The use of swine waste as an organic fertilizer is an important practice in sustainable agriculture. This study aims to evaluate the effects of two common swine waste treatment systems, Covered Lagoon Biodigesters (CLB) and Waste Stabilization Ponds (WSP), on fungal community structure in soil. Soil and waste samples were collected from swine farms across five Brazilian states, representing different geographical regions with distinct climate, soil types, and vegetation. A metagenomic approach was employed to analyze the fungal communities present in the samples. Our results revealed that fertilization with swine waste did not significantly affect the overall diversity of fungal communities, although distinct shifts in community composition were observed between fertilized and non-fertilized soils. Notably, reads assigned to Sugiyamaella lignohabitans were detected only in samples from waste stabilization ponds, suggesting that this environment may favor fungal taxa associated with lignocellulose degradation. Furthermore, the fungal genera Fusarium and Rhizophagus exhibited contrasting responses to fertilization, with Fusarium being more abundant in fertilized soils and Rhizophagus decreasing in abundance. Geographic variation in fungal community composition was also observed, correlating with the physicochemical properties of the soil. These findings indicate that, in our dataset, the waste treatment systems had little influence on the fungal diversity of waste samples, whereas soil fertilization with swine waste was associated with marked shifts in fungal community composition, particularly in terms of taxonomic structure.
扫码关注我们
求助内容:
应助结果提醒方式:
