2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)最新文献
Pub Date : 2016-04-18DOI: 10.1109/EUROSIME.2016.7463351
Michel Lenczner, B. Yang, Scott Cogan, S. Domas, D. Ke, Raphaël Couturier, D. Renault, Bernd Koehler, Pawel Janus
In view of qualitative temperature measurement by scanning thermal microscopy, we introduce a model-based control law for a new microfabricated probe. The underlying model is the time-space two-scale electro-thermal model presented in [15], since it has the power to represent transcients of harmonic modulations. The control method accounts for an estimation of the heat source in the sample and for the delay in the lock-in filter based observation. Experiment-based model calibration is a prerequisite and is discussed in detail.
{"title":"Temperature control of an SThM micro-probe with an heat source estimator and a lock-in measurement","authors":"Michel Lenczner, B. Yang, Scott Cogan, S. Domas, D. Ke, Raphaël Couturier, D. Renault, Bernd Koehler, Pawel Janus","doi":"10.1109/EUROSIME.2016.7463351","DOIUrl":"https://doi.org/10.1109/EUROSIME.2016.7463351","url":null,"abstract":"In view of qualitative temperature measurement by scanning thermal microscopy, we introduce a model-based control law for a new microfabricated probe. The underlying model is the time-space two-scale electro-thermal model presented in [15], since it has the power to represent transcients of harmonic modulations. The control method accounts for an estimation of the heat source in the sample and for the delay in the lock-in filter based observation. Experiment-based model calibration is a prerequisite and is discussed in detail.","PeriodicalId":438097,"journal":{"name":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134633396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-04-18DOI: 10.1109/EUROSIME.2016.7463348
A. Wright, F. Krach, N. Thielen, S. Grunler, T. Erlbacher, P. Pichler
To simulate the bow of wafers with integrated capacitors in the form of pit arrays, various approaches were pursued. After unfruitful attempts to reliably obtain the wafer bow directly from simulating part of the wafer, a multi-scale approach was used. In this approach, the layer with the integrated capacitors was replaced by a homogeneous material having the same properties. Small-scale simulations of representative parts of the layer were performed to determine its effective stiffness tensor. Inclusion of the intrinsic strains of the grown and deposited dielectric and conductive layers enabled the volume change to be calculated of the layer with the integrated capacitors upon fabrication. Finally, the structure obtained was used in a full-wafer-scale model to simulate the bow of the wafers. Even for uncalibrated values for the coefficients of thermal expansion, most simulations agreed well with measurements.
{"title":"Simulating wafer bow for integrated capacitors using a multiscale approach","authors":"A. Wright, F. Krach, N. Thielen, S. Grunler, T. Erlbacher, P. Pichler","doi":"10.1109/EUROSIME.2016.7463348","DOIUrl":"https://doi.org/10.1109/EUROSIME.2016.7463348","url":null,"abstract":"To simulate the bow of wafers with integrated capacitors in the form of pit arrays, various approaches were pursued. After unfruitful attempts to reliably obtain the wafer bow directly from simulating part of the wafer, a multi-scale approach was used. In this approach, the layer with the integrated capacitors was replaced by a homogeneous material having the same properties. Small-scale simulations of representative parts of the layer were performed to determine its effective stiffness tensor. Inclusion of the intrinsic strains of the grown and deposited dielectric and conductive layers enabled the volume change to be calculated of the layer with the integrated capacitors upon fabrication. Finally, the structure obtained was used in a full-wafer-scale model to simulate the bow of the wafers. Even for uncalibrated values for the coefficients of thermal expansion, most simulations agreed well with measurements.","PeriodicalId":438097,"journal":{"name":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133058935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-04-18DOI: 10.1109/EUROSIME.2016.7463386
M. van Soestbergen, J. L. M. Llacer Martinez, J. Zaal, A. Mavinkurve
We present a robust method for measuring the cure shrinkage of dispensable organic films in-situ. Samples consist of dispensed organic material (e.g. die attach or underfill) sandwiched between a glass substrate and a silicon die. A Thermal Mechanical Analyzer (TMA) was used to accurately measure the displacement of the die during cure, and to control the temperature. An analytical model has been derived to disentangle the thermal shrinkage, and chemical cure shrinkage, which is verified by surface profile measurements (projection Moiré). We show that the measured displacement can be directly related to the cure shrinkage. To verify this methodology we have characterized a commercially available die attach material. The characterization yields a simultaneous measurement of the magnitude of cure shrinkage and the cure kinetics.
