首页 > 最新文献

2018 IEEE 20th Electronics Packaging Technology Conference (EPTC)最新文献

英文 中文
Processing Models Based on Stress Conservation Law Utilized for Temperature-Dependent Warpage Prediction of MUF FCCSP with 3L ETS 基于应力守恒定律的加工模型在3L ETS MUF FCCSP温度相关翘曲预测中的应用
Pub Date : 2018-12-01 DOI: 10.1109/EPTC.2018.8654292
Chih-Sung Chen, N. Kao, P. Liao, Ssu-Cheng Lai, D. Jiang
Embedded trace substrate (ETS), like a typical build-up process that prepreg (PP) has been laminated on the copper trace patent, is a coreless substrate design for improvement both production yield and capability of substrate with finer line and space (L/S) dimension. The manufacturing process of ETS used an electrolytic copper plating method to form copper foil pattern coated on carrier board, and then multi-layers of ETS structure will duplicate the same process flow to been made, such as laser via drill, electro-less copper plating, dry-film lamination, exposure and development, next layer plating of copper pattern, stripping after removing carrier board, micro etching to enhance adhesion with solder mask, and metal treatment of surface finish after process of solder mask opening. Different to traditional build-up process, the trace width of ETS structure would not be attacked during process of micro etching, and the wall structure formed by dry-film between traces can prevent solder bridge problem of copper pillar bump during process of flip chip bond (FCB) [1]. Manufacturing process of ETS must go through a sequential high-temperature and -pressure step, thus the approach to construct a complex and detailed model is so far engineer’s objective for accurate prediction. When the assumption of stress-free at single curing temperature even though the chemical shrinkage has be considered is challenged, manufacturing temperature-independent model could not match well with experimental measurements because they don’t include an integrated processing modeling methodology. In particular, temperature-dependent material properties and different stress-free temperatures for different materials in the same model were considered in order to model the sequential steps during the sequential fabrication of high-density electronic packaging structures. However, the effort on fundamental study usually makes an impossible work due to time-and manpower-consuming, thus the mission has been transferred to construct an effective and simple approach on thermo-mechanical analysis. In this study, the material modeling has been simply constructed on elastically temperature-dependence for polymeric material utilized in packaging extensively. Furthermore, the innovative concept of conservation laws also has been developed on stress constitutive model; meanwhile, the creative ideology, such as cross-linking induced residual strain ($varepsilon_{mathrm {RS}}$) from compound forming and process-induced stress field, further has been embedded. Others, the experimental vehicles also have been performed for a reasonable simplification at single stress-free temperature of substrate, besides measurements were scheduled to confirm the accuracy on warpage. As comparison, these two different warpage modeling methodologies, including processing model and non-processing model, of an encapsulated integrated circuit (IC) package, associated with different schemes of a sequential manufa
嵌入式示踪基板(ETS)是一种无芯基板设计,可以通过更细的线和空间(L/S)尺寸提高基板的产量和性能,就像在铜示踪专利上层压预浸料(PP)的典型堆积工艺一样。ETS的制造工艺采用电解镀铜的方法在载体板上形成铜箔图案,然后将多层ETS结构重复相同的工艺流程进行制作,如激光经钻、化学镀铜、干膜层压、曝光显影、下一层镀铜图案、去除载体板后剥离、微蚀刻以增强与阻焊板的附着力。以及掩焊开孔后表面光洁度的金属处理。与传统的构筑工艺不同,ETS结构的迹线宽度在微蚀刻过程中不会受到影响,迹线之间由干膜形成的壁结构可以防止倒装片键合(FCB)过程中铜柱碰撞的焊桥问题[1]。ETS的制造过程必须经历一个连续的高温和压力步骤,因此建立复杂而详细的模型的方法是目前工程师的目标,以准确预测。当单一固化温度下的无应力假设受到挑战时,即使考虑了化学收缩,制造温度无关模型也不能很好地与实验测量相匹配,因为它们不包括集成的加工建模方法。特别地,为了模拟高密度电子封装结构顺序制造过程中的顺序步骤,考虑了同一模型中不同材料的温度依赖材料特性和不同的无应力温度。然而,在基础研究方面的努力往往由于时间和人力的消耗而无法完成,因此建立一种有效而简单的热力学分析方法已成为任务。在本研究中,材料模型是简单地建立在弹性温度依赖于广泛应用于包装的聚合物材料。在应力本构模型的基础上,提出了守恒律的创新概念;同时,进一步嵌入了复合成形过程中产生的交联残余应变($varepsilon_{mathrm {RS}}$)和过程诱发应力场等创新思想。此外,实验车辆还在衬底的单一无应力温度下进行了合理的简化,此外还安排了测量以确认翘曲的准确性。作为比较,分析了封装集成电路(IC)封装的加工模型和非加工模型两种不同的翘曲建模方法,并与顺序制造过程的不同方案相关联。结果表明:(1)弹性应力本构模型建立在具有温度依赖性的应力守恒律基础上;(2)在单一无应力温度下分别考虑复合材料和衬底;(3)考虑复合成形残余应变的影响,数值解与实测数据吻合较好。最后,测试了层合基板有效材料性能的节省计算能力,并表明根据混合规律,材料在平面方向上的性能可以视为均匀的,特别是在PP的玻璃化转变温度(Tg)以下的温度下。
{"title":"Processing Models Based on Stress Conservation Law Utilized for Temperature-Dependent Warpage Prediction of MUF FCCSP with 3L ETS","authors":"Chih-Sung Chen, N. Kao, P. Liao, Ssu-Cheng Lai, D. Jiang","doi":"10.1109/EPTC.2018.8654292","DOIUrl":"https://doi.org/10.1109/EPTC.2018.8654292","url":null,"abstract":"Embedded trace substrate (ETS), like a typical build-up process that prepreg (PP) has been laminated on the copper trace patent, is a coreless substrate design for improvement both production yield and capability of substrate with finer line and space (L/S) dimension. The manufacturing process of ETS used an electrolytic copper plating method to form copper foil pattern coated on carrier board, and then multi-layers of ETS structure will duplicate the same process flow to been made, such as laser via drill, electro-less copper plating, dry-film lamination, exposure and development, next layer plating of copper pattern, stripping after removing carrier board, micro etching to enhance adhesion with solder mask, and metal treatment of surface finish after process of solder mask opening. Different to traditional build-up process, the trace width of ETS structure would not be attacked during process of micro etching, and the wall structure formed by dry-film between traces can prevent solder bridge problem of copper pillar bump during process of flip chip bond (FCB) [1]. Manufacturing process of ETS must go through a sequential high-temperature and -pressure step, thus the approach to construct a complex and detailed model is so far engineer’s objective for accurate prediction. When the assumption of stress-free at single curing temperature even though the chemical shrinkage has be considered is challenged, manufacturing temperature-independent model could not match well with experimental measurements because they don’t include an integrated processing modeling methodology. In particular, temperature-dependent material properties and different stress-free temperatures for different materials in the same model were considered in order to model the sequential