Pub Date : 2024-12-10Epub Date: 2024-11-01DOI: 10.1016/j.scitotenv.2024.177222
Lior Ventura, Diederik Strubbe, Assaf Shwartz
Urbanization deletes and degrades natural ecosystems, contributing to the ongoing biodiversity crisis. Yet, on the local scale, well-managed cities can host significant biodiversity, including endemic and threatened species. Understanding the trade-off between local and regional biodiversity outcomes is limited, primarily due to the lack of comprehensive sampling across heterogeneous urban areas and adjacent regions. To address this knowledge gap and assess urban areas' value for conserving the regional species pool, we conducted an extensive bird survey across an urbanized metropolitan area and its surrounding region (>300 km²). The survey included 11 cities, 24 rural settlements, agricultural areas, and natural habitats, employing high-resolution geographic data (e.g., 3D vegetation layer) to examine land cover effects on α- and β-diversity metrics. Our findings reveal that urban avian diversity can surpass adjacent non-urban areas, with urban green spaces among the most species-rich habitats. Most regional bird species did not avoid urban areas, indicating their significant potential for regional conservation, particularly in human-dominated areas. Across the region, avian communities were highly heterogeneous, driven by species turnover rather than loss, highlighting urban biodiversity complexity. However, factors associated with urbanization negatively affected both α- and β-diversity, with synanthropic species most prevalent in urban habitats. Our findings suggest that strategic urban planning, focusing on compact development and accommodating non-synanthropic species in green spaces, can significantly contribute to regional conservation efforts.
{"title":"Beyond the concrete jungle: The value of urban biodiversity for regional conservation efforts.","authors":"Lior Ventura, Diederik Strubbe, Assaf Shwartz","doi":"10.1016/j.scitotenv.2024.177222","DOIUrl":"10.1016/j.scitotenv.2024.177222","url":null,"abstract":"<p><p>Urbanization deletes and degrades natural ecosystems, contributing to the ongoing biodiversity crisis. Yet, on the local scale, well-managed cities can host significant biodiversity, including endemic and threatened species. Understanding the trade-off between local and regional biodiversity outcomes is limited, primarily due to the lack of comprehensive sampling across heterogeneous urban areas and adjacent regions. To address this knowledge gap and assess urban areas' value for conserving the regional species pool, we conducted an extensive bird survey across an urbanized metropolitan area and its surrounding region (>300 km²). The survey included 11 cities, 24 rural settlements, agricultural areas, and natural habitats, employing high-resolution geographic data (e.g., 3D vegetation layer) to examine land cover effects on α- and β-diversity metrics. Our findings reveal that urban avian diversity can surpass adjacent non-urban areas, with urban green spaces among the most species-rich habitats. Most regional bird species did not avoid urban areas, indicating their significant potential for regional conservation, particularly in human-dominated areas. Across the region, avian communities were highly heterogeneous, driven by species turnover rather than loss, highlighting urban biodiversity complexity. However, factors associated with urbanization negatively affected both α- and β-diversity, with synanthropic species most prevalent in urban habitats. Our findings suggest that strategic urban planning, focusing on compact development and accommodating non-synanthropic species in green spaces, can significantly contribute to regional conservation efforts.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"177222"},"PeriodicalIF":8.2,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-10Epub Date: 2024-10-30DOI: 10.1016/j.scitotenv.2024.177131
Y Zhang, L Gutierrez, M F Benedetti, J P Croué
Nanoplastics are increasingly pervasive in ecosystems worldwide, raising concerns about their persistence and mobility in the environment. Our study focused on the interactions between polystyrene nanoplastics (PS NPs, Do:~200 nm) and Natural Organic Matter (NOM) uniquely isolated from water bodies under different electrolyte and temperature conditions (i.e., effectively mimicking a wide range of environmental scenarios). The selected dissolved NOM (DOM) fractions of varied physical chemical characteristics and geographical origins include: the hydrophobic acid (HPOA) fraction from the South Platte River (SPR HPOA, USA), the biopolymer/colloid fractions from Cazaux Lake (CL BIOP, France), and the dissolved fraction of the biofilm recovered from a nanofiltration-fouled module at the Méry-sur-Oise drinking water treatment plant (NF BIOP, France). The biopolymers (NF BIOP and CL BIOP) clearly hindered PS NPs aggregation through steric effects, forming a protective eco-corona, enhancing PS NPs stability, and inhibiting sedimentation in the long term, compared to HPOA. The temperature impacted the homo and hetero-aggregation of PS NPs differently, illustrating the complex interplay between thermal effects and NOMs stabilizing interactions. Furthermore, the seldom-explored aspect of the sequential introduction of reactants into the solution during aggregation experiments (i.e., which simulates a realistic scenario: the transport of PS NPs from one aquatic system to another of different compositions) was also investigated. This study provides essential insights into the dynamic behavior of PS NPs in environmental matrices and crucial knowledge for predicting nanoplastic interactions in complex ecosystems.
