyramidal sites. In particular, CoRuP shows state‐of‐the‐art activity, outperforming Ru2P with Pt‐like activity in 0.5 M H2SO4 (η10 = 12.3 mV; η100 = 52 mV; turnover frequency (TOF) = 4.7 s−1). It remains extraordinarily active in alkaline conditions (η10 = 12.9 mV; η100 = 43.5 mV) with a TOF of 4.5 s−1, which is 4x higher than that of Ru2P and 10x that of Pt/C. Further increase in the Co content does not lead to drastic loss of activity, especially in alkaline medium, where, for example, the TOF of Co1.9Ru0.1P remains comparable to that of Ru2P and higher than that of Pt/C, highlighting the viability of the adopted approach to prepare cost‐efficient catalysts.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140692519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of electrospun separators for lithium‐based batteries: Progress and application prospects 锂电池电纺隔膜综述:进展与应用前景
IF 20.5 1区 材料科学 Q1 Materials Science Pub Date : 2024-04-17 DOI: 10.1002/cey2.539
Xiangru Sun, Ying Zhou, Dejun Li, Kai Zhao, Liqun Wang, Peiran Tan, Hongyang Dong, Yueming Wang, Jinrui Liang
Due to the limitations of the raw materials and processes involved, polyolefin separators used in commercial lithium‐ion batteries (LIBs) have gradually failed to meet the increasing requirements of high‐end batteries in terms of energy density, power density, and safety. Hence, it is very important to develop next‐generation separators for advanced lithium (Li)‐based rechargeable batteries including LIBs and Li–S batteries. Nonwoven nanofiber membranes fabricated via electrospinning technology are highly attractive candidates for high‐end separators due to their simple processes, low‐cost equipment, controllable microporous structure, wide material applicability, and availability of multiple functions. In this review, the electrospinning technologies for separators are reviewed in terms of devices, process and environment, and polymer solution systems. Furthermore, strategies toward the improvement of electrospun separators in advanced LIBs and Li–S batteries are presented in terms of the compositions and the structure of nanofibers and separators. Finally, the challenges and prospects of electrospun separators in both academia and industry are proposed. We anticipate that these systematic discussions can provide information in terms of commercial applications of electrospun separators and offer new perspectives for the design of functional electrospun separators for advanced Li‐based batteries.
由于原材料和工艺的限制,商用锂离子电池(LIB)中使用的聚烯烃隔膜已逐渐无法满足高端电池在能量密度、功率密度和安全性方面不断提高的要求。因此,为包括锂离子电池和锂-S 电池在内的先进锂(Li)基可充电电池开发下一代隔膜非常重要。通过电纺丝技术制造的无纺纳米纤维膜具有工艺简单、设备成本低、微孔结构可控、材料适用性广、功能多样等优点,是极具吸引力的高端隔膜候选材料。本综述从设备、工艺和环境以及聚合物溶液系统等方面对用于分离器的电纺丝技术进行了综述。此外,还从纳米纤维和隔膜的成分和结构方面介绍了在先进锂离子电池和锂-S 电池中改进电纺隔膜的策略。最后,提出了电纺隔膜在学术界和工业界面临的挑战和前景。我们希望这些系统性的讨论能够为电纺隔膜的商业应用提供信息,并为先进锂电池功能性电纺隔膜的设计提供新的视角。
{"title":"A review of electrospun separators for lithium‐based batteries: Progress and application prospects","authors":"Xiangru Sun, Ying Zhou, Dejun Li, Kai Zhao, Liqun Wang, Peiran Tan, Hongyang Dong, Yueming Wang, Jinrui Liang","doi":"10.1002/cey2.539","DOIUrl":"https://doi.org/10.1002/cey2.539","url":null,"abstract":"Due to the limitations of the raw materials and processes involved, polyolefin separators used in commercial lithium‐ion batteries (LIBs) have gradually failed to meet the increasing requirements of high‐end batteries in terms of energy density, power density, and safety. Hence, it is very important to develop next‐generation separators for advanced lithium (Li)‐based rechargeable batteries including LIBs and Li–S batteries. Nonwoven nanofiber membranes fabricated via electrospinning technology are highly attractive candidates for high‐end separators due to their simple processes, low‐cost equipment, controllable microporous structure, wide material applicability, and availability of multiple functions. In this review, the electrospinning technologies for separators are