Pub Date : 2023-07-01DOI: 10.1016/j.onano.2023.100159
Sayali Pravin Metkar , Gasper Fernandes , Prerana D. Navti , Ajinkya N. Nikam , Ritu Kudarha , Namdev Dhas , Raviraja N Seetharam , Krishnan Venkata Santhosh , Bola Sadashiva Satish Rao , Srinivas Mutalik
Hepatocellular carcinoma (HCC) is recognized as a global health issue accounting for millions of deaths every year. Surgery, liver ablation, and embolization therapy are amongst the conventional methods for treatment of HCC. Chemotherapy plays a major role in HCC therapy, however, owing to its conventional pharmacotherapy limitations, it necessitates the development of novel therapeutic strategies. In contrast, nanomedicines for HCC have shown remarkable prospects for solving these complications in HCC owing to their high stability, controlled release, and high drug loading capacity. This review gives an insight into the nano-constructs used for HCC treatment and its active and passive targeting strategies. This review also inculcates the various approaches for targeting the liver cells, its targeting moieties and the conjugation chemistries involved in surface functionalization. A brief description of various therapeutic approaches in the treatment of HCC has also been discussed.
{"title":"Nanoparticle drug delivery systems in hepatocellular carcinoma: A focus on targeting strategies and therapeutic applications","authors":"Sayali Pravin Metkar , Gasper Fernandes , Prerana D. Navti , Ajinkya N. Nikam , Ritu Kudarha , Namdev Dhas , Raviraja N Seetharam , Krishnan Venkata Santhosh , Bola Sadashiva Satish Rao , Srinivas Mutalik","doi":"10.1016/j.onano.2023.100159","DOIUrl":"10.1016/j.onano.2023.100159","url":null,"abstract":"<div><p>Hepatocellular carcinoma (HCC) is recognized as a global health issue accounting for millions of deaths every year. Surgery, liver ablation, and embolization therapy are amongst the conventional methods for treatment of HCC. Chemotherapy plays a major role in HCC therapy, however, owing to its conventional pharmacotherapy limitations, it necessitates the development of novel therapeutic strategies. In contrast, nanomedicines for HCC have shown remarkable prospects for solving these complications in HCC owing to their high stability, controlled release, and high drug loading capacity. This review gives an insight into the nano-constructs used for HCC treatment and its active and passive targeting strategies. This review also inculcates the various approaches for targeting the liver cells, its targeting moieties and the conjugation chemistries involved in surface functionalization. A brief description of various therapeutic approaches in the treatment of HCC has also been discussed.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"12 ","pages":"Article 100159"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49526079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The platform of microfluidics offers a precise control and manipulation over fluids at a small scale and therefore has gained much attention in recent times. This topic is currently applied to automation and high-throughput analysis in several areas, including extraction of DNA, RNA and proteins, gene identification, gene assembly, cloning, single-cell analysis, organs grown on chips, PCR, drug screening, toxicity testing and drug delivery. Conventional methods used for drug delivery are sometimes non-targeted leading to loss of administered drugs and reduced drug effectiveness. Recent advances in microfluidics allow precise dose-dependent delivery of a drug to a targeted location. Several microfluidics designs have been implemented to improve the precision of treatment in clinics. This review highlights currently available tools in microfluidics, designs for drug carriers, delivery methods, robotics and artificial intelligence in the field of microfluidics.