{"title":"Impact of electrolyte and natural organic matter characteristics on the aggregation and sedimentation of polystyrene nanoplastics.","authors":"Y Zhang, L Gutierrez, M F Benedetti, J P Croué","doi":"10.1016/j.scitotenv.2024.177131","DOIUrl":"10.1016/j.scitotenv.2024.177131","url":null,"abstract":"<p><p>Nanoplastics are increasingly pervasive in ecosystems worldwide, raising concerns about their persistence and mobility in the environment. Our study focused on the interactions between polystyrene nanoplastics (PS NPs, D<sub>o</sub>:~200 nm) and Natural Organic Matter (NOM) uniquely isolated from water bodies under different electrolyte and temperature conditions (i.e., effectively mimicking a wide range of environmental scenarios). The selected dissolved NOM (DOM) fractions of varied physical chemical characteristics and geographical origins include: the hydrophobic acid (HPOA) fraction from the South Platte River (SPR HPOA, USA), the biopolymer/colloid fractions from Cazaux Lake (CL BIOP, France), and the dissolved fraction of the biofilm recovered from a nanofiltration-fouled module at the Méry-sur-Oise drinking water treatment plant (NF BIOP, France). The biopolymers (NF BIOP and CL BIOP) clearly hindered PS NPs aggregation through steric effects, forming a protective eco-corona, enhancing PS NPs stability, and inhibiting sedimentation in the long term, compared to HPOA. The temperature impacted the homo and hetero-aggregation of PS NPs differently, illustrating the complex interplay between thermal effects and NOMs stabilizing interactions. Furthermore, the seldom-explored aspect of the sequential introduction of reactants into the solution during aggregation experiments (i.e., which simulates a realistic scenario: the transport of PS NPs from one aquatic system to another of different compositions) was also investigated. This study provides essential insights into the dynamic behavior of PS NPs in environmental matrices and crucial knowledge for predicting nanoplastic interactions in complex ecosystems.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"177131"},"PeriodicalIF":8.2,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Globally, boreal forests act as important carbon sinks, however, drought and forest management could substantially alter the sink strength, though the controlling mechanisms of drought and management remain unclear. In this study, we combined the detailed process-based CoupModel with multiple measurements to study the impacts of recent drought and forest thinning on a boreal forest during 2018-2021. CoupModel after calibration showed high ability to represent the dynamics of long-term net ecosystem exchange and its responses to environmental changes. The model simulation showed that the canopy temperature exacerbated the dominant role in regulating the boreal forest growth during the 2018 extreme drought year with slight increase in the annual mean net carbon uptake by 76.65 g C/m2/yr compared to 2017. The posterior model simulations ensemble suggested that thinning of trees in 2019-2020 caused the boreal forest in 2020 to be a sink to slight source ([-229.95, 94.90] g C/m2/yr, 90 % confidence interval), while the observations depicted a small source (69.35 g C/m2/yr). Moreover, rapid recovery of the boreal forest to a carbon sink was found in 2021, though remaining smaller than the carbon sink in 2017. Overall, the negative impacts from drought and harvest (2018-2021) were found to have offset the positive impacts from climate by 8 % - 92 %, on the net carbon uptake. This study highlights the resilience of boreal forests as carbon sink and provides new insights into the boreal forests' responses to both climate change and management.