reviewed in terms of devices, process and environment, and polymer solution systems. Furthermore, strategies toward the improvement of electrospun separators in advanced LIBs and Li–S batteries are presented in terms of the compositions and the structure of nanofibers and separators. Finally, the challenges and prospects of electrospun separators in both academia and industry are proposed. We anticipate that these systematic discussions can provide information in terms of commercial applications of electrospun separators and offer new perspectives for the design of functional electrospun separators for advanced Li‐based batteries.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140692704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cathode nanoarchitectonics with Na3VFe0.5Ti0.5(PO4)3: Overcoming the energy barriers of multielectron reactions for sodium‐ion batteries 采用 Na3VFe0.5Ti0.5(PO4)3 的阴极纳米结构:克服钠离子电池多电子反应的能量障碍
IF 20.5 1区 材料科学 Q1 Materials Science Pub Date : 2024-04-17 DOI: 10.1002/cey2.551
Vaiyapuri Soundharrajan, Sungjin Kim, S. Nithiananth, M. H. Alfaruqi, Junji Piao, Duong Tung Pham, V. Mathew, Sang A. Han, Jung Ho Kim, Jaekook Kim
High electrochemical stability and safety make Na+ superionic conductor (NASICON)‐class cathodes highly desirable for Na‐ion batteries (SIBs). However, their practical capacity is limited, leading to low specific energy. Furthermore, the low electrical conductivity combined with a decline in capacity upon prolonged cycling (>1000 cycles) related to the loss of active material‐carbon conducting contact regions contributes to moderate rate performance and cycling stability. The need for high specific energy cathodes that meet practical electrochemical requirements has prompted a search for new materials. Herein, we introduce a new carbon‐coated Na3VFe0.5Ti0.5(PO4)3 (NVFTP/C) material as a promising candidate in the NASICON family of cathodes for SIBs. With a high specific energy of ∼457 Wh kg−1 and a high Na+ insertion voltage of 3.0 V versus Na+/Na, this cathode can undergo a reversible single‐phase solid‐solution and two‐phase (de)sodiation evolution at 28 C (1 C = 174.7 mAh g−1) for up to 10,000 cycles. This study highlights the potential of utilizing low‐cost and highly efficient cathodes made from Earth‐abundant and harmless materials (Fe and Ti) with enriched Na+‐storage properties in practical SIBs.
Na+ 超离子导体(NASICON)级阴极具有很高的电化学稳定性和安全性,因此非常适合用于钠离子电池(SIB)。然而,它们的实际容量有限,导致比能量较低。此外,由于活性材料-碳导电接触区的损失,低导电率加上长时间循环(大于 1000 次循环)后容量下降,导致速率性能和循环稳定性一般。对满足实际电化学要求的高比能量阴极的需求促使人们寻找新材料。在此,我们介绍了一种新型碳涂层 Na3VFe0.5Ti0.5(PO4)3(NVFTP/C)材料,它是 NASICON 系列 SIB 阴极材料中一种很有前途的候选材料。这种阴极具有 ∼457 Wh kg-1 的高比能量和 3.0 V 对 Na+/Na 的高 Na+ 插入电压,可在 28 C(1 C = 174.7 mAh g-1)温度下进行可逆的单相固溶和两相(脱)钠演化,循环次数可达 10,000 次。这项研究凸显了在实用 SIB 中利用由地球上丰富且无害的材料(铁和钛)制成的具有丰富 Na+ 储存特性的低成本高效阴极的潜力。
{"title":"Cathode nanoarchitectonics with Na3VFe0.5Ti0.5(PO4)3: Overcoming the energy barriers of multielectron reactions for sodium‐ion batteries","authors":"Vaiyapuri Soundharrajan, Sungjin Kim, S. Nithiananth, M. H. Alfaruqi, Junji Piao, Duong Tung Pham, V. Mathew, Sang A. Han, Jung Ho Kim, Jaekook Kim","doi":"10.1002/cey2.551","DOIUrl":"https://doi.org/10.1002/cey2.551","url":null,"abstract":"High electrochemical stability and safety make Na+ superionic conductor (NASICON)‐class cathodes highly desirable for Na‐ion batteries (SIBs). However, their practical capacity is limited, leading to low specific energy. Furthermore, the low electrical conductivity combined with a decline in capacity upon prolonged cycling (>1000 cycles) related to the loss of active material‐carbon conducting contact regions contributes to moderate rate performance and cycling stability. The need for high specific energy cathodes that meet practical electrochemical requirements has prompted a search for new materials. Herein, we introduce a new carbon‐coated Na3VFe0.5Ti0.5(PO4)3 (NVFTP/C) material as a promising candidate in the NASICON family of cathodes for SIBs. With a high specific energy of ∼457 Wh kg−1 and a high Na+ insertion voltage of 3.0 V versus Na+/Na, this cathode can undergo a reversible single‐phase solid‐solution and two‐phase (de)sodiation evolution at 28 C (1 C = 174.7 mAh g−1) for up to 10,000 cycles. This study highlights the potential of utilizing low‐cost and highly efficient cathodes made from Earth‐abundant and harmless materials (Fe and Ti) with enriched Na+‐storage properties in practical SIBs.