{"title":"Exploring the potential of microfluidics for next-generation drug delivery systems","authors":"Gargi Bhattacharjee , Nisarg Gohil , Malvika Shukla , Swati Sharma , Indra Mani , Alok Pandya , Dinh-Toi Chu , Nhat Le Bui , Yen-Vy Nguyen Thi , Khushal Khambhati , Rupesh Maurya , Suresh Ramakrishna , Vijai Singh","doi":"10.1016/j.onano.2023.100150","DOIUrl":"10.1016/j.onano.2023.100150","url":null,"abstract":"<div><p>The platform of microfluidics offers a precise control and manipulation over fluids at a small scale and therefore has gained much attention in recent times. This topic is currently applied to automation and high-throughput analysis in several areas, including extraction of DNA, RNA and proteins, gene identification, gene assembly, cloning, single-cell analysis, organs grown on chips, PCR, drug screening, toxicity testing and drug delivery. Conventional methods used for drug delivery are sometimes non-targeted leading to loss of administered drugs and reduced drug effectiveness. Recent advances in microfluidics allow precise dose-dependent delivery of a drug to a targeted location. Several microfluidics designs have been implemented to improve the precision of treatment in clinics. This review highlights currently available tools in microfluidics, designs for drug carriers, delivery methods, robotics and artificial intelligence in the field of microfluidics.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"12 ","pages":"Article 100150"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44857572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raise of antimicrobial resistance and lack of development in novel antibiotics leads to complications in infection control for wound healing. In perspective to search for best alternatives, antibacterial activity of nanomaterials has shown promising strategy, however concentration dependent toxicity became challenge thereof. In this context, green synthesis protocols of nano materials provide benefits of biocompatibility due to presence of bioactive compounds and also economical with proven efficiency. Further nano-antibiotic combinations may enhance antibacterial efficacy by synergetic action and allows to reduce the dosage of both agents. In the current work, nano-antibiotic gels are prepared using green synthesized nanoparticles (Ag & ZnO NPs) with the combination of antibiotic neomycin and also assessed in-vivo wound healing activity on Wistar albino rats. From the results of the tested formulations, combinational formulations exhibited enhanced and speedier wound contraction (92–96%) with prominent synergetic action when compared with neomycin alone (84%) or nanoparticles alone (82–86%) in a 14-day study. These results demonstrated that green-nano-antibiotic combinational formulations provides prominent avenue to combat the multi drug resistant bacteria without toxicity issue.
{"title":"Wound healing synergy in Wistar albino rats via green synthesized nanoparticles and topical antibiotic neomycin","authors":"S.V.N. Pammi , Veerabhadhra Swamy Padavala , Taraka Sunil Kumar Karumuri , Chandra Sekhar Kommavari , Manish Shaik , Venkata Ramana Murthy Kolapalli , Lakshmi Kalyani Ruddaraju","doi":"10.1016/j.onano.2023.100135","DOIUrl":"10.1016/j.onano.2023.100135","url":null,"abstract":"<div><p>Raise of antimicrobial resistance and lack of development in novel antibiotics leads to complications in infection control for wound healing. In perspective to search for best alternatives, antibacterial activity of nanomaterials has shown promising strategy, however concentration dependent toxicity became challenge thereof. In this context, green synthesis protocols of nano materials provide benefits of biocompatibility due to presence of bioactive compounds and also economical with proven efficiency. Further nano-antibiotic combinations may enhance antibacterial efficacy by synergetic action and allows to reduce the dosage of both agents. In the current work, nano-antibiotic gels are prepared using green synthesized nanoparticles (Ag & ZnO NPs) with the combination of antibiotic neomycin and also assessed <em>in-vivo</em> wound healing activity on Wistar albino rats. From the results of the tested formulations, combinational formulations exhibited enhanced and speedier wound contraction (92–96%) with prominent synergetic action when compared with neomycin alone (84%) or nanoparticles alone (82–86%) in a 14-day study. These results demonstrated that green-nano-antibiotic combinational formulations provides prominent avenue to combat the multi drug resistant bacteria without toxicity issue.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"11 ","pages":"Article 100135"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45982006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1016/j.onano.2023.100129
Mohammad Amin Rajizadeh , Mohammad Hadi Nematollahi , Elham Jafari , Mohammad Abbas Bejeshk , Mehrnaz Mehrabani , Mohammad Sadegh Razeghinia , Hamid Najafipour
We assessed the anti-inflammatory, anti-oxidative and anti-remodeling impacts of a synthesized myrtenol-loaded niosome in rats with allergic asthma. Forty-nine rats were divided into seven groups of control, vacant niosome (VN), Asthma, Asthma+VN, Asthma+SM (simple myrtenol), Asthma+NM (niosomal myrtenol, 8 mg/kg), and Asthma+B (budesonide, 41 μg). Ovalbumin-induced asthmatic animals were exposed to daily inhalation of drug/vehicle for one week. Histopathology and inflammatory and oxidative stress indices in the lungs were assessed. Myrtenol-loaded niosomes showed appropriate physicochemical properties. Airway smooth muscle thickness, inflammatory cell infiltration, goblet cell hyperplasia, NO, IL-17, and MDA level decreased, and IL-10 and TAC levels increased in tissue and/or BALF of treatment groups. Niosomal myrtenol showed high potency comparable to budesonide in alleviating disease parameters. In conclusion, inhalation of niosomal myrtenol ameliorated inflammation, oxidative stress and tissue remodeling in asthmatic animals more potently than simple myrtenol and could be a target for production of an anti-asthmatic medicine.