steps during the sequential fabrication of high-density electronic packaging structures. However, the effort on fundamental study usually makes an impossible work due to time-and manpower-consuming, thus the mission has been transferred to construct an effective and simple approach on thermo-mechanical analysis. In this study, the material modeling has been simply constructed on elastically temperature-dependence for polymeric material utilized in packaging extensively. Furthermore, the innovative concept of conservation laws also has been developed on stress constitutive model; meanwhile, the creative ideology, such as cross-linking induced residual strain ($varepsilon_{mathrm {RS}}$) from compound forming and process-induced stress field, further has been embedded. Others, the experimental vehicles also have been performed for a reasonable simplification at single stress-free temperature of substrate, besides measurements were scheduled to confirm the accuracy on warpage. As comparison, these two different warpage modeling methodologies, including processing model and non-processing model, of an encapsulated integrated circuit (IC) package, associated with different schemes of a sequential manufa","PeriodicalId":360239,"journal":{"name":"2018 IEEE 20th Electronics Packaging Technology Conference (EPTC)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134170478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on the effect of bonding properties of micro bumps for different morphology and interconnection methods 研究不同形态和连接方式对微凸点连接性能的影响
Pub Date : 2018-12-01 DOI: 10.1109/EPTC.2018.8654346
Fengwei Dai, David-Wei Zhang, Guojun Wang, Dengfen Yang, Wenqi Zhang, Liqiang Cao
As the copper pillar bumps with fine pitch and high density were widely applied in high I/O interconnection packaging. It’s increasingly important to study the effect of bonding properties of copper pillar bumps for different morphology and interconnection methods. In the paper, we designed Test Vehicle of copper pillar bumps and manufacture $30 mu mathrm{m}$ pitch copper pillar bumps for verifying the bonding effect between copper pillar bumps. We compared the bonding experiments of copper pillar bumps of different exterior morphology and different bonding methods. Finally, using the four-probe method to test the resistance of the bonded bumps and the bonding yield of partial micro bumps can roughly be evaluated by has been designed daisy chain structure.
由于铜柱凸点具有细间距和高密度的特点,在高I/O互连封装中得到了广泛的应用。研究不同形貌和连接方式对铜柱凸点连接性能的影响显得越来越重要。本文设计了铜柱凸架试验车,制作了$30 mu mathm {m}$节距铜柱凸架,验证了铜柱凸架之间的粘结效果。比较了不同外部形貌和不同连接方式的铜柱凸点的连接实验。最后,利用四探针法测试了粘结凸点的电阻,通过设计的菊花链结构可以大致评价局部微凸点的粘结成品率。
{"title":"Research on the effect of bonding properties of micro bumps for different morphology and interconnection methods","authors":"Fengwei Dai, David-Wei Zhang, Guojun Wang, Dengfen Yang, Wenqi Zhang, Liqiang Cao","doi":"10.1109/EPTC.2018.8654346","DOIUrl":"https://doi.org/10.1109/EPTC.2018.8654346","url":null,"abstract":"As the copper pillar bumps with fine pitch and high density were widely applied in high I/O interconnection packaging. It’s increasingly important to study the effect of bonding properties of copper pillar bumps for different morphology and interconnection methods. In the paper, we designed Test Vehicle of copper pillar bumps and manufacture $30 mu mathrm{m}$ pitch copper pillar bumps for verifying the bonding effect between copper pillar bumps. We compared the bonding experiments of copper pillar bumps of different exterior morphology and different bonding methods. Finally, using the four-probe method to test the resistance of the bonded bumps and the bonding yield of partial micro bumps can roughly be evaluated by has been designed daisy chain structure.","PeriodicalId":360239,"journal":{"name":"2018 IEEE 20th Electronics Packaging Technology Conference (EPTC)","volume":"29 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131830096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effect of the laser parameters, epoxy mold compound properties and mold tool surface finishing on mark legibility of encapsulated IC package 激光参数、环氧模复合材料性能和模具表面光洁度对封装IC封装标记易读性的影响
Pub Date : 2018-12-01 DOI: 10.1109/EPTC.2018.8654347
Lim Ming Siong, Chai Yuan Tat
Changing of quality requirement in manufacturing technologies has to be followed by an adaption of material and process parameters. With the rapid emerging vision inspection technologies, 100% automated optical inspection as quality firewall is always a preferred option to pursue. In the case of transition from human to automated optical inspection to enhance defect detectability, the adaption effort is high due to different capabilities between human and machines on observation and interpretation of the criteria. This will strongly affect the justification of acceptance level which will subsequently cause over or under rejection. For encapsulated IC, the challenges are not only on the ability to detect the defect but also to recognize the laser marking character printed on the surface of the mold compound, which are used as traceability and identification purpose.A theoretical concept is being described to get a grasp of the occurring mechanism. From laser mark aspect, respective factors such as marking depth range coupled with correct marking size with respect to the field of view (FOV) are identified as major contributor for mark legibility. From material point of view, the compatibility of wax type (ratio of hydrophilic and hydrophobic parts) towards multi aromatic resin (MAR) or multifunctional resin (MFR) is identified as the cause of the flow mark or wax stain which eventually contribute the noise of visual inspection. Also from material aspect, types of flame retardant either metal hydroxide or organic phosphorous cause low curability which affects the molded package surface evenness eventually affect visual inspection results. From mold tool aspect, the range of lower roughness average (Ra) of the Electrical Discharge Surface (EDM) mold cavity surface is preferred for better mark legibility. At the end, a proposal is given on parameters, material and tool set to get the best encapsulated IC package surfaces with clear and legible marking. The constraints and corresponding potential risks are also discussed in this paper in order to achieve the best results yet not induce other negative impact.
制造技术质量要求的变化必须伴随着材料和工艺参数的适应。随着视觉检测技术的快速发展,100%自动化光学检测作为质量防火墙一直是人们追求的首选。在从人工光学检测到自动光学检测以增强缺陷可检测性的过渡中,由于人和机器在观察和解释标准方面的能力不同,适应工作很高。这将严重影响验收水平的合理性,从而导致过拒或过拒。对于封装集成电路来说,其挑战不仅在于检测缺陷的能力,还在于识别打印在模具化合物表面的激光打标字符,并将其用作可追溯性和识别目的。描述一个理论概念是为了掌握发生的机制。从激光打标角度出发,确定了打标深度范围和正确的打标尺寸等因素是影响激光打标易读性的主要因素。从材料的角度来看,蜡的类型(亲疏水部分的比例)对多芳树脂(MAR)或多功能树脂(MFR)的相容性被确定为流痕或蜡渍的原因,最终导致目视检查的噪音。同样从材料的角度来看,阻燃剂的类型,无论是氢氧化物金属或有机磷导致固化性低,影响成型包装表面的均匀性,最终影响视觉检测结果。从模具工具的角度来看,电火花表面(EDM)模腔表面粗糙度平均值(Ra)较低的范围是更好的标记易读性的首选。最后,从参数、材料和工具组合等方面提出了建议,以获得标记清晰易读的最佳封装IC封装表面。本文还讨论了约束条件和相应的潜在风险,以达到最佳效果,同时不产生其他负面影响。
{"title":"Effect of the laser parameters, epoxy mold compound properties and mold tool surface finishing on mark legibility of encapsulated IC package","authors":"Lim Ming Siong, Chai Yuan Tat","doi":"10.1109/EPTC.2018.8654347","DOIUrl":"https://doi.org/10.1109/EPTC.2018.8654347","url":null,"abstract":"Changing of quality requirement in manufacturing technologies has to be followed by an adaption of material and process parameters. With the rapid emerging vision inspection technologies, 100% automated optical inspection as quality firewall is always a preferred option to pursue. In the case of transition from human to automated optical inspection to enhance defect detectability, the adaption effort is high due to different capabilities between human and machines on observation and interpretation of the criteria. This will strongly affect the justification of acceptance level which will subsequently cause over or under rejection. For encapsulated IC, the challenges are not only on the ability to detect the defect but also to recognize the laser marking character printed on the surface of the mold compound, which are used as traceability and identification purpose.A theoretical concept is being described to get a grasp of the occurring mechanism. From laser mark aspect, respective factors such as marking depth range coupled with correct marking size with respect to the field of view (FOV) are identified as major contributor for mark legibility. From material point of view, the compatibility of wax type (ratio of hydrophilic and hydrophobic parts) towards multi aromatic resin (MAR) or multifunctional resin (MFR) is identified as the cause of the flow mark or wax stain which eventually contribute the noise of visual inspection. Also from material aspect, types of flame retardant either metal hydroxide or organic phosphorous cause low curability which affects the molded package surface evenness eventually affect visual inspection results. From mold tool aspect, the range of lower roughness average (Ra) of the Electrical Discharge Surface (EDM) mold cavity surface is preferred for better mark legibility. At the end, a proposal is given on parameters, material and tool set to get the best encapsulated IC package surfaces with clear and legible marking. The constraints and corresponding potential risks are also discussed in this paper in order to achieve the best results yet not induce other negative impact.","PeriodicalId":360239,"journal":{"name":"2018 IEEE 20th Electronics Packaging Technology Conference (EPTC)","volume":"41 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132678137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Electrokinetic Behavior of Solder Powders in Non-aqueous Media 非水介质中焊料粉末的电动力学行为
Pub Date : 2018-12-01 DOI: 10.1109/EPTC.2018.8654417
Terence Lucero F. Menor, M. Mena, H. Mendoza
Solder paste dispensing is a key process in the electronics assembly. The increased global demand for smaller, lighter, faster and cheaper assemblies drives the electronics industry to use dispensers with finer apertures. However, reduction in the aperture size of dispensers faces the industry with increased clogging of dispensers and incomplete transfer of paste to the printed circuit board (PCB) pads. One factor contributing to the clogging of dispensers is the agglomeration of the solder powder suspensions which depends on the electrokinetic behavior of the particles. When suspensions are close to the point of no charge, wherein zeta potential is equal to zero, the particles tend to agglomerate. This work focuses on the determination of the zeta potential of Sn, SAC305 and PbSn5Ag2.5 suspensions in isopropyl alcohol (IPA) through microelectrophoresis. The effect of acid, base and flux additives were studied. Results showed that the zeta potential of the solder suspensions are negative in pure IPA and charge reversal occurs in both acidic and basic region. In systems containing flux additives, the zeta potential of the suspensions is highly dependent on the type efflux. FTIR spectroscopy, conductivity measurement, and surface analysis was done in order to explain the observed electrokinetic behavior.
焊锡膏点胶是电子装配中的关键工序。全球对更小、更轻、更快、更便宜的组件的需求不断增加,促使电子行业使用孔径更小的分配器。然而,减少点胶机的孔径尺寸面临着点胶机堵塞增加和粘贴不完全转移到印刷电路板(PCB)衬垫的问题。造成点焊机堵塞的一个因素是焊锡粉末悬浮物的团聚,这取决于颗粒的电动行为。当悬浮液接近无电荷点时,其中zeta电位等于零,粒子倾向于聚集。本文研究了用微电泳法测定Sn、SAC305和PbSn5Ag2.5混悬液在异丙醇(IPA)中的zeta电位。研究了酸、碱、助熔剂等添加剂的影响。结果表明,在纯IPA中,焊料悬浮液的zeta电位为负,在酸性和碱性区域均发生电荷反转。在含有助熔剂添加剂的体系中,悬浮液的zeta电位高度依赖于射流的类型。为了解释观察到的电动力学行为,进行了FTIR光谱,电导率测量和表面分析。
{"title":"Electrokinetic Behavior of Solder Powders in Non-aqueous Media","authors":"Terence Lucero F. Menor, M. Mena, H. Mendoza","doi":"10.1109/EPTC.2018.8654417","DOIUrl":"https://doi.org/10.1109/EPTC.2018.8654417","url":null,"abstract":"Solder paste dispensing is a key process in the electronics assembly. The increased global demand for smaller, lighter, faster and cheaper assemblies drives the electronics industry to use dispensers with finer apertures. However, reduction in the aperture size of dispensers faces the industry with increased clogging of dispensers and incomplete transfer of paste to the printed circuit board (PCB) pads. One factor contributing to the clogging of dispensers is the agglomeration of the solder powder suspensions which depends on the electrokinetic behavior of the particles. When suspensions are close to the point of no charge, wherein zeta potential is equal to zero, the particles tend to agglomerate. This work focuses on the determination of the zeta potential of Sn, SAC305 and PbSn5Ag2.5 suspensions in isopropyl alcohol (IPA) through microelectrophoresis. The effect of acid, base and flux additives were studied. Results showed that the zeta potential of the solder suspensions are negative in pure IPA and charge reversal occurs in both acidic and basic region. In systems containing flux additives, the zeta potential of the suspensions is highly dependent on the type efflux. FTIR spectroscopy, conductivity measurement, and surface analysis was done in order to explain the observed electrokinetic behavior.","PeriodicalId":360239,"journal":{"name":"2018 IEEE 20th Electronics Packaging Technology Conference (EPTC)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132897845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High Aspect Ratio~10 TSV Via-last-from-back Process Development and Integration 高纵横比~10 TSV通过最后一个从背过程开发和集成
Pub Date : 2018-12-01 DOI: 10.1109/EPTC.2018.8654305
Xiangy-Yu Wang, Hongyu Li
As Moore’s law appears to come to the end when the transistor size approaches to its physical scaling limits, peoples begin to look for the new technology to break through the barrier beyond Moore’s law. TSV is one potential option as it could further increase integration density vertically. In this study, a high aspect ratio 10$mu mathrm{m} times100 mu$m TSV from the wafer back side is demonstrated and some of the critical process will be discussed.