在全球范围内,北方森林是重要的碳汇,然而,干旱和森林管理可能会大大改变碳汇强度,但干旱和管理的控制机制仍不清楚。在本研究中,我们将基于详细过程的 CoupModel 与多种测量数据相结合,研究了 2018-2021 年间近期干旱和森林疏伐对北方森林的影响。校准后的CoupModel表现出了较高的能力,能够代表长期净生态系统交换的动态及其对环境变化的响应。模型模拟结果表明,在2018极端干旱年,冠层温度加剧了对北方森林生长的主导调节作用,年均净碳吸收量比2017年略有增加,增加了76.65克碳/平方米/年。后验模型模拟合集表明,2019-2020年的疏伐导致2020年北方森林由汇变为微源([-229.95,94.90] g C/m2/yr,90%置信区间),而观测结果表明北方森林是一个小源(69.35 g C/m2/yr)。此外,2021 年北方森林迅速恢复为碳汇,但仍小于 2017 年的碳汇。总体而言,干旱和采伐(2018-2021 年)对净碳吸收的负面影响抵消了气候的正面影响,抵消率为 8% - 92%。这项研究强调了北方森林作为碳汇的复原力,并为北方森林应对气候变化和管理提供了新的见解。
{"title":"Modeling the recent drought and thinning impacts on energy, water and carbon fluxes in a boreal forest.","authors":"Mousong Wu, Shengnan Zhu, Hongxing He, Xinyao Zhang, Chunyu Wang, Sien Li, Wenxin Zhang, Per-Erik Jansson","doi":"10.1016/j.scitotenv.2024.177187","DOIUrl":"10.1016/j.scitotenv.2024.177187","url":null,"abstract":"<p><p>Globally, boreal forests act as important carbon sinks, however, drought and forest management could substantially alter the sink strength, though the controlling mechanisms of drought and management remain unclear. In this study, we combined the detailed process-based CoupModel with multiple measurements to study the impacts of recent drought and forest thinning on a boreal forest during 2018-2021. CoupModel after calibration showed high ability to represent the dynamics of long-term net ecosystem exchange and its responses to environmental changes. The model simulation showed that the canopy temperature exacerbated the dominant role in regulating the boreal forest growth during the 2018 extreme drought year with slight increase in the annual mean net carbon uptake by 76.65 g C/m<sup>2</sup>/yr compared to 2017. The posterior model simulations ensemble suggested that thinning of trees in 2019-2020 caused the boreal forest in 2020 to be a sink to slight source ([-229.95, 94.90] g C/m<sup>2</sup>/yr, 90 % confidence interval), while the observations depicted a small source (69.35 g C/m<sup>2</sup>/yr). Moreover, rapid recovery of the boreal forest to a carbon sink was found in 2021, though remaining smaller than the carbon sink in 2017. Overall, the negative impacts from drought and harvest (2018-2021) were found to have offset the positive impacts from climate by 8 % - 92 %, on the net carbon uptake. This study highlights the resilience of boreal forests as carbon sink and provides new insights into the boreal forests' responses to both climate change and management.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"177187"},"PeriodicalIF":8.2,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-10Epub Date: 2024-11-03DOI: 10.1016/j.scitotenv.2024.177252
Shuaitao Wang, Nicolas Flipo, Josette Garnier, Thomas Romary
In aquatic ecosystems, dissolved organic carbon (DOC) plays a significant role in the global carbon cycle. Microorganisms mineralize biodegradable DOC, releasing greenhouse gases (carbon dioxide, methane) into the atmosphere. Extensive research has focused on the concentrations and biodegradability of DOC in aquatic systems worldwide. However, little attention has been given to uncertainties regarding the physiological characteristics of heterotrophic bacteria, which are crucial for biogeochemical modeling. In this study, the physiological properties of heterotrophic bacteria and the properties of DOC biodegradability in water are inferred through a Bayesian inversion approach. To achieve this, treated and natural water samples collected from the Seine River basin, were inoculated and incubated in laboratory. During incubation, the concentrations of DOC and heterotrophic bacteria biomass were measured. Then, a multiple Monte Carlo Markov Chains method and the HSB model (High-weight polymers, Substrate, heterotrophic Bacteria) are applied on the water incubation data. The results indicate a higher biodegradable fraction of DOC in natural water compared to treated water and significant variability in the fraction of fast biodegradable DOC within 5 days in both water samples. The significant variability highlights the uncertainties/challenges in the HSB model parameterization. The seven water samples used in the paper serve as a proof of concept. They are from various origins and display the potential of the method to identify parameter values in a large range of values. Because mortality rate of heterotrophic bacteria at 20 ∘C (kd20) showed a remarkable stability at 0.013 h-1, we considered that this parameter can be fixed at this value. The maximum growth rates at 20 ∘C (μmax20) was 0.061 h-1 while optimal growth yield (Y) estimated at 0.34 for treated water and at 0.25 for natural water. All these parameter values are well in accordance with previous determinations.