{"title":"Niosome nanocarrier enhances the ameliorating effects of myrtenol in the lungs of rats with experimental asthma","authors":"Mohammad Amin Rajizadeh , Mohammad Hadi Nematollahi , Elham Jafari , Mohammad Abbas Bejeshk , Mehrnaz Mehrabani , Mohammad Sadegh Razeghinia , Hamid Najafipour","doi":"10.1016/j.onano.2023.100129","DOIUrl":"10.1016/j.onano.2023.100129","url":null,"abstract":"<div><p>We assessed the anti-inflammatory, anti-oxidative and anti-remodeling impacts of a synthesized myrtenol-loaded niosome in rats with allergic asthma. Forty-nine rats were divided into seven groups of control, vacant niosome (VN), Asthma, Asthma+VN, Asthma+SM (simple myrtenol), Asthma+NM (niosomal myrtenol, 8 mg/kg), and Asthma+<em>B</em> (budesonide, 41 μg). Ovalbumin-induced asthmatic animals were exposed to daily inhalation of drug/vehicle for one week. Histopathology and inflammatory and oxidative stress indices in the lungs were assessed. Myrtenol-loaded niosomes showed appropriate physicochemical properties. Airway smooth muscle thickness, inflammatory cell infiltration, goblet cell hyperplasia, NO, IL-17, and MDA level decreased, and IL-10 and TAC levels increased in tissue and/or BALF of treatment groups. Niosomal myrtenol showed high potency comparable to budesonide in alleviating disease parameters. In conclusion, inhalation of niosomal myrtenol ameliorated inflammation, oxidative stress and tissue remodeling in asthmatic animals more potently than simple myrtenol and could be a target for production of an anti-asthmatic medicine.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"11 ","pages":"Article 100129"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47029919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1016/j.onano.2023.100139
Sally A. Abou Taleb , Shaymaa Abdalla Ismail , Marwan Mohamed , Reda M. Mourad , Hadeer A. El-Hashemy
Introduction
Recently, bis(arylmethylidene)acetone drugs known as C5-curcumin, were acknowledged for their potent biological effects as a neoteric synthetic alternative to curcumin effectively used to treat many diseases.
Methods
In this study, new polymeric emulsified nanoparticles (PENS) carrying biodegradable polycaprolactone (PCL) polymer moieties within their framework were developed as promising carriers for a modern synthesized bis(arylmethylidene)acetone “(1E,4E)-1,5-di(thiophen-2-yl) penta-1,4dien-3-one” (TPO) with improved bioavailability. Such systems were evaluated by studying their; encapsulation efficiency, release behavior, physicochemical evaluations, TEM and SEM measurements and cytotoxicity, besides the in-vitro and in-vivo biological studies screening.