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140692601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Confined cobalt single‐atom catalysts with strong electronic metal‐support interactions based on a biomimetic self‐assembly strategy 基于仿生自组装策略的具有强电子金属-支撑相互作用的封闭钴单原子催化剂
IF 20.5 1区 材料科学 Q1 Materials Science Pub Date : 2024-04-17 DOI: 10.1002/cey2.554
Bowen Guo, Zekun Wang, Lei Zheng, Guang Mo, Hongjun Zhou, Dan Luo
Designing high‐performance and low‐cost electrocatalysts for oxygen evolution reaction (OER) is critical for the conversion and storage of sustainable energy technologies. Inspired by the biomineralization process, we utilized the phosphorylation sites of collagen molecules to combine with cobalt‐based mononuclear precursors at the molecular level and built a three‐dimensional (3D) porous hierarchical material through a bottom‐up biomimetic self‐assembly strategy to obtain single‐atom catalysts confined on carbonized biomimetic self‐assembled carriers (Co SACs/cBSC) after subsequent high‐temperature annealing. In this strategy, the biomolecule improved the anchoring efficiency of the metal precursor through precise functional groups; meanwhile, the binding‐then‐assembling strategy also effectively suppressed the nonspecific adsorption of metal ions, ultimately preventing atomic agglomeration and achieving strong electronic metal‐support interactions (EMSIs). Experimental characterizations confirm that binding forms between cobalt metal and carbonized self‐assembled substrate (Co–O4–P). Theoretical calculations disclose that the local environment changes significantly tailored the Co d‐band center, and optimized the binding energy of oxygenated intermediates and the energy barrier of oxygen release. As a result, the obtained Co SACs/cBSC catalyst can achieve remarkable OER activity and 24 h durability in 1 M KOH (η10 at 288 mV; Tafel slope of 44 mV dec−1), better than other transition metal‐based catalysts and commercial IrO2. Overall, we presented a self‐assembly strategy to prepare transition metal SACs with strong EMSIs, providing a new avenue for the preparation of efficient catalysts with fine atomic structures.
设计高性能、低成本的氧进化反应(OER)电催化剂对于可持续能源技术的转换和储存至关重要。受生物矿化过程的启发,我们利用胶原蛋白分子的磷酸化位点与钴基单核前驱体在分子水平上结合,并通过自下而上的仿生自组装策略构建了一种三维(3D)多孔分层材料,在随后的高温退火后获得了碳化仿生自组装载体(Co SACs/cBSC)上的单原子催化剂。在这一策略中,生物大分子通过精确的官能团提高了金属前驱体的锚定效率;同时,先结合后组装的策略还有效抑制了金属离子的非特异性吸附,最终防止了原子团聚,实现了强电子金属支撑相互作用(EMSI)。实验表征证实,钴金属与碳化自组装基底(Co-O4-P)之间形成了结合。理论计算显示,局部环境发生了显著变化,定制了 Co d 波段中心,优化了含氧中间体的结合能和氧释放能垒。因此,所获得的 Co SACs/cBSC 催化剂能在 1 M KOH 中获得显著的 OER 活性和 24 小时耐久性(η10 在 288 mV;Tafel 斜率为 44 mV dec-1),优于其他过渡金属基催化剂和商用 IrO2。总之,我们提出了一种制备具有强 EMSIs 的过渡金属 SAC 的自组装策略,为制备具有精细原子结构的高效催化剂提供了一条新途径。
{"title":"Confined cobalt single‐atom catalysts with strong electronic metal‐support interactions based on a biomimetic self‐assembly strategy","authors":"Bowen Guo, Zekun Wang, Lei Zheng, Guang Mo, Hongjun Zhou, Dan Luo","doi":"10.1002/cey2.554","DOIUrl":"https://doi.org/10.1002/cey2.554","url":null,"abstract":"Designing high‐performance and low‐cost electrocatalysts for oxygen evolution reaction (OER) is critical for the conversion and storage of sustainable energy technologies. Inspired by the biomineralization process, we utilized the phosphorylation sites of collagen molecules to combine with cobalt‐based mononuclear precursors at the molecular level and built a three‐dimensional (3D) porous hierarchical material through a bottom‐up biomimetic