{"title":"In-situ cure shrinkage measurement of die attach and underfill materials","authors":"M. van Soestbergen, J. L. M. Llacer Martinez, J. Zaal, A. Mavinkurve","doi":"10.1109/EUROSIME.2016.7463386","DOIUrl":"https://doi.org/10.1109/EUROSIME.2016.7463386","url":null,"abstract":"We present a robust method for measuring the cure shrinkage of dispensable organic films in-situ. Samples consist of dispensed organic material (e.g. die attach or underfill) sandwiched between a glass substrate and a silicon die. A Thermal Mechanical Analyzer (TMA) was used to accurately measure the displacement of the die during cure, and to control the temperature. An analytical model has been derived to disentangle the thermal shrinkage, and chemical cure shrinkage, which is verified by surface profile measurements (projection Moiré). We show that the measured displacement can be directly related to the cure shrinkage. To verify this methodology we have characterized a commercially available die attach material. The characterization yields a simultaneous measurement of the magnitude of cure shrinkage and the cure kinetics.","PeriodicalId":438097,"journal":{"name":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134173465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-04-18DOI: 10.1109/EUROSIME.2016.7463369
Daohui Li, M. Packwood, Fang Qi, Wei Zhou, Yangang Wang, Steve Jones, X. Dai
High power Insulated Gate Bipolar Transistor (IGBT) modules have been utilised in power electronics industrial applications, such as electrical vehicle, traction, renewable energy, et al. The power module with higher power density, higher voltage and current rating, higher switching frequency, higher operation temperature and much lower/higher storage temperature with lower cost is the development tendency driven by the highly competeting market. The standard 3.3kV/1500A single switch IGBT module with 190mm×140mm footprint has been re-designed using latest multiphysics simulation packages together with novel assembly processes and materials to consider electro-magnetic(EM) design, such as partial discharge, low parasitic inductance of module; to design and optimise thermal, mechanical performance of the module.
{"title":"Multi-physics simulation in high power IGBT module design","authors":"Daohui Li, M. Packwood, Fang Qi, Wei Zhou, Yangang Wang, Steve Jones, X. Dai","doi":"10.1109/EUROSIME.2016.7463369","DOIUrl":"https://doi.org/10.1109/EUROSIME.2016.7463369","url":null,"abstract":"High power Insulated Gate Bipolar Transistor (IGBT) modules have been utilised in power electronics industrial applications, such as electrical vehicle, traction, renewable energy, et al. The power module with higher power density, higher voltage and current rating, higher switching frequency, higher operation temperature and much lower/higher storage temperature with lower cost is the development tendency driven by the highly competeting market. The standard 3.3kV/1500A single switch IGBT module with 190mm×140mm footprint has been re-designed using latest multiphysics simulation packages together with novel assembly processes and materials to consider electro-magnetic(EM) design, such as partial discharge, low parasitic inductance of module; to design and optimise thermal, mechanical performance of the module.","PeriodicalId":438097,"journal":{"name":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129242065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-04-18DOI: 10.1109/EUROSIME.2016.7463364
M. Santhanakrishnan, T. Tilford, C. Bailey
In this paper, an autonomous thermal management design process based on a topological optimisation algorithm is presented. The numerical framework uses a finite element multiphysics solver to assess fluid flow and heat transfer, coupled with the Method of Moving Asymptotes approach for topology optimisation. The design framework is utilised to develop a copper heatsink for a simplified electronics package at two differing Reynolds numbers. In both cases, the final shape resembles a tree like structure rather than a more conventional fin structure.