当晶体管尺寸接近其物理尺度极限时,摩尔定律似乎走到了尽头,人们开始寻找超越摩尔定律的新技术。TSV是一个潜在的选择,因为它可以进一步提高垂直整合密度。在本研究中,从晶圆背面展示了高纵横比10$ mathrm{m} times100 mu$m的TSV,并讨论了一些关键过程。
{"title":"High Aspect Ratio~10 TSV Via-last-from-back Process Development and Integration","authors":"Xiangy-Yu Wang, Hongyu Li","doi":"10.1109/EPTC.2018.8654305","DOIUrl":"https://doi.org/10.1109/EPTC.2018.8654305","url":null,"abstract":"As Moore’s law appears to come to the end when the transistor size approaches to its physical scaling limits, peoples begin to look for the new technology to break through the barrier beyond Moore’s law. TSV is one potential option as it could further increase integration density vertically. In this study, a high aspect ratio 10$mu mathrm{m} times100 mu$m TSV from the wafer back side is demonstrated and some of the critical process will be discussed.","PeriodicalId":360239,"journal":{"name":"2018 IEEE 20th Electronics Packaging Technology Conference (EPTC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115889009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Challenges and Approaches of 2.5D high density Flip chip interconnect on through mold interposer 2.5D高密度倒装芯片通模互连的挑战与方法
Pub Date : 2018-12-01 DOI: 10.1109/EPTC.2018.8654411
S. Lim, S. Chong, W. Seit, T. Chai
The continuous requirements of package miniaturization in the demand of mobile application market have shown the increase in demand of many FOWLP packaging [1]. The applications of FOWLP has many advantages including shorter interconnection, lower heat resistance, better electrical efficiency and smaller package form factor [2].The work presented in this paper describes the reconfigured wafer approach in fan-out wafer level technology that allows multiple dies with high solder interconnect to package using the molded interposer for FOWLP technology. In this work, we presented some of the work done prior to the flip chip bonding process and the different approaches to resolve some of the process issues encountered in the assembly process for 3 test dies with high I/Os onto a fan-out mold interposer. The 1st test die is the 15x15mm ASIC die with 21472 I/Os and the remaining 2 dies are the 7x7mm HBM dies with 4942 I/Os. Both the ASIC and HBM dies have a minimum bump pitch at 55 μ m. The 12 inch through molded interposer wafer is singulated into individual interposer prior to the flip chip attachment process.The package warpage remains the main concern in the through mold interposer assembly. To minimize interposer warpage, a metal stiffener was attached to the molded interposer. Results shows the attachment of the metal stiffener helps to reduce the package warpage. In addition, a thinner die thickness of 150 μ m helps to reduce the overall molded interposer package‘s warpage after assembly compared to a die thickness of 500 μ m. Cross-section analysis was done to inspect the solderjoint shape at 150 μ m and 500 μ m die thickness. Further optimized thermocompression bonding process and capillary underfill process helps to ensure good solderjoint interconnection and no underfill voids for a robust Fine pitch interconnect Fan-out WLP assembly.
移动应用市场需求对封装小型化的不断要求,使得许多FOWLP封装需求增加[1]。FOWLP的应用具有互连时间短、耐热性低、电效率高、封装尺寸小等优点[2]。本文介绍的工作描述了扇出晶圆级技术中的重新配置晶圆方法,该方法允许使用用于FOWLP技术的模压中间层封装具有高焊料互连的多个晶圆。在这项工作中,我们介绍了在倒装芯片键合过程之前所做的一些工作,以及解决在扇形模具中间层上具有高I/ o的3个测试模具组装过程中遇到的一些工艺问题的不同方法。第一个测试芯片是15x15mm ASIC芯片,有21472个I/ o,其余2个是7x7mm HBM芯片,有4942个I/ o。ASIC和HBM模具的最小凸距均为55 μ m。在倒装芯片连接过程之前,将12英寸的模压中间层晶圆单独划分为单个中间层。封装翘曲仍然是通过模具中间组件的主要问题。为了尽量减少中间垫翘曲,金属加强筋被附加到模压中间垫。结果表明,金属加强筋的附加有助于减少包装翘曲。此外,与厚度为500 μ m的模具相比,厚度为150 μ m的模具有助于减少整体成型中间层封装在组装后的翘曲。进一步优化的热压键合工艺和毛细管下填充工艺有助于确保良好的焊点互连和无下填充空隙,从而实现坚固的细间距互连扇出式WLP组件。
{"title":"Challenges and Approaches of 2.5D high density Flip chip interconnect on through mold interposer","authors":"S. Lim, S. Chong, W. Seit, T. Chai","doi":"10.1109/EPTC.2018.8654411","DOIUrl":"https://doi.org/10.1109/EPTC.2018.8654411","url":null,"abstract":"The continuous requirements of package miniaturization in the demand of mobile application market have shown the increase in demand of many FOWLP packaging [1]. The applications of FOWLP has many advantages including shorter interconnection, lower heat resistance, better electrical efficiency and smaller package form factor [2].The work presented in this paper describes the reconfigured wafer approach in fan-out wafer level technology that allows multiple dies with high solder interconnect to package using the molded interposer for FOWLP technology. In this work, we presented some of the work done prior to the flip chip bonding process and the different approaches to resolve some of the process issues encountered in the assembly process for 3 test dies with high I/Os onto a fan-out mold interposer. The 1st test die is the 15x15mm ASIC die with 21472 I/Os and the remaining 2 dies are the 7x7mm HBM dies with 4942 I/Os. Both the ASIC and HBM dies have a minimum bump pitch at 55 μ m. The 12 inch through molded interposer wafer is singulated into individual interposer prior to the flip chip attachment process.The package warpage remains the main concern in the through mold interposer assembly. To minimize interposer warpage, a metal stiffener was attached to the molded interposer. Results shows the attachment of the metal stiffener helps to reduce the package warpage. In addition, a thinner die thickness of 150 μ m helps to reduce the overall molded interposer package‘s warpage after assembly compared to a die thickness of 500 μ m. Cross-section analysis was done to inspect the solderjoint shape at 150 μ m and 500 μ m die thickness. Further optimized thermocompression bonding process and capillary underfill process helps to ensure good solderjoint interconnection and no underfill voids for a robust Fine pitch interconnect Fan-out WLP assembly.","PeriodicalId":360239,"journal":{"name":"2018 IEEE 20th Electronics Packaging Technology Conference (EPTC)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116099245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Characterization and Performance of Ultrafine Lead-Free powders 超细无铅粉体的表征与性能
Pub Date : 2018-12-01 DOI: 10.1109/EPTC.2018.8654327
Tan Leng Hin “Adrian”, Pan Wei Chih “Lenz”, Chan Li-san, Lo Yee Ting, Fritzsche Sebastian
With the miniaturization of components in advanced packaging, interconnect requires fine solder joints to be formed. To be able to form small solder joints, solder paste with ultrafine solder particles is required. For ultrafine powder there are important powder characteristics such as particle size distributions (PSD), surface oxide and aspect ratio which need to be considered.A proprietary process technology is used to produce ultrafine SAC305 (Sn-3Ag-0.5Cu) powder with particle size ranging from $2 mu mathrm{m}$ to $25 mu mathrm{m}$ with tight particle size distributions and high sphericity. Focus will be on new ultrafine powders $(28 mu mathrm{m})$ and characterization will be presented for PSD, surface oxide content and aspect ratio. Surface oxide content will be characterized using inert gas fusion infrared technology while particle size distribution is characterized using laser diffraction method.The ultrafine powder was made into solder paste (water soluble) for feasibility studies. Impact of PSD and surface oxide on paste characteristics like solder balling, solder bridging and cold slump will be discussed. Finally, results for printability on ultrafine pitch and solder volume after reflow will be discussed.