{"title":"Bayesian inversion of bacterial physiology and dissolved organic carbon biodegradability on water incubation data.","authors":"Shuaitao Wang, Nicolas Flipo, Josette Garnier, Thomas Romary","doi":"10.1016/j.scitotenv.2024.177252","DOIUrl":"10.1016/j.scitotenv.2024.177252","url":null,"abstract":"<p><p>In aquatic ecosystems, dissolved organic carbon (DOC) plays a significant role in the global carbon cycle. Microorganisms mineralize biodegradable DOC, releasing greenhouse gases (carbon dioxide, methane) into the atmosphere. Extensive research has focused on the concentrations and biodegradability of DOC in aquatic systems worldwide. However, little attention has been given to uncertainties regarding the physiological characteristics of heterotrophic bacteria, which are crucial for biogeochemical modeling. In this study, the physiological properties of heterotrophic bacteria and the properties of DOC biodegradability in water are inferred through a Bayesian inversion approach. To achieve this, treated and natural water samples collected from the Seine River basin, were inoculated and incubated in laboratory. During incubation, the concentrations of DOC and heterotrophic bacteria biomass were measured. Then, a multiple Monte Carlo Markov Chains method and the HSB model (High-weight polymers, Substrate, heterotrophic Bacteria) are applied on the water incubation data. The results indicate a higher biodegradable fraction of DOC in natural water compared to treated water and significant variability in the fraction of fast biodegradable DOC within 5 days in both water samples. The significant variability highlights the uncertainties/challenges in the HSB model parameterization. The seven water samples used in the paper serve as a proof of concept. They are from various origins and display the potential of the method to identify parameter values in a large range of values. Because mortality rate of heterotrophic bacteria at 20 <sup>∘</sup>C (k<sub>d20</sub>) showed a remarkable stability at 0.013 h<sup>-1</sup>, we considered that this parameter can be fixed at this value. The maximum growth rates at 20 <sup>∘</sup>C (μ<sub>max20</sub>) was 0.061 h<sup>-1</sup> while optimal growth yield (Y) estimated at 0.34 for treated water and at 0.25 for natural water. All these parameter values are well in accordance with previous determinations.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"177252"},"PeriodicalIF":8.2,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-10Epub Date: 2024-10-19DOI: 10.1016/j.scitotenv.2024.177005
Weilong Wu, Xuan Wu, Han Zhang, Ronghua Li, Zhiqiang Guo, You Li, Kuok Ho Daniel Tang, Zhibo Zhang, Hui Huang, Xiaoyong Lv
Mercury (Hg) and lead (Pb) pose significant risks to human health due to their high toxicity and bioaccumulative properties. This study aimed to develop a novel biochar composite (HMB-S), polyfunctionalized with manganese dioxide (α-MnO2) and sulfur functional groups, for the effective immobilization of Hg(II) and Pb(II) from contaminated environments. HMB-S demonstrated superior adsorption capacities of 190.1 mg/g for Hg(II) and 259.9 mg/g for Pb(II), which significantly surpasses the capacities of unmodified biochar (HB) and biochar functionalized solely with Mn (HMB). Mechanistic studies revealed that the immobilization of these metals by HMB-S involved ion exchange, mineral precipitation, surface complexation, and electrostatic interactions. In soil incubation experiments, HMB-S significantly decreased the levels of extractable Hg(II) and Pb(II) compared to the control, reducing the mobility of these metals and converting 17 % of Hg(II) and 26 % of Pb(II) into less bioavailable residual forms. Pot experiments confirmed that all tested biochar materials (HB, HMB, and HMB-S) promoted spinach growth in contaminated soils, with HMB-S being the most effective at lowering Hg(II) and Pb(II) uptake by plants. Additionally, analysis of soil microbial communities indicated that HMB-S altered community composition and increased the relative abundance of metal-resistant bacteria. These findings highlight the potential of polyfunctionalized biochar HMB-S as an effective remediation strategy for Hg and Pb contamination in soil and aqueous environments.
{"title":"Development of polyfunctionalized biochar modified with manganese oxide and sulfur for immobilizing Hg(II) and Pb(II) in water and soil and improving soil health.","authors":"Weilong Wu, Xuan Wu, Han Zhang, Ronghua Li, Zhiqiang Guo, You Li, Kuok Ho Daniel Tang, Zhibo Zhang, Hui Huang, Xiaoyong Lv","doi":"10.1016/j.scitotenv.2024.177005","DOIUrl":"10.1016/j.scitotenv.2024.177005","url":null,"abstract":"<p><p>Mercury (Hg) and lead (Pb) pose significant risks to human health due to their high toxicity and bioaccumulative properties. This study aimed to develop a novel biochar composite (HMB-S), polyfunctionalized with manganese dioxide (α-MnO<sub>2</sub>) and sulfur functional groups, for the effective immobilization of Hg(II) and Pb(II) from contaminated environments. HMB-S demonstrated superior adsorption capacities of 190.1 mg/g for Hg(II) and 259.9 mg/g for Pb(II), which significantly surpasses the capacities of unmodified biochar (HB) and biochar functionalized solely with Mn (HMB). Mechanistic studies revealed that the immobilization of these metals by HMB-S involved ion exchange, mineral precipitation, surface complexation, and electrostatic interactions. In soil incubation experiments, HMB-S significantly decreased the levels of extractable Hg(II) and Pb(II) compared to the control, reducing the mobility of these metals and converting 17 % of Hg(II) and 26 % of Pb(II) into less bioavailable residual forms. Pot experiments confirmed that all tested biochar materials (HB, HMB, and HMB-S) promoted spinach growth in contaminated soils, with HMB-S being the most effective at lowering Hg(II) and Pb(II) uptake by plants. Additionally, analysis of soil microbial communities indicated that HMB-S altered community composition and increased the relative abundance of metal-resistant bacteria. These findings highlight the potential of polyfunctionalized biochar HMB-S as an effective remediation strategy for Hg and Pb contamination in soil and aqueous environments.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"177005"},"PeriodicalIF":8.2,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-10Epub Date: 2024-10-18DOI: 10.1016/j.scitotenv.2024.176951