self‐assembly strategy to obtain single‐atom catalysts confined on carbonized biomimetic self‐assembled carriers (Co SACs/cBSC) after subsequent high‐temperature annealing. In this strategy, the biomolecule improved the anchoring efficiency of the metal precursor through precise functional groups; meanwhile, the binding‐then‐assembling strategy also effectively suppressed the nonspecific adsorption of metal ions, ultimately preventing atomic agglomeration and achieving strong electronic metal‐support interactions (EMSIs). Experimental characterizations confirm that binding forms between cobalt metal and carbonized self‐assembled substrate (Co–O4–P). Theoretical calculations disclose that the local environment changes significantly tailored the Co d‐band center, and optimized the binding energy of oxygenated intermediates and the energy barrier of oxygen release. As a result, the obtained Co SACs/cBSC catalyst can achieve remarkable OER activity and 24 h durability in 1 M KOH (η10 at 288 mV; Tafel slope of 44 mV dec−1), better than other transition metal‐based catalysts and commercial IrO2. Overall, we presented a self‐assembly strategy to prepare transition metal SACs with strong EMSIs, providing a new avenue for the preparation of efficient catalysts with fine atomic structures.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140692028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Practical operating flexibility of a bifunctional freestanding membrane for efficient anion exchange membrane water electrolysis across all current ranges 双功能独立式膜在所有电流范围内进行高效阴离子交换膜电解水的实际操作灵活性
IF 20.5 1区 材料科学 Q1 Materials Science Pub Date : 2024-04-12 DOI: 10.1002/cey2.542
Hong-Jin Son, Jeemin Hwang, Min Young Choi, Seung Hee Park, Jae Hyuk Jang, Byungchan Han, Sung Hoon Ahn
This study explores a symmetric configuration approach in anion exchange membrane (AEM) water electrolysis, focusing on overcoming adaptability challenges in dynamic conditions. Here, a rapid and mild synthesis technique for fabricating fibrous membrane-type catalyst electrodes is developed. Our method leverages the contrasting oxidation states between the sulfur-doped NiFe(OH)2 shell and the metallic Ni core, as revealed by electron energy loss spectroscopy. Theoretical evaluations confirm that the S–NiFe(OH)2 active sites optimize free energy for alkaline water electrolysis intermediates. This technique bypasses traditional energy-intensive processes, achieving superior bifunctional activity beyond current benchmarks. The symmetric AEM water electrolyzer demonstrates a current density of 2 A cm−2 at 1.78 V at 60°C in 1 M KOH electrolyte and also sustains ampere-scale water electrolysis below 2.0 V for 140 h even in ambient conditions. These results highlight the system's operational flexibility and structural stability, marking a significant advancement in AEM water electrolysis technology.
本研究探索了阴离子交换膜(AEM)电解水的对称配置方法,重点是克服动态条件下的适应性挑战。在此,我们开发了一种快速、温和的合成技术,用于制造纤维膜型催化剂电极。我们的方法利用了电子能量损失光谱所揭示的掺硫 NiFe(OH)2 外壳与金属 Ni 内核之间的对比氧化态。理论评估证实,S-NiFe(OH)2 活性位点优化了碱性水电解中间产物的自由能。该技术绕过了传统的高能耗工艺,实现了超越当前基准的卓越双功能活性。对称 AEM 水电解槽在 1.78 V、60°C、1 M KOH 电解液中的电流密度为 2 A cm-2,即使在环境条件下,也能在低于 2.0 V 的电压下持续电解 140 小时。这些结果凸显了该系统的操作灵活性和结构稳定性,标志着 AEM 水电解技术的重大进步。
{"title":"Practical operating flexibility of a bifunctional freestanding membrane for efficient anion exchange membrane water electrolysis across all current ranges","authors":"Hong-Jin Son, Jeemin Hwang, Min Young Choi, Seung Hee Park, Jae Hyuk Jang, Byungchan Han, Sung Hoon Ahn","doi":"10.1002/cey2.542","DOIUrl":"https://doi.org/10.1002/cey2.542","url":null,"abstract":"This study explores a symmetric configuration approach in anion exchange membrane (AEM) water electrolysis, focusing on overcoming adaptability challenges in dynamic conditions. Here, a rapid and mild synthesis technique for fabricating fibrous membrane-type catalyst electrodes is developed. Our method leverages the contrasting oxidation states