Results
The results revealed high encapsulation efficiency ranging between 99.31± 2.15 and 99.55 ± 2.03 %, and a sustained release behavior for up to 24 h with nanosized particle size. TPO emulsified nanoparticles (TPO-ENPs) showed effective antimicrobial activity against Candida albicans and Aspergillus brasiliensis as well as antioxidant efficacy with a higher scavenging activity of 177.6μg TE/ mg against free radicals of 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH) relatively to the control drug. F1’ and F2’ TPO-ENPs were safe on Vero-cells and proved a significant reduction of hepatocellular alterations and serum ALT levels in control groups.
Conclusion
In conclusion, these novel synthesized TPO-ENPs showed pronounced efficacy as antimicrobial/ antioxidant/ anti-inflammatory/ analgesic/ hepatoprotective therapeutic vehicles.
{"title":"Promising synthesized bis (arylmethylidene) acetone -polymeric PCL emulsified nanoparticles with enhanced antimicrobial/antioxidant efficacy: in-vitro and in-vivo evaluation","authors":"Sally A. Abou Taleb , Shaymaa Abdalla Ismail , Marwan Mohamed , Reda M. Mourad , Hadeer A. El-Hashemy","doi":"10.1016/j.onano.2023.100139","DOIUrl":"10.1016/j.onano.2023.100139","url":null,"abstract":"<div><h3>Introduction</h3><p>Recently, bis(arylmethylidene)acetone drugs known as C5-curcumin, were acknowledged for their potent biological effects as a neoteric synthetic alternative to curcumin effectively used to treat many diseases.</p></div><div><h3>Methods</h3><p>In this study, new polymeric emulsified nanoparticles (PENS) carrying biodegradable polycaprolactone (PCL) polymer moieties within their framework were developed as promising carriers for a modern synthesized bis(arylmethylidene)acetone “(1<em>E</em>,4<em>E</em>)-1,5-di(thiophen-2-yl) penta-1,4dien-3-one” (TPO) with improved bioavailability. Such systems were evaluated by studying their; encapsulation efficiency, release behavior, physicochemical evaluations, TEM and SEM measurements and cytotoxicity, besides the in-vitro and in-vivo biological studies screening.</p></div><div><h3>Results</h3><p>The results revealed high encapsulation efficiency ranging between 99.31± 2.15 and 99.55 ± 2.03 %, and a sustained release behavior for up to 24 h with nanosized particle size. TPO emulsified nanoparticles (TPO-ENPs) showed effective antimicrobial activity against <em>Candida albicans</em> and <em>Aspergillus brasiliensis</em> as well as antioxidant efficacy with a higher scavenging activity of 177.6μg TE/ mg against free radicals of 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH) relatively to the control drug. F1’ and F2’ TPO-ENPs were safe on Vero-cells and proved a significant reduction of hepatocellular alterations and serum ALT levels in control groups.</p></div><div><h3>Conclusion</h3><p>In conclusion, these novel synthesized TPO-ENPs showed pronounced efficacy as antimicrobial/ antioxidant/ anti-inflammatory/ analgesic/ hepatoprotective therapeutic vehicles.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"11 ","pages":"Article 100139"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47804136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1016/j.onano.2023.100125
Mahsa Kiani , Mojtaba Bagherzadeh , Yousef Fatahi , Hossein Daneshgar , Moein Safarkhani , Ghazal Salehi , Pooyan Makvandi , Mohammad Reza Saeb , Eder C. Lima , Navid Rabiee
{"title":"Corrigendum to ‘Successive cytotoxicity control by evolutionary surface decorated electronic push-pull green ZnCr-LDH nanostructures: Drug delivery enlargement for targeted breast cancer chemotherapy’[OpenNano 8 (2022) 100093]","authors":"Mahsa Kiani , Mojtaba Bagherzadeh , Yousef Fatahi , Hossein Daneshgar , Moein Safarkhani , Ghazal Salehi , Pooyan Makvandi , Mohammad Reza Saeb , Eder C. Lima , Navid Rabiee","doi":"10.1016/j.onano.2023.100125","DOIUrl":"10.1016/j.onano.2023.100125","url":null,"abstract":"","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"11 ","pages":"Article 100125"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43133542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1016/j.onano.2023.100132
Hamdi Nsairat , Walhan Alshaer , Fadwa Odeh , Ezzaldeen Esawi , Dima Khater , Abeer Al Bawab , Mohamed El-Tanani , Abdalla Awidi , Mohammad S. Mubarak
Nucleic acid therapeutics are rapidly expanding because of recent advancements in production and purification. This class of therapeutics may change the field of disease treatment and personalized medicine since it can cure diseases. However, drug delivery systems are crucial for these therapeutics to fulfill their potential. Liposomes have long been considered ideal platforms for systemic drugs delivery. Considering the development in cancer therapeutics, this work emphases on the current advancements in liposomes’ Nano-formulations, functionalization, and design and how it has been applied to nucleic acid therapeutics. Accordingly, this review covers the literature that deals with liposomes in nucleic acid therapy.
{"title":"Recent advances in using liposomes for delivery of nucleic acid-based therapeutics","authors":"Hamdi Nsairat , Walhan Alshaer , Fadwa Odeh , Ezzaldeen Esawi , Dima Khater , Abeer Al Bawab , Mohamed El-Tanani , Abdalla Awidi , Mohammad S. Mubarak","doi":"10.1016/j.onano.2023.100132","DOIUrl":"10.1016/j.onano.2023.100132","url":null,"abstract":"<div><p>Nucleic acid therapeutics are rapidly expanding because of recent advancements in production and purification. This class of therapeutics may change the field of disease treatment and personalized medicine since it can cure diseases. However, drug delivery systems are crucial for these therapeutics to fulfill their potential. Liposomes have long been considered ideal platforms for systemic drugs delivery. Considering the development in cancer therapeutics, this work emphases on the current advancements in liposomes’ Nano-formulations, functionalization, and design and how it has been applied to nucleic acid therapeutics. Accordingly, this review covers the literature that deals with liposomes in nucleic acid therapy.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"11 ","pages":"Article 100132"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48155854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Various health agencies, such as the European Medical Agency (EMA), Centers for Disease Control and Prevention (CDC), and World Health Organization (WHO), timely cited the upsurge of antibiotic resistance as a severe threat to the public health and global economy. Importantly, there is a rise in nosocomial infections among covid-19 patients and in-hospitalized patients with the delineating disorder. Most of nosocomial infections are related to the bacteria residing in biofilm, which are commonly formed on material surfaces. In biofilms, microcolonies of various bacteria live in syntropy; therefore, their infections require a higher antibiotic dosage or cocktail of broad-spectrum antibiotics, aggravating the severity of antibiotic resistance. Notably, the lack of intrinsic antibacterial properties in commercial-grade materials desires to develop newer functionalized materials to prevent biofilm formation on their surfaces. To devise newer strategies, materials prepared at the nanoscale demonstrated reasonable antibacterial properties or enhanced the activity of antimicrobial agents (that are encapsulated/chemically functionalized onto the material surface). In this manuscript, we compiled such nanosized materials, specifying their role in targeting specific strains of bacteria. We also enlisted the examples of nanomaterials, nanodevice, nanomachines, nano-camouflaging, and nano-antibiotics for bactericidal activity and their possible clinical implications.