随着先进封装中元件的小型化,互连需要形成精细的焊点。为了能够形成小的焊点,需要具有超细焊料颗粒的锡膏。对于超细粉体,需要考虑粒度分布(PSD)、表面氧化物和长径比等粉体特性。采用自主研发的工艺技术,可制得粒度为$2 mu mathrm{m}$ ~ $25 mu mathrm{m}$的超细SAC305 (Sn-3Ag-0.5Cu)粉体,粉体粒度分布紧密,球形度高。重点将是新的超细粉末$(28 mu mathm {m})$,并将介绍PSD,表面氧化物含量和纵横比的表征。采用惰性气体融合红外技术对表面氧化物含量进行表征,采用激光衍射法对粒度分布进行表征。将超细粉末制成可溶于水的锡膏,进行可行性研究。将讨论PSD和表面氧化物对膏体特性的影响,如焊锡球团、焊锡桥接和冷坍落度。最后,讨论了回流后超细间距和焊料体积的印刷适性。
{"title":"Characterization and Performance of Ultrafine Lead-Free powders","authors":"Tan Leng Hin “Adrian”, Pan Wei Chih “Lenz”, Chan Li-san, Lo Yee Ting, Fritzsche Sebastian","doi":"10.1109/EPTC.2018.8654327","DOIUrl":"https://doi.org/10.1109/EPTC.2018.8654327","url":null,"abstract":"With the miniaturization of components in advanced packaging, interconnect requires fine solder joints to be formed. To be able to form small solder joints, solder paste with ultrafine solder particles is required. For ultrafine powder there are important powder characteristics such as particle size distributions (PSD), surface oxide and aspect ratio which need to be considered.A proprietary process technology is used to produce ultrafine SAC305 (Sn-3Ag-0.5Cu) powder with particle size ranging from $2 mu mathrm{m}$ to $25 mu mathrm{m}$ with tight particle size distributions and high sphericity. Focus will be on new ultrafine powders $(28 mu mathrm{m})$ and characterization will be presented for PSD, surface oxide content and aspect ratio. Surface oxide content will be characterized using inert gas fusion infrared technology while particle size distribution is characterized using laser diffraction method.The ultrafine powder was made into solder paste (water soluble) for feasibility studies. Impact of PSD and surface oxide on paste characteristics like solder balling, solder bridging and cold slump will be discussed. Finally, results for printability on ultrafine pitch and solder volume after reflow will be discussed.","PeriodicalId":360239,"journal":{"name":"2018 IEEE 20th Electronics Packaging Technology Conference (EPTC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123943777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cu Sinter Pastes for Pure-Cu Die-Attach Applications of Power Modules 用于功率模块纯铜贴片应用的铜烧结浆料
Pub Date : 2018-12-01 DOI: 10.1109/EPTC.2018.8654369
B. Eichinger, T. Behrendt, S. Ohm, F. Craes, M. Mischitz, R. Brunner
In this study, we investigate Cu sinter pastes consisting of coated and dispersed nano- and micro-particles for pure-Cu die-attach applications of Si dies on Cu-plated DCB. The sinter pastes are deposited on wafer level by stencil printing prior to thermal pre-conditioning and die separation. We show the required process conditions for die-attach formation by pressure sintering of Cu pastes in reducing atmosphere at elevated temperatures. We evaluate the quality of the sinter interconnect by mandrel bending, Scanning Acoustic Microscopy (SAM), Scanning Electron Microscopy (SEM) and thermal shock testing (TST). Using a linear regression analysis and putting the results into context with the SEM and SAM analysis, we can show that sinter force and sinter duration are highly influential process parameters, while Cu thickness and a HCOOH pre-cleaning step do not show any significant effect on the joint formation. We further show that on DCB level, the Cu sinter joint can withstand dynamic temperature loading between $-40^{circ}mathrm{C}$ and $+150^{circ}mathrm{C}$ up to 500 cycles without showing any significant signs of degradation.