between the sulfur-doped NiFe(OH)<sub>2</sub> shell and the metallic Ni core, as revealed by electron energy loss spectroscopy. Theoretical evaluations confirm that the S–NiFe(OH)<sub>2</sub> active sites optimize free energy for alkaline water electrolysis intermediates. This technique bypasses traditional energy-intensive processes, achieving superior bifunctional activity beyond current benchmarks. The symmetric AEM water electrolyzer demonstrates a current density of 2 A cm<sup>−2</sup> at 1.78 V at 60°C in 1 M KOH electrolyte and also sustains ampere-scale water electrolysis below 2.0 V for 140 h even in ambient conditions. These results highlight the system's operational flexibility and structural stability, marking a significant advancement in AEM water electrolysis technology.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140564467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-layer all-interface defect passivation with pre-buried additive toward efficient all-inorganic perovskite solar cells 利用预埋添加剂进行跨层全表面缺陷钝化,实现高效全无机包晶太阳能电池
IF 20.5 1区 材料科学 Q1 Materials Science Pub Date : 2024-04-12 DOI: 10.1002/cey2.566
Qiurui Wang, Jingwei Zhu, Yuanyuan Zhao, Yijie Chang, Nini Hao, Zhe Xin, Qiang Zhang, Cong Chen, Hao Huang, Qunwei Tang
The buried interface in the perovskite solar cell (PSC) has been regarded as a breakthrough to boost the power conversion efficiency and stability. However, a comprehensive manipulation of the buried interface in terms of the transport layer, buried interlayer, and perovskite layer has been largely overlooked. Herein, we propose the use of a volatile heterocyclic compound called 2-thiopheneacetic acid (TPA) as a pre-buried additive in the buried interface to achieve cross-layer all-interface defect passivation through an in situ bottom-up infiltration diffusion strategy. TPA not only suppresses the serious interfacial nonradiative recombination losses by precisely healing the interfacial and underlying defects but also effectively enhances the quality of perovskite film and releases the residual strain of perovskite film. Owing to this versatility, TPA-tailored CsPbBr3 PSCs deliver a record efficiency of 11.23% with enhanced long-term stability. This breakthrough in manipulating the buried interface using TPA opens new avenues for further improving the performance and reliability of PSC.
过氧化物太阳能电池(PSC)中的埋藏界面一直被视为提高功率转换效率和稳定性的一个突破口。然而,人们在很大程度上忽视了从传输层、埋藏夹层和过氧化物层三个方面对埋藏界面进行综合处理。在此,我们提出使用一种名为 2-噻吩乙酸(TPA)的挥发性杂环化合物作为预埋添加剂,通过原位自下而上的渗透扩散策略,实现埋藏界面的跨层全表面缺陷钝化。TPA 不仅能通过精确修复界面和底层缺陷来抑制严重的界面非辐射重组损耗,还能有效提高包晶薄膜的质量并释放包晶薄膜的残余应变。由于这种多功能性,TPA 定制的 CsPbBr3 PSCs 的效率达到了创纪录的 11.23%,并增强了长期稳定性。利用 TPA 操纵埋藏界面的这一突破为进一步提高 PSC 的性能和可靠性开辟了新的途径。
{"title":"Cross-layer all-interface defect passivation with pre-buried additive toward efficient all-inorganic perovskite solar cells","authors":"Qiurui Wang, Jingwei Zhu, Yuanyuan Zhao, Yijie Chang, Nini Hao, Zhe Xin, Qiang Zhang, Cong Chen, Hao Huang, Qunwei Tang","doi":"10.1002/cey2.566","DOIUrl":"https://doi.org/10.1002/cey2.566","url":null,"abstract":"The buried interface in the perovskite solar cell (PSC) has been regarded as a breakthrough to boost the power conversion efficiency and stability. However, a comprehensive manipulation of the buried interface in terms of the transport layer, buried interlayer, and perovskite layer has been largely overlooked. Herein, we propose the use of a volatile heterocyclic compound called 2-thiopheneacetic acid (TPA) as a pre-buried additive in the buried interface to achieve cross-layer all-interface defect passivation through an in situ bottom-up infiltration diffusion strategy. TPA not only suppresses the serious interfacial nonradiative recombination losses by precisely healing the interfacial and underlying defects but also effectively enhances the quality of perovskite film and releases the residual strain of perovskite film. Owing to this versatility, TPA-tailored CsPbBr<sub>3</sub> PSCs deliver a record efficiency of 11.23% with enhanced long-term stability. This breakthrough in manipulating the buried interface using TPA opens new avenues for further improving the performance and reliability of PSC.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140564463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bi@C nanosphere anode with Na+-ether-solvent cointercalation behavior to achieve fast sodium storage under extreme low temperatures 具有 Na+-乙醚-溶剂共价行为的 Bi@C 纳米负极可在极低温度下实现钠的快速储存