Daniela Varrica, Federica Lo Medico, Marino Vetuschi Zuccolini, Marianna Miola, Maria Grazia Alaimo
This study proposed an approach to determine the geochemical baseline values in topsoils. The chosen study area is Sicily (Italy), a region characterized by significant lithological heterogeneity. Eighty-three topsoil samples were collected at several sites away from potential anthropogenic pollution sources. The concentrations of potentially toxic elements (As, Cd, Cr, Cu, Mo, Pb, Sb, V, and Zn) were quantified via inductively coupled plasma (ICP-MS). The elements showed median concentrations in the range 68.8-0.23 μg g-1 and the trend of abundance was: Zn > V > Cr > Cu > Pb > As>Mo > Sb > Cd. Regional geochemical baseline values for trace elements were determined using statistical methods (Me±2MAD; P95 and UTL95-95). The use of UTL95-95 was found to be the most suitable, obtaining appropriate geochemical baseline values for the entire region, regardless of lithology. The spatial distribution of the elements was determined by stochastic simulations on a convex-concave boundary with a resolution of 5 km, obtaining detailed geochemical maps that predict the distribution of concentrations of each element even in unsampled areas. The results of this study provide a methodology for a more correct assessment of the environmental contamination status of soils.
{"title":"Geochemical baseline values determination and spatial distribution of trace elements in topsoils: An application in Sicily region (Italy).","authors":"Daniela Varrica, Federica Lo Medico, Marino Vetuschi Zuccolini, Marianna Miola, Maria Grazia Alaimo","doi":"10.1016/j.scitotenv.2024.176951","DOIUrl":"10.1016/j.scitotenv.2024.176951","url":null,"abstract":"<p><p>This study proposed an approach to determine the geochemical baseline values in topsoils. The chosen study area is Sicily (Italy), a region characterized by significant lithological heterogeneity. Eighty-three topsoil samples were collected at several sites away from potential anthropogenic pollution sources. The concentrations of potentially toxic elements (As, Cd, Cr, Cu, Mo, Pb, Sb, V, and Zn) were quantified via inductively coupled plasma (ICP-MS). The elements showed median concentrations in the range 68.8-0.23 μg g<sup>-1</sup> and the trend of abundance was: Zn > V > Cr > Cu > Pb > As>Mo > Sb > Cd. Regional geochemical baseline values for trace elements were determined using statistical methods (Me±2MAD; P95 and UTL95-95). The use of UTL95-95 was found to be the most suitable, obtaining appropriate geochemical baseline values for the entire region, regardless of lithology. The spatial distribution of the elements was determined by stochastic simulations on a convex-concave boundary with a resolution of 5 km, obtaining detailed geochemical maps that predict the distribution of concentrations of each element even in unsampled areas. The results of this study provide a methodology for a more correct assessment of the environmental contamination status of soils.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"176951"},"PeriodicalIF":8.2,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-10Epub Date: 2024-10-15DOI: 10.1016/j.scitotenv.2024.176938
W Utembe, A W Kamng'ona
As revealed by culture-independent methodologies, disruption of the normal lung microbiota (LM) configuration (LM dysbiosis) is a potential mediator of adverse effects from inhaled chemicals. LM, which consists of microbiota in the upper and lower respiratory tract, is influenced by various factors, including inter alia environmental exposures. LM dysbiosis has been associated with multiple respiratory pathologies such as asthma, lung cancer, idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF). Chemically-induced LM dysbiosis appears to play significant roles in human respiratory diseases, as has been shown for some air pollutants, cigarette smoke and some inhalable chemical antibiotics. Lung microbiota are also linked with the central nervous system (CNS) in the so-called lung-brain axis. Inhaled chemicals that undergo mucociliary clearance may be linked to respiratory conditions through gut microbiota (GM) dysbiosis in the so-called Gut-Lung axis. However, current linkages of various disease states to LM appears to be associative, with causal linkages requiring further studies using more robust approaches, methods and techniques that are different from those applied in studies involving (GM). Most importantly, the sampling techniques determine the level of risk of cross contamination. Furthermore, the development of continuous or semi-continuous systems designed to replicate the lung microbiome will go a long way to further LM dysbiosis studies. These challenges notwithstanding, the preponderance of evidence points to the significant role of LM-mediated chemical toxicity in human disease and conditions.