在这项研究中,我们研究了由涂覆和分散的纳米和微颗粒组成的铜烧结糊状物,用于纯铜的Si模具在镀铜DCB上的模附应用。在热预处理和模具分离之前,通过模板印刷将烧结浆料沉积在晶圆层上。我们展示了在高温还原气氛中压力烧结铜膏体形成模附所需的工艺条件。我们通过芯轴弯曲、扫描声学显微镜(SAM)、扫描电子显微镜(SEM)和热冲击测试(TST)来评估烧结互连的质量。通过线性回归分析并将结果与SEM和SAM分析结合起来,我们可以发现烧结力和烧结时间是影响很大的工艺参数,而Cu厚度和HCOOH预清洗步骤对接头的形成没有显著影响。我们进一步表明,在DCB水平上,Cu烧结接头可以承受$-40^{circ} mathm {C}$和$+150^{circ} mathm {C}$之间的动态温度载荷,高达500次循环,而不会显示任何明显的退化迹象。
{"title":"Cu Sinter Pastes for Pure-Cu Die-Attach Applications of Power Modules","authors":"B. Eichinger, T. Behrendt, S. Ohm, F. Craes, M. Mischitz, R. Brunner","doi":"10.1109/EPTC.2018.8654369","DOIUrl":"https://doi.org/10.1109/EPTC.2018.8654369","url":null,"abstract":"In this study, we investigate Cu sinter pastes consisting of coated and dispersed nano- and micro-particles for pure-Cu die-attach applications of Si dies on Cu-plated DCB. The sinter pastes are deposited on wafer level by stencil printing prior to thermal pre-conditioning and die separation. We show the required process conditions for die-attach formation by pressure sintering of Cu pastes in reducing atmosphere at elevated temperatures. We evaluate the quality of the sinter interconnect by mandrel bending, Scanning Acoustic Microscopy (SAM), Scanning Electron Microscopy (SEM) and thermal shock testing (TST). Using a linear regression analysis and putting the results into context with the SEM and SAM analysis, we can show that sinter force and sinter duration are highly influential process parameters, while Cu thickness and a HCOOH pre-cleaning step do not show any significant effect on the joint formation. We further show that on DCB level, the Cu sinter joint can withstand dynamic temperature loading between $-40^{circ}mathrm{C}$ and $+150^{circ}mathrm{C}$ up to 500 cycles without showing any significant signs of degradation.","PeriodicalId":360239,"journal":{"name":"2018 IEEE 20th Electronics Packaging Technology Conference (EPTC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128513411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Void Defect Formed in Wiping Step of Gravure Printing 凹版印刷擦拭工序产生的空隙缺陷
Pub Date : 2018-12-01 DOI: 10.1109/EPTC.2018.8654339
Z. Cen, X. Shan, B. Salam, L. S. Rachel Tan, J. Wei
In order to print various functional components for printed electronics, inks with different viscosities may be used in gravure printing. In this study, influence of ink viscosity on gravure printing quality at individual cell level is reported. In gravure printing experiments using dielectric Barium Titanate (BaTiO3) nanoparticles inks of different viscosities, a void defect can be observed at the front edge of the printed pattern of an individual engraved cell. And the void became larger both for ink with higher viscosity and at higher printing speed. In our experiments, it was noticed that the voids can lead to open defects in the whole printed pattern of high viscosity ink, undermining the printing quality. In order to study the forming mechanism of the voids, experimental results were analyzed based on computational fluid dynamic (CFD) simulation studies of wiping step in the gravure printing process. Simulation confirmed that the observed void is caused by the unfilled space at the leading edge of the engraved cell during wiping. Effects of wiping speed and ink viscosity have been investigated, and the simulation results are consistent with experiments. Based on the experimental and theoretical results, it can be concluded that, for gravure printing using high viscosity ink, printing speed needs to be slowed down in order to reduce defects. The present study enhanced understanding of ink transfer in gravure printing and provided a guide line for high quality gravure printing.
为了印刷印刷电子产品的各种功能部件,在凹版印刷中可以使用不同粘度的油墨。本文报道了在单个细胞水平上油墨粘度对凹版印刷质量的影响。在使用不同粘度的介质钛酸钡(BaTiO3)纳米颗粒油墨的凹版印刷实验中,可以观察到在单个雕刻电池的印刷图案的前缘存在空洞缺陷。油墨粘度越高,印刷速度越快,空洞越大。在我们的实验中,注意到这些空隙会导致高粘度油墨的整个印刷图案出现开放缺陷,从而影响印刷质量。为了研究这些空洞的形成机理,基于计算流体动力学(CFD)对凹印过程中擦拭步骤的实验结果进行了分析。模拟证实,观察到的空洞是由于在擦拭过程中雕刻单元前缘未填充的空间造成的。研究了擦拭速度和油墨粘度对擦拭效果的影响,仿真结果与实验结果吻合较好。根据实验和理论结果,可以得出结论,对于使用高粘度油墨的凹版印刷,需要减慢印刷速度以减少缺陷。本研究增加了对凹版印刷油墨转移的认识,为高质量凹版印刷提供了指导。
{"title":"Void Defect Formed in Wiping Step of Gravure Printing","authors":"Z. Cen, X. Shan, B. Salam, L. S. Rachel Tan, J. Wei","doi":"10.1109/EPTC.2018.8654339","DOIUrl":"https://doi.org/10.1109/EPTC.2018.8654339","url":null,"abstract":"In order to print various functional components for printed electronics, inks with different viscosities may be used in gravure printing. In this study, influence of ink viscosity on gravure printing quality at individual cell level is reported. In gravure printing experiments using dielectric Barium Titanate (BaTiO3) nanoparticles inks of different viscosities, a void defect can be observed at the front edge of the printed pattern of an individual engraved cell. And the void became larger both for ink with higher viscosity and at higher printing speed. In our experiments, it was noticed that the voids can lead to open defects in the whole printed pattern of high viscosity ink, undermining the printing quality. In order to study the forming mechanism of the voids, experimental results were analyzed based on computational fluid dynamic (CFD) simulation studies of wiping step in the gravure printing process. Simulation confirmed that the observed void is caused by