IF 20.5 1区 材料科学 Q1 Materials Science Pub Date : 2024-04-12 DOI: 10.1002/cey2.531
Lingli Liu, Siqi Li, Lei Hu, Xin Liang, Wei Yang, Xulai Yang, Kunhong Hu, Chaofeng Hou, Yongsheng Han, Shulei Chou
The low ion transport is a major obstacle for low-temperature (LT) sodium-ion batteries (SIBs). Herein, a core-shell structure of bismuth (Bi) nanospheres coated with carbon (Bi@C) is constructed by utilizing a novel Bi-based complex (1,4,5,8-naphthalenetetracarboxylic dianhydride as the ligand) as the precursor, which provides an effective template to fabricate Bi-based anodes. At −40°C, the Bi@C anode achieves a high capacity, which is equivalent to 96% of that at 25°C, benefitting from the core-shell nanostructured engineering and Na+-ether-solvent cointercalation process. The special Na+-diglyme cointercalation behavior may effectively reduce the activation energy and accelerate the Na+ diffusion kinetics, enabling the excellent low-temperature performance of the Bi@C electrode. As expected, the fabricated Na3V2(PO4)3//Bi@C full-cell delivers impressive rechargeability in the ether-based electrolyte at −40°C. Density functional theory calculations and electrochemical tests also reveal the fast reaction kinetic mechanism at LT, thanks to a much lower diffusion energy barrier (167 meV) and a lower reaction activation energy (32.2 kJ mol−1) of Bi@C anode in comparison with that of bulk Bi. This work provides a rational design of Bi-based electrodes for rechargeable SIBs under extreme conditions.
低离子传输是低温钠离子电池(SIB)的主要障碍。本文以一种新型铋基配合物(1,4,5,8-萘四甲酸二酐为配体)为前驱体,构建了一种铋(Bi)纳米球包覆碳(Bi@C)的核壳结构,为制造铋基阳极提供了一个有效的模板。得益于核壳纳米结构工程和 Na+-乙醚-溶剂共共价过程,Bi@C 阳极在 -40°C 温度下实现了高容量,相当于 25°C 温度下容量的 96%。特殊的 Na+-二甘醇共共价行为可有效降低活化能并加速 Na+扩散动力学,从而使 Bi@C 电极具有优异的低温性能。正如预期的那样,所制备的 Na3V2(PO4)3//Bi@C 全电池在 -40°C 的醚基电解质中具有令人印象深刻的可充电性。密度泛函理论计算和电化学测试还揭示了低温下的快速反应动力学机制,这要归功于 Bi@C 阳极与块状 Bi 相比更低的扩散能垒(167 meV)和更低的反应活化能(32.2 kJ mol-1)。这项研究为极端条件下可充电 SIB 的铋基电极提供了合理的设计方案。
{"title":"Bi@C nanosphere anode with Na+-ether-solvent cointercalation behavior to achieve fast sodium storage under extreme low temperatures","authors":"Lingli Liu, Siqi Li, Lei Hu, Xin Liang, Wei Yang, Xulai Yang, Kunhong Hu, Chaofeng Hou, Yongsheng Han, Shulei Chou","doi":"10.1002/cey2.531","DOIUrl":"https://doi.org/10.1002/cey2.531","url":null,"abstract":"The low ion transport is a major obstacle for low-temperature (LT) sodium-ion batteries (SIBs). Herein, a core-shell structure of bismuth (Bi) nanospheres coated with carbon (Bi@C) is constructed by utilizing a novel Bi-based complex (1,4,5,8-naphthalenetetracarboxylic dianhydride as the ligand) as the precursor, which provides an effective template to fabricate Bi-based anodes. At −40°C, the Bi@C anode achieves a high capacity, which is equivalent to 96% of that at 25°C, benefitting from the core-shell nanostructured engineering and Na<sup>+</sup>-ether-solvent cointercalation process. The special Na<sup>+</sup>-diglyme cointercalation behavior may effectively reduce the activation energy and accelerate the Na<sup>+</sup> diffusion kinetics, enabling the excellent low-temperature performance of the Bi@C electrode. As expected, the fabricated Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>//Bi@C full-cell delivers impressive rechargeability in the ether-based electrolyte at −40°C. Density functional theory calculations and electrochemical tests also reveal the fast reaction kinetic mechanism at LT, thanks to a much lower diffusion energy barrier (167 meV) and a lower reaction activation energy (32.2 kJ mol<sup>−1</sup>) of Bi@C anode in comparison with that of bulk Bi. This work provides a rational design of Bi-based electrodes for rechargeable SIBs under extreme conditions.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140564453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel improvement strategy and a comprehensive mechanism insight for α-MnO2 energy storage in rechargeable aqueous zinc-ion batteries 可充电锌离子水电池中 α-MnO2 储能的新型改进策略和全面机理分析