{"title":"Inhalation exposure to chemicals, microbiota dysbiosis and adverse effects on humans.","authors":"W Utembe, A W Kamng'ona","doi":"10.1016/j.scitotenv.2024.176938","DOIUrl":"10.1016/j.scitotenv.2024.176938","url":null,"abstract":"<p><p>As revealed by culture-independent methodologies, disruption of the normal lung microbiota (LM) configuration (LM dysbiosis) is a potential mediator of adverse effects from inhaled chemicals. LM, which consists of microbiota in the upper and lower respiratory tract, is influenced by various factors, including inter alia environmental exposures. LM dysbiosis has been associated with multiple respiratory pathologies such as asthma, lung cancer, idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF). Chemically-induced LM dysbiosis appears to play significant roles in human respiratory diseases, as has been shown for some air pollutants, cigarette smoke and some inhalable chemical antibiotics. Lung microbiota are also linked with the central nervous system (CNS) in the so-called lung-brain axis. Inhaled chemicals that undergo mucociliary clearance may be linked to respiratory conditions through gut microbiota (GM) dysbiosis in the so-called Gut-Lung axis. However, current linkages of various disease states to LM appears to be associative, with causal linkages requiring further studies using more robust approaches, methods and techniques that are different from those applied in studies involving (GM). Most importantly, the sampling techniques determine the level of risk of cross contamination. Furthermore, the development of continuous or semi-continuous systems designed to replicate the lung microbiome will go a long way to further LM dysbiosis studies. These challenges notwithstanding, the preponderance of evidence points to the significant role of LM-mediated chemical toxicity in human disease and conditions.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"955 ","pages":"176938"},"PeriodicalIF":8.2,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-10Epub Date: 2024-10-15DOI: 10.1016/j.scitotenv.2024.176888
Shiqi Li, Chao Guo, Chuansong Liao, Jie Ke, Adam G Hansen, Xuefeng Shi, Tanglin Zhang, Erik Jeppesen, Wei Li, Jiashou Liu
Artificial emergency water source lakes have been built in most cities in the middle and lower reaches of the Yangtze River, China, to ensure water safety for residents. However, these new ecosystems are prone to algal blooms or other degraded water quality conditions. A newly built water supply lake in the lower reaches of the Yangtze River was selected as a model system to test whether the coordinated manipulation of fish and submerged macrophyte communities could enhance ecosystem function and quality. The coordinated manipulations spanned a five-year period, aiming to enhance both top-down and bottom-up control of phytoplankton. As a result of these manipulations, the catch per unit effort of small-bodied zooplanktivorous fishes decreased by >95 % from year two and remained low. The coverage and biomass of submerged macrophytes increased year by year. Water transparency increased from 1.07 to 3.33 m. Total phosphorus and total nitrogen showed a decreasing trend (not significant though). The annual mean biomass of Cyanophyta, Chlorophyta and Bacillariophyta decreased from 2.99 to 0.03 mg/L, 3.90 to 0.16 mg/L, and 3.50 to 0.3 mg/L, respectively. The biomass of phytoplankton in different groups decreased in all four seasons. The annual mean biomass of Cladocera and Copepoda remained low. The biomass of Cladocera and Copepoda decreased in summer, fall, and winter. The Ecosystem Health Index - increased from 15.9 to 32.0. The pros and cons of the various top-down and bottom-up control measures employed are discussed. This research presents a valuable case study on the enhancement of ecosystem structure and function in newly constructed emergency water supply lakes and offers insights into the restoration of other subtropical shallow lakes.
{"title":"Improvement of water quality through coordinated multi-trophic level biomanipulations: Application to a subtropical emergency water supply lake.","authors":"Shiqi Li, Chao Guo, Chuansong Liao, Jie Ke, Adam G Hansen, Xuefeng Shi, Tanglin Zhang, Erik Jeppesen, Wei Li, Jiashou Liu","doi":"10.1016/j.scitotenv.2024.176888","DOIUrl":"10.1016/j.scitotenv.2024.176888","url":null,"abstract":"<p><p>Artificial emergency water source lakes have been built in most cities in the middle and lower reaches of the Yangtze River, China, to ensure water safety for residents. However, these new ecosystems are prone to algal blooms or other degraded water quality conditions. A newly built water supply lake in the lower reaches of the Yangtze River was selected as a model system to test whether the coordinated manipulation of fish and submerged macrophyte communities could enhance ecosystem function and quality. The coordinated manipulations spanned a five-year period, aiming to enhance both top-down and bottom-up control of phytoplankton. As a result of these manipulations, the catch per unit effort of small-bodied zooplanktivorous fishes decreased by >95 % from year two and remained low. The coverage and biomass of submerged macrophytes increased year by year. Water transparency increased from 1.07 to 3.33 m. Total phosphorus and total nitrogen showed a decreasing trend (not significant though). The annual mean biomass of Cyanophyta, Chlorophyta and Bacillariophyta decreased from 2.99 to 0.03 mg/L, 3.90 to 0.16 mg/L, and 3.50 to 0.3 mg/L, respectively. The biomass of phytoplankton in different groups decreased in all four seasons. The annual mean biomass of Cladocera and Copepoda remained low. The biomass of Cladocera and Copepoda decreased in summer, fall, and winter. The Ecosystem Health Index - increased from 15.9 to 32.0. The pros and cons of the various top-down and bottom-up control measures employed are discussed. This research presents a valuable case study on the enhancement of ecosystem structure and function in newly constructed emergency water supply lakes and offers insights into the restoration of other subtropical shallow lakes.