the unfilled space at the leading edge of the engraved cell during wiping. Effects of wiping speed and ink viscosity have been investigated, and the simulation results are consistent with experiments. Based on the experimental and theoretical results, it can be concluded that, for gravure printing using high viscosity ink, printing speed needs to be slowed down in order to reduce defects. The present study enhanced understanding of ink transfer in gravure printing and provided a guide line for high quality gravure printing.","PeriodicalId":360239,"journal":{"name":"2018 IEEE 20th Electronics Packaging Technology Conference (EPTC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130409364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solder Joint Reliability Simulation of Fan-out Wafer Level Package (FOWLP) Considering Viscoelastic Material Properties 考虑粘弹性材料特性的扇形圆片级封装(FOWLP)焊点可靠性仿真
Pub Date : 2018-12-01 DOI: 10.1109/EPTC.2018.8654355
Zhaohui Chen, Xiaowu Zhang, S. Lim, S. Lim, B. L. Lau, Yong Han, M. C. Jong, Songlin Liu, Xiaobai Wang, Y. Andriani
In this paper, the solder joint reliability under $-40^{circ} mathrm{C} -125^{circ}mathrm{C}$ thermal cycling loading of different package sizes of mold-first FOWLP and redistribution layer first (RDL-first) FOWLP was studied by finite element simulation considering the viscoelastic material property of epoxy molding compound (EMC), dielectric and underfill. The critical solder joint is located at the die corner for the designed mold-first and RDL-first FOWLP. Volume average creep strain energy density range of critical solder joint increases with the package size from 12 mm $times$12 mm $times$0.2 mm to 18 mm $times$ 18 mm $times$0.2 mm for mold-first FOWLP. The distance to neutral point (DNP) becomes invalid when the RDL-first FOWLP package size increases to 18 mm $times$18 mm $times$0.2 mm. Volume average creep strain energy density range of package corner solder joint is overestimated without considering the viscoelastic material properties. However, the volume average creep strain energy density range of die corner solder joint is underestimated without considering the viscoelastic material properties. Low CTE PCB can help to improve the reliability of the critical solder joint at die corner of the designed mold-first FOWLP. The effects of the low CTE PCB for improving solder joint reliability the designed RDL-first FOWLP is not significant. Thinner PCB can help to improve the reliability of the critical solder joint at die corner of both mold-first and RDL-first FOWLP.
考虑环氧成型复合材料(EMC)、介电介质和下填料的粘弹性材料特性,采用有限元模拟方法研究了不同封装尺寸的模具优先和再分布层优先(RDL-first) FOWLP在$-40^{circ} mathm {C} -125^{circ} mathm {C}$热循环载荷下的焊点可靠性。对于设计的模具优先和rdl优先的FOWLP,关键焊点位于模具角。对于模具优先型FOWLP,关键焊点的体积平均蠕变应变能密度范围随着封装尺寸的增加而增加,从12 mm × 12 mm × 0.2 mm到18 mm × 18 mm × 0.2 mm。当RDL-first FOWLP封装尺寸增加到18mm × 18mm × 0.2 mm时,到中立点的距离(DNP)失效。在不考虑材料粘弹性的情况下,高估了封装角焊点的体积平均蠕变应变能密度范围。然而,在不考虑材料粘弹性的情况下,模具角焊点的体积平均蠕变应变能密度范围被低估了。低CTE PCB有助于提高设计的模具优先型FOWLP的模角关键焊点的可靠性。低CTE PCB对提高RDL-first FOWLP焊点可靠性的影响不显著。更薄的PCB有助于提高模具优先和rdl优先的FOWLP的模具角关键焊点的可靠性。
{"title":"Solder Joint Reliability Simulation of Fan-out Wafer Level Package (FOWLP) Considering Viscoelastic Material Properties","authors":"Zhaohui Chen, Xiaowu Zhang, S. Lim, S. Lim, B. L. Lau, Yong Han, M. C. Jong, Songlin Liu, Xiaobai Wang, Y. Andriani","doi":"10.1109/EPTC.2018.8654355","DOIUrl":"https://doi.org/10.1109/EPTC.2018.8654355","url":null,"abstract":"In this paper, the solder joint reliability under $-40^{circ} mathrm{C} -125^{circ}mathrm{C}$ thermal cycling loading of different package sizes of mold-first FOWLP and redistribution layer first (RDL-first) FOWLP was studied by finite element simulation considering the viscoelastic material property of epoxy molding compound (EMC), dielectric and underfill. The critical solder joint is located at the die corner for the designed mold-first and RDL-first FOWLP. Volume average creep strain energy density range of critical solder joint increases with the package size from 12 mm $times$12 mm $times$0.2 mm to 18 mm $times$ 18 mm $times$0.2 mm for mold-first FOWLP. The distance to neutral point (DNP) becomes invalid when the RDL-first FOWLP package size increases to 18 mm $times$18 mm $times$0.2 mm. Volume average creep strain energy density range of package corner solder joint is overestimated without considering the viscoelastic material properties. However, the volume average creep strain energy density range of die corner solder joint is underestimated without considering the viscoelastic material properties. Low CTE PCB can help to improve the reliability of the critical solder joint at die corner of the designed mold-first FOWLP. The effects of the low CTE PCB for improving solder joint reliability the designed RDL-first FOWLP is not significant. Thinner PCB can help to improve the reliability of the critical solder joint at die corner of both mold-first and RDL-first FOWLP.","PeriodicalId":360239,"journal":{"name":"2018 IEEE 20th Electronics Packaging Technology Conference (EPTC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130908567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
2018 IEEE 20th Electronics Packaging Technology Conference (EPTC)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1