IF 20.5 1区 材料科学 Q1 Materials Science Pub Date : 2024-04-05 DOI: 10.1002/cey2.536
Fan Xiankai, Xiang Kaixiong, Zhou Wei, Deng Weina, Zhu Hai, Chen Liang, Chen Han
Aqueous zinc-ion batteries have been regarded as the most potential candidate to substitute lithium-ion batteries. However, many serious challenges such as suppressing zinc dendrite growth and undesirable reactions, and achieving fully accepted mechanism also have not been solved. Herein, the commensal composite microspheres with α-MnO2 nano-wires and carbon nanotubes were achieved and could effectively suppress ZnSO4·3Zn(OH)2·nH2O rampant crystallization. The electrode assembled with the microspheres delivered a high initial capacity at a current density of 0.05 A g−1 and maintained a significantly prominent capacity retention of 88% over 2500 cycles. Furthermore, a novel energy-storage mechanism, in which multivalent manganese oxides play a synergistic effect, was comprehensively investigated by the quantitative and qualitative analysis for ZnSO4·3Zn(OH)2·nH2O. The capacity contribution of multivalent manganese oxides and the crystal structure dissection in the transformed processes were completely identified. Therefore, our research could provide a novel strategy for designing improved electrode structure and a comprehensive understanding of the energy storage mechanism of α-MnO2 cathodes.
锌离子水电池一直被认为是替代锂离子电池的最有潜力的候选电池。然而,抑制锌枝晶生长和不良反应、实现完全可接受的机理等许多严峻挑战也尚未解决。在这里,α-MnO2 纳米线与碳纳米管的共生复合微球得以实现,并能有效抑制 ZnSO4-3Zn(OH)2-nH2O 的肆意结晶。使用微球组装的电极在电流密度为 0.05 A g-1 时可提供较高的初始容量,并在 2500 次循环中保持了 88% 的显著高容量保持率。此外,通过对 ZnSO4-3Zn(OH)2-nH2O 的定量和定性分析,全面研究了多价锰氧化物发挥协同效应的新型储能机制。通过对 ZnSO4-3Zn(OH) 2-nH2O 的定量和定性分析,全面研究了多价锰氧化物在转化过程中的能力贡献和晶体结构剖析。因此,我们的研究可为设计改良电极结构提供新的策略,并全面了解α-MnO2阴极的储能机理。
{"title":"A novel improvement strategy and a comprehensive mechanism insight for α-MnO2 energy storage in rechargeable aqueous zinc-ion batteries","authors":"Fan Xiankai, Xiang Kaixiong, Zhou Wei, Deng Weina, Zhu Hai, Chen Liang, Chen Han","doi":"10.1002/cey2.536","DOIUrl":"https://doi.org/10.1002/cey2.536","url":null,"abstract":"Aqueous zinc-ion batteries have been regarded as the most potential candidate to substitute lithium-ion batteries. However, many serious challenges such as suppressing zinc dendrite growth and undesirable reactions, and achieving fully accepted mechanism also have not been solved. Herein, the commensal composite microspheres with α-MnO<sub>2</sub> nano-wires and carbon nanotubes were achieved and could effectively suppress ZnSO<sub>4</sub>·3Zn(OH)<sub>2</sub>·nH<sub>2</sub>O rampant crystallization. The electrode assembled with the microspheres delivered a high initial capacity at a current density of 0.05 A g<sup>−1</sup> and maintained a significantly prominent capacity retention of 88% over 2500 cycles. Furthermore, a novel energy-storage mechanism, in which multivalent manganese oxides play a synergistic effect, was comprehensively investigated by the quantitative and qualitative analysis for ZnSO<sub>4</sub>·3Zn(OH)<sub>2</sub>·nH<sub>2</sub>O. The capacity contribution of multivalent manganese oxides and the crystal structure dissection in the transformed processes were completely identified. Therefore, our research could provide a novel strategy for designing improved electrode structure and a comprehensive understanding of the energy storage mechanism of α-MnO<sub>2</sub> cathodes.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140603324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly efficient three-dimensional solar evaporator for zero liquid discharge desalination of high-salinity brine 用于高盐度盐水零排放脱盐的高效三维太阳能蒸发器