{"title":"Nanotheranostics to target antibiotic-resistant bacteria: Strategies and applications","authors":"Rahul Bhattacharjee , Arvind Negi , Basudha Bhattacharya , Tanima Dey , Priya Mitra , Subham Preetam , Lamha Kumar , Sulagna Kar , Sabya Sachi Das , Danish Iqbal , Mehnaz Kamal , Fayez Alghofaili , Sumira Malik , Abhijit Dey , Saurabh Kumar Jha , Shreesh Ojha , Ana Cláudia Paiva-Santos , Kavindra Kumar Kesari , Niraj Kumar Jha","doi":"10.1016/j.onano.2023.100138","DOIUrl":"10.1016/j.onano.2023.100138","url":null,"abstract":"<div><p>Various health agencies, such as the European Medical Agency (EMA), Centers for Disease Control and Prevention (CDC), and World Health Organization (WHO), timely cited the upsurge of antibiotic resistance as a severe threat to the public health and global economy. Importantly, there is a rise in nosocomial infections among covid-19 patients and in-hospitalized patients with the delineating disorder. Most of nosocomial infections are related to the bacteria residing in biofilm, which are commonly formed on material surfaces. In biofilms, microcolonies of various bacteria live in syntropy; therefore, their infections require a higher antibiotic dosage or cocktail of broad-spectrum antibiotics, aggravating the severity of antibiotic resistance. Notably, the lack of intrinsic antibacterial properties in commercial-grade materials desires to develop newer functionalized materials to prevent biofilm formation on their surfaces. To devise newer strategies, materials prepared at the nanoscale demonstrated reasonable antibacterial properties or enhanced the activity of antimicrobial agents (that are encapsulated/chemically functionalized onto the material surface). In this manuscript, we compiled such nanosized materials, specifying their role in targeting specific strains of bacteria. We also enlisted the examples of nanomaterials, nanodevice, nanomachines, nano-camouflaging, and nano-antibiotics for bactericidal activity and their possible clinical implications.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"11 ","pages":"Article 100138"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42568567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1016/j.onano.2023.100140
Daniela E. Igartúa , Florencia González-Lizárraga , Carolina S. Martinez , Silvia del V. Alonso , César L. Ávila , Rosana Chehín , Nadia S. Chiaramoni , M. Jimena Prieto
Curcumin (CUR) is a bioactive compound that has been proposed for the treatment of various neurodegenerative diseases. However, its use is limited due to its low solubility in aqueous media and chemical instability under physiological conditions. Herein, we propose a strategy to overcome these limitations by using PAMAM dendrimers of generation 4.5 (DG4.5). Using a combination of biophysical techniques together with in vitro models, we demonstrate that CUR-DG4.5 complexes: (i) increased the solubility and stability of CUR via internalization into dendrimer's pockets and interaction with terminal carboxylic groups; (ii) showed in vitro biocompatibility and increased CUR uptake; (iii) presented DPPH radical scavenging activity and in vitro inhibition of H2O2-induced stress; and (iv) interfere with α-synuclein aggregation. In conclusion, this work lays the foundation to use curcumin-loaded PAMAM dendrimers of generation 4.5 as nanodrugs capable of reducing oxidative stress and inhibiting α-synuclein aggregation to treat synucleinopathies.
{"title":"PAMAM dendrimers of generation 4.5 loaded with curcumin interfere with α-synuclein aggregation","authors":"Daniela E. Igartúa , Florencia González-Lizárraga , Carolina S. Martinez , Silvia del V. Alonso , César L. Ávila , Rosana Chehín , Nadia S. Chiaramoni , M. Jimena Prieto","doi":"10.1016/j.onano.2023.100140","DOIUrl":"10.1016/j.onano.2023.100140","url":null,"abstract":"<div><p>Curcumin (CUR) is a bioactive compound that has been proposed for the treatment of various neurodegenerative diseases. However, its use is limited due to its low solubility in aqueous media and chemical instability under physiological conditions. Herein, we propose a strategy to overcome these limitations by using PAMAM dendrimers of generation 4.5 (DG4.5). Using a combination of biophysical techniques together with in vitro models, we demonstrate that CUR-DG4.5 complexes: (i) increased the solubility and stability of CUR via internalization into dendrimer's pockets and interaction with terminal carboxylic groups; (ii) showed in vitro biocompatibility and increased CUR uptake; (iii) presented DPPH radical scavenging activity and in vitro inhibition of H<sub>2</sub>O<sub>2</sub>-induced stress; and (iv) interfere with α-synuclein aggregation. In conclusion, this work lays the foundation to use curcumin-loaded PAMAM dendrimers of generation 4.5 as nanodrugs capable of reducing oxidative stress and inhibiting α-synuclein aggregation to treat synucleinopathies.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"11 ","pages":"Article 100140"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45712392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1016/j.onano.2023.100145
Alhanouf A. Aljohani , Maryam A. Alanazi , Lujain A. Munahhi , Jawaher D. Hamroon , Yasmin Mortagi , Mona Qushawy , Ghareb M. Soliman
This work aimed to prepare ketoconazole-loaded ethosomes and binary ethosomes to improve its skin delivery and antifungal efficacy. A 32 factorial design was used to optimize the ethosomes and formulate ketoconazole-loaded binary ethosomes. Ethosomes and binary ethosomes were evaluated for particle size, polydispersity index, zeta potential, percent drug entrapment efficiency, drug release, skin permeation and deposition and antifungal efficacy. The ethosomes particle size ranged from 78.99±16.72 to 321.53±10.41 nm and decreased by increasing phospholipid and ethanol concentrations. The polydispersity index values were in the range of 0.17±0.01 to 0.49 ± 0.04. The percent drug entrapment efficiency ranged from 36.09±2.66 to 95.89±0.19 and increased by increasing phospholipid concentration while ethanol concentration had the opposite effect. The binary ethosomes had smaller size but similar drug entrapment efficiency and zeta potential compared with the ethosomes. They had significantly higher percent drug release (∼96%) and permeation (∼95%) through rat skin compared with the ethosomes (93% and 90%, respectively). Binary ethosomes and ethosomes had, respectively 1.9 and 1.8-fold higher drug skin permeation and 5.3- and 5.6-fold higher drug deposition in the epidermis/dermis compared with the drug suspension. The antifungal efficacy of the drug-loaded ethosomes and binary ethosomes were similar to the drug hydroalcoholic solution. Collectively, these results confirm the potential of these nanocarriers to enhance drug efficacy given their small size, sustained drug release and enhanced skin permeability.
{"title":"Binary ethosomes for the enhanced topical delivery and antifungal efficacy of ketoconazole","authors":"Alhanouf A. Aljohani , Maryam A. Alanazi , Lujain A. Munahhi , Jawaher D. Hamroon , Yasmin Mortagi , Mona Qushawy , Ghareb M. Soliman","doi":"10.1016/j.onano.2023.100145","DOIUrl":"10.1016/j.onano.2023.100145","url":null,"abstract":"<div><p>This work aimed to prepare ketoconazole-loaded ethosomes and binary ethosomes to improve its skin delivery and antifungal efficacy. A 3<sup>2</sup> factorial design was used to optimize the ethosomes and formulate ketoconazole-loaded binary ethosomes. Ethosomes and binary ethosomes were evaluated for particle size, polydispersity index, zeta potential, percent drug entrapment efficiency, drug release, skin permeation and deposition and antifungal efficacy. The ethosomes particle size ranged from 78.99±16.72 to 321.53±10.41 nm and decreased by increasing phospholipid and ethanol concentrations. The polydispersity index values were in the range of 0.17±0.01 to 0.49 ± 0.04. The percent drug entrapment efficiency ranged from 36.09±2.66 to 95.89±0.19 and increased by increasing phospholipid concentration while ethanol concentration had the opposite effect. The binary ethosomes had smaller size but similar drug entrapment efficiency and zeta potential compared with the ethosomes. They had significantly higher percent drug release (∼96%) and permeation (∼95%) through rat skin compared with the ethosomes (93% and 90%, respectively). Binary ethosomes and ethosomes had, respectively 1.9 and 1.8-fold higher drug skin permeation and 5.3- and 5.6-fold higher drug deposition in the epidermis/dermis compared with the drug suspension. The antifungal efficacy of the drug-loaded ethosomes and binary ethosomes were similar to the drug hydroalcoholic solution. Collectively, these results confirm the potential of these nanocarriers to enhance drug efficacy given their small size, sustained drug release and enhanced skin permeability.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"11 ","pages":"Article 100145"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43908154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}