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"176888"},"PeriodicalIF":8.2,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-10Epub Date: 2024-10-15DOI: 10.1016/j.scitotenv.2024.176856
Yutai Dai, Yu Lin, Ping Deng, Jiping Chen, Weijie Li, Qiang Gao, Hong Shen, Qiutong Peng, Mo Chen, Xuwei Deng
When improving the water quality of natural bodies such as lakes, the explosive growth of filamentous green alga Cladophora can limit the growth of submerged macrophytes and prevent the water from shifting to a clear state. During the decay of Cladophora, it can cause various water quality issues such as reduced dissolved oxygen, increased nutrient levels and water odor. Biomanipulation, involving the introduction of a suitable density of aquatic animals into the water, can reduce the biomass of filamentous algae. We hypothesized that stocking appropriate densities of aquatic animals could reduce filamentous algal biomass and at the same time reduce the concentration of odorants in the water. Our study investigated the impact of stocking swamp shrimp (Macrobrachium nipponense), rosy bitterling (Rhodeus ocellatus), and silver carp (Hypophthalmichthys molitrix) at low (30 g/m3), medium (60 g/m3) and high (120 g/m3) densities on water quality, biomass of primary producers (such as Cladophora, submerged macrophyte and algae) and malodorous volatile organic sulfur compound dimethyl sulfide (DMS) in the water, respectively. It was found that the swamp shrimp treatment groups and the rosy bitterling high-density groups effectively inhibited the growth of filamentous green algae cover, in which the rosy bitterling high-density group reduced the filamentous green algae mat coverage by 29.65 % compared with the control group. Additionally, the high-density swamp shrimp and rosy bitterling groups notably promoted the growth of submerged macrophytes (Vallisneria denseserrulata), and significantly reduced the concentration of the malodorous DMS in the water. Overall, stocking swamp shrimp and rosy bitterling can benefit the restoration of aquatic ecology and the maintenance of clear water. However, it is essential to consider potential changes in water quality resulting from excessive stocking density. Therefore, the appropriate density and proportion of stocking should be determined in conjunction with the specific scale of the aquatic ecological restoration project.
{"title":"Regulation of freshwater filamentous green algae (Cladophora) and its impact on malodorous volatile organic sulfur compound (DMS) by biomanipulation.","authors":"Yutai Dai, Yu Lin, Ping Deng, Jiping Chen, Weijie Li, Qiang Gao, Hong Shen, Qiutong Peng, Mo Chen, Xuwei Deng","doi":"10.1016/j.scitotenv.2024.176856","DOIUrl":"10.1016/j.scitotenv.2024.176856","url":null,"abstract":"<p><p>When improving the water quality of natural bodies such as lakes, the explosive growth of filamentous green alga Cladophora can limit the growth of submerged macrophytes and prevent the water from shifting to a clear state. During the decay of Cladophora, it can cause various water quality issues such as reduced dissolved oxygen, increased nutrient levels and water odor. Biomanipulation, involving the introduction of a suitable density of aquatic animals into the water, can reduce the biomass of filamentous algae. We hypothesized that stocking appropriate densities of aquatic animals could reduce filamentous algal biomass and at the same time reduce the concentration of odorants in the water. Our study investigated the impact of stocking swamp shrimp (Macrobrachium nipponense), rosy bitterling (Rhodeus ocellatus), and silver carp (Hypophthalmichthys molitrix) at low (30 g/m<sup>3</sup>), medium (60 g/m<sup>3</sup>) and high (120 g/m<sup>3</sup>) densities on water quality, biomass of primary producers (such as Cladophora, submerged macrophyte and algae) and malodorous volatile organic sulfur compound dimethyl sulfide (DMS) in the water, respectively. It was found that the swamp shrimp treatment groups and the rosy bitterling high-density groups effectively inhibited the growth of filamentous green algae cover, in which the rosy bitterling high-density group reduced the filamentous green algae mat coverage by 29.65 % compared with the control group. Additionally, the high-density swamp shrimp and rosy bitterling groups notably promoted the growth of submerged macrophytes (Vallisneria denseserrulata), and significantly reduced the concentration of the malodorous DMS in the water. Overall, stocking swamp shrimp and rosy bitterling can benefit the restoration of aquatic ecology and the maintenance of clear water. However, it is essential to consider potential changes in water quality resulting from excessive stocking density. Therefore, the appropriate density and proportion of stocking should be determined in conjunction with the specific scale of the aquatic ecological restoration project.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"955 ","pages":"176856"},"PeriodicalIF":8.2,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-10Epub Date: 2024-10-12DOI: 10.1016/j.scitotenv.2024.176891
Na Wang, Le Li, Mengmeng Gou, Jianwen Hu, Huiling Chen, Wenfa Xiao, Changfu Liu
Microorganisms, the major decomposers of plant residues, are crucial for soil nutrient cycling. Living grass mulching effectively alters microbial community structure and promotes nutrient cycling. However, its consistency with mulching ages and growth periods remains unclear. Therefore, this study aims to clarify the dynamic characteristics of microbial communities and enzyme activities across different mulching ages. In this study, high-throughput sequencing technology was used to investigate bacterial and fungal community evolution in three mulching treatments with Vicia villosa for 8 years (VV_8), 4 years (VV_4), and clean tillage in a citrus orchard. This study covered three growth periods (citrus-grass: spring sprouting to budding period [SSBP], fruit swelling to withering period [FSWP], and fruit maturity to seeding period [FMSP]). The results showed that VV_4 and VV_8 treatments increased bacterial and fungal alpha diversity as well as the activities of nitrogen (N), carbon (C), and phosphorus cycling enzymes. C-cycling enzyme activity was the primary key factor driving changes in microbial diversity across growth periods. Under leguminous green mulching, bacteria alpha diversity increased the most during FSWP, while fungi increased the most during FMSP. Additionally, the relative abundance of Ascomycota and Basidiomycota significantly increased during the FSWP and FMSP, reaching 63.65-73.80 % and 79.73-84.51 %, respectively. With increasing mulching ages, the structural stability and synergistic effects of microorganisms were correspondingly enhanced. Furthermore, available nutrients determined microbial community evolution, with N availability being a key factor influencing microbial diversity, especially fungal diversity. In conclusion, as mulching ages increase, improved nutrient availability gradually enhances microbial diversity, synergistic interactions, and nutrient cycling functions, with copiotrophic taxa occupying a key position in the microbial network. FSWP is a critical turning point for enhancing microbial activity and C-cycling function. This study offers theoretical support for developing microbial regulation strategies to improve soil quality in orchard management practices.
{"title":"Leguminous green mulching alters the microbial community structure and increases microbial diversity by improving nitrogen availability in subtropical orchard systems in China.","authors":"Na Wang, Le Li, Mengmeng Gou, Jianwen Hu, Huiling Chen, Wenfa Xiao, Changfu Liu","doi":"10.1016/j.scitotenv.2024.176891","DOIUrl":"10.1016/j.scitotenv.2024.176891","url":null,"abstract":"<p><p>Microorganisms, the major decomposers of plant residues, are crucial for soil nutrient cycling. Living grass mulching effectively alters microbial community structure and promotes nutrient cycling. However, its consistency with mulching ages and growth periods remains unclear. Therefore, this study aims to clarify the dynamic characteristics of microbial communities and enzyme activities across different mulching ages. In this study, high-throughput sequencing technology was used to investigate bacterial and fungal community evolution in three mulching treatments with Vicia villosa for 8 years (VV_8), 4 years (VV_4), and clean tillage in a citrus orchard. This study covered three growth periods (citrus-grass: spring sprouting to budding period [SSBP], fruit swelling to withering period [FSWP], and fruit maturity to seeding period [FMSP]). The results showed that VV_4 and VV_8 treatments increased bacterial and fungal alpha diversity as well as the activities of nitrogen (N), carbon (C), and phosphorus cycling enzymes. C-cycling enzyme activity was the primary key factor driving changes in microbial diversity across growth periods. Under leguminous green mulching, bacteria alpha diversity increased the most during FSWP, while fungi increased the most during FMSP. Additionally, the relative abundance of Ascomycota and Basidiomycota significantly increased during the FSWP and FMSP, reaching 63.65-73.80 % and 79.73-84.51 %, respectively. With increasing mulching ages, the structural stability and synergistic effects of microorganisms were correspondingly enhanced. Furthermore, available nutrients determined microbial community evolution, with N availability being a key factor influencing microbial diversity, especially fungal diversity. In conclusion, as mulching ages increase, improved nutrient availability gradually enhances microbial diversity, synergistic interactions, and nutrient cycling functions, with copiotrophic taxa occupying a key position in the microbial network. FSWP is a critical turning point for enhancing microbial activity and C-cycling function. This study offers theoretical support for developing microbial regulation strategies to improve soil quality in orchard management practices.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"955 ","pages":"176891"},"PeriodicalIF":8.2,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}