{"title":"On the application of topology optimisation techniques to thermal management of microelectronics systems","authors":"M. Santhanakrishnan, T. Tilford, C. Bailey","doi":"10.1109/EUROSIME.2016.7463364","DOIUrl":"https://doi.org/10.1109/EUROSIME.2016.7463364","url":null,"abstract":"In this paper, an autonomous thermal management design process based on a topological optimisation algorithm is presented. The numerical framework uses a finite element multiphysics solver to assess fluid flow and heat transfer, coupled with the Method of Moving Asymptotes approach for topology optimisation. The design framework is utilised to develop a copper heatsink for a simplified electronics package at two differing Reynolds numbers. In both cases, the final shape resembles a tree like structure rather than a more conventional fin structure.","PeriodicalId":438097,"journal":{"name":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129880386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-04-18DOI: 10.1109/EUROSIME.2016.7463374
A. Kozlov
Thermal processes in catalytic gas microsensors consisting of the micromachined sensitive and reference elements are considered. The modelling procedure for determining the weighted mean temperatures in the elements of the microsensors is proposed. The 2D structure of each element is divided into the regions. The heat differential equation for the regions has the identical form and takes into account two ways of heat power generation: by heater and by catalytic layer. The specific heat power generated in the regions by the heater is determined from consideration of the processes in the Wheatstone bridge circuit with the catalytic gas microsensor. To find the specific heat power generated in the regions with the catalytic layer during oxidation of combustible gas the similarity theory is used. The temperature distribution in the regions is found by using the eigenfunction method and iteration procedure which allows the temperature dependencies of the parameters to take into account. For the catalytic gas microsensor implementing a measurement of methane concentration the following characteristics were determined: the output voltage of the bridge circuit with the catalytic gas microsensor as a function of the methane concentration in air; the dependencies of the weighted mean temperature of the micro-hotplate for each element and the heat power generated in elements on the methane concentration.
{"title":"Modelling of thermal processes in catalytic gas microsensors implementing a measurement of combustible gas concentration","authors":"A. Kozlov","doi":"10.1109/EUROSIME.2016.7463374","DOIUrl":"https://doi.org/10.1109/EUROSIME.2016.7463374","url":null,"abstract":"Thermal processes in catalytic gas microsensors consisting of the micromachined sensitive and reference elements are considered. The modelling procedure for determining the weighted mean temperatures in the elements of the microsensors is proposed. The 2D structure of each element is divided into the regions. The heat differential equation for the regions has the identical form and takes into account two ways of heat power generation: by heater and by catalytic layer. The specific heat power generated in the regions by the heater is determined from consideration of the processes in the Wheatstone bridge circuit with the catalytic gas microsensor. To find the specific heat power generated in the regions with the catalytic layer during oxidation of combustible gas the similarity theory is used. The temperature distribution in the regions is found by using the eigenfunction method and iteration procedure which allows the temperature dependencies of the parameters to take into account. For the catalytic gas microsensor implementing a measurement of methane concentration the following characteristics were determined: the output voltage of the bridge circuit with the catalytic gas microsensor as a function of the methane concentration in air; the dependencies of the weighted mean temperature of the micro-hotplate for each element and the heat power generated in elements on the methane concentration.","PeriodicalId":438097,"journal":{"name":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126260446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-04-18DOI: 10.1109/EUROSIME.2016.7463354
Yanpeng Liu, K. Weide-Zaage
In modern metallization systems mechanical stress due to CTE mismatch is one of the reliability problems. With the help of finite element simulations the thermal-electrical-mechanical behavior can be calculated. The use of a reference temperature for the stress free state in the simulations is insufficient to determine the stress field in the metallization. The intrinsic stress resulting from the processing is hereby not considered. The simulation of the process steps by the birth and die capability of ANSYS is time consuming and complex. A possibility to consider the intrinsic stress in the metallization system is the use of averaged CTEs from measurements of a multi-level stack depending on the horizontal running direction of the interconnect in the x- or y-direction, or in from literature. The values were taken for a comparison between calculated stress field of the stacked metallization system with process steps and the reference temperature for the stress free state. The achieved simulation results help for a better understanding of the stress behavior.