IF 20.5 1区 材料科学 Q1 Materials Science Pub Date : 2024-04-05 DOI: 10.1002/cey2.548
Meichun Ding, Demin Zhao, Panpan Feng, Baolei Wang, Zhenying Duan, Rui Wei, Yuxi Zhao, Chen-Yang Liu, Chenwei Li
Solar-driven interfacial evaporation is a promising technology for freshwater production from seawater, but salt accumulation on the evaporator surface hinders its performance and sustainability. In this study, we report a simple and green strategy to fabricate a three-dimensional porous graphene spiral roll (3GSR) that enables highly efficient solar evaporation, salt collection, and water production from near-saturated brine with zero liquid discharge (ZLD). The 3GSR design facilitates energy recovery, radial brine transport, and directional salt crystallization, thereby resulting in an ultrahigh evaporation rate of 9.05 kg m−2 h−1 in 25 wt% brine under 1-sun illumination for 48 h continuously. Remarkably, the directional salt crystallization on its outer surface not only enlarges the evaporation area but also achieves an ultrahigh salt collection rate of 2.92 kg m−2 h−1, thus enabling ZLD desalination. Additionally, 3GSR exhibits a record-high water production rate of 3.14 kg m−2 h−1 in an outdoor test. This innovative solution offers a highly efficient and continuous solar desalination method for water production and ZLD brine treatment, which has great implications for addressing global water scarcity and environmental issues arising from brine disposal.
太阳能驱动的界面蒸发是从海水中生产淡水的一项前景广阔的技术,但蒸发器表面的盐分积累阻碍了其性能和可持续性。在本研究中,我们报告了一种制造三维多孔石墨烯螺旋辊(3GSR)的简单而绿色的策略,这种辊可实现高效的太阳能蒸发、盐分收集以及从零液体排放(ZLD)的近饱和盐水中生产水。3GSR 的设计有利于能量回收、盐水径向输送和盐的定向结晶,从而使 25 wt% 的盐水在 1 太阳光照射下连续 48 小时的超高蒸发率达到 9.05 kg m-2 h-1。值得注意的是,其外表面的定向盐结晶不仅扩大了蒸发面积,还实现了 2.92 kg m-2 h-1 的超高盐收集率,从而实现了 ZLD 海水淡化。此外,在室外测试中,3GSR 的产水率达到了创纪录的 3.14 kg m-2 h-1。这一创新解决方案提供了一种高效、连续的太阳能海水淡化方法,可用于制水和 ZLD 盐水处理,对解决全球水资源短缺和盐水处理引起的环境问题具有重大意义。
{"title":"Highly efficient three-dimensional solar evaporator for zero liquid discharge desalination of high-salinity brine","authors":"Meichun Ding, Demin Zhao, Panpan Feng, Baolei Wang, Zhenying Duan, Rui Wei, Yuxi Zhao, Chen-Yang Liu, Chenwei Li","doi":"10.1002/cey2.548","DOIUrl":"https://doi.org/10.1002/cey2.548","url":null,"abstract":"Solar-driven interfacial evaporation is a promising technology for freshwater production from seawater, but salt accumulation on the evaporator surface hinders its performance and sustainability. In this study, we report a simple and green strategy to fabricate a three-dimensional porous graphene spiral roll (3GSR) that enables highly efficient solar evaporation, salt collection, and water production from near-saturated brine with zero liquid discharge (ZLD). The 3GSR design facilitates energy recovery, radial brine transport, and directional salt crystallization, thereby resulting in an ultrahigh evaporation rate of 9.05 kg m<sup>−2</sup> h<sup>−1</sup> in 25 wt% brine under 1-sun illumination for 48 h continuously. Remarkably, the directional salt crystallization on its outer surface not only enlarges the evaporation area but also achieves an ultrahigh salt collection rate of 2.92 kg m<sup>−2</sup> h<sup>−1</sup>, thus enabling ZLD desalination. Additionally, 3GSR exhibits a record-high water production rate of 3.14 kg m<sup>−2</sup> h<sup>−1</sup> in an outdoor test. This innovative solution offers a highly efficient and continuous solar desalination method for water production and ZLD brine treatment, which has great implications for addressing global water scarcity and environmental issues arising from brine disposal.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140603358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Carbon Energy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1