{"title":"Thermal-electric-mechanical simulation of a multilevel metallization system","authors":"Yanpeng Liu, K. Weide-Zaage","doi":"10.1109/EUROSIME.2016.7463354","DOIUrl":"https://doi.org/10.1109/EUROSIME.2016.7463354","url":null,"abstract":"In modern metallization systems mechanical stress due to CTE mismatch is one of the reliability problems. With the help of finite element simulations the thermal-electrical-mechanical behavior can be calculated. The use of a reference temperature for the stress free state in the simulations is insufficient to determine the stress field in the metallization. The intrinsic stress resulting from the processing is hereby not considered. The simulation of the process steps by the birth and die capability of ANSYS is time consuming and complex. A possibility to consider the intrinsic stress in the metallization system is the use of averaged CTEs from measurements of a multi-level stack depending on the horizontal running direction of the interconnect in the x- or y-direction, or in from literature. The values were taken for a comparison between calculated stress field of the stacked metallization system with process steps and the reference temperature for the stress free state. The achieved simulation results help for a better understanding of the stress behavior.","PeriodicalId":438097,"journal":{"name":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122643391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-04-18DOI: 10.1109/EUROSIME.2016.7463342
R. Dauksevicius, R. Gaidys, E. O’Reilly, M. Seifikar
This paper presents the results of finite element modeling and analysis of a dynamically loaded array of individually addressable vertical ZnO nanowires (piezo-pixels) encapsulated in a polymer, which is intended to function as a pressure sensor having the purpose of identification of fingerprints with very high spatial resolution. Two multiphysics models were implemented by formulating different conditions of mechanical interfacial coupling between the nanowires and the surrounding polymer (with and without contact interactions). Parametric simulations were conducted in order to predict near-optimal values of polymer Young's modulus and layer thickness in terms of magnitude and variability of electrical signals generated by the nanowires. Numerical results also revealed the impact of different system parameters and load conditions on the electrical response of the nanowires.
{"title":"Numerical study of near-optimal parameters of polymeric encapsulation layer containing a periodic array of piezoelectric nanowires used for force sensing","authors":"R. Dauksevicius, R. Gaidys, E. O’Reilly, M. Seifikar","doi":"10.1109/EUROSIME.2016.7463342","DOIUrl":"https://doi.org/10.1109/EUROSIME.2016.7463342","url":null,"abstract":"This paper presents the results of finite element modeling and analysis of a dynamically loaded array of individually addressable vertical ZnO nanowires (piezo-pixels) encapsulated in a polymer, which is intended to function as a pressure sensor having the purpose of identification of fingerprints with very high spatial resolution. Two multiphysics models were implemented by formulating different conditions of mechanical interfacial coupling between the nanowires and the surrounding polymer (with and without contact interactions). Parametric simulations were conducted in order to predict near-optimal values of polymer Young's modulus and layer thickness in terms of magnitude and variability of electrical signals generated by the nanowires. Numerical results also revealed the impact of different system parameters and load conditions on the electrical response of the nanowires.","PeriodicalId":438097,"journal":{"name":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124040720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-04-18DOI: 10.1109/EUROSIME.2016.7463307
Yinsheng Zhong, Stephen C. T. Kwok, M. Yuen
Nanoimprint lithography (NIL) provides a low cost process for nano-pattern mass production. Polymer filling and de-molding processes determine the quality of the imprinted pattern in NIL. In UV-nanoimprint lithography, low viscous polymer reduces the requirement of imprint pressure in polymer filling. The interaction between pre-patterned mold and UV-curable polymer during de-molding greatly affect the patterning result. Due to the length scale issues, molecular simulation or traditional finite element method cannot individually simulate the de-molding process. Therefore, a multi-scale approach combining both MD simulation and finite element analysis is proposed to predict the adhesion force between the mold and polymer layer in UV-nanoimprint lithography. The present study is focused on incorporating material behavior at the de-molding interface of nano-patterns. Simulation of molecular dynamics is used to calculate the interfacial energy between the polyvinyl alcohol mold and a methacrylate-based resist layer. A stress-displacement curve can be achieved from the slope of the energy-displacement relation. The result is then utilized to characterize the material properties of cohesive zone elements at the finite element model. A contact debonding model is built to simulate the de-molding process. And the model is verified by the results from peel-off experiment.
{"title":"A multi-scale simulation method to predict delamination and adhesion force in UV-nanoimprint lithography","authors":"Yinsheng Zhong, Stephen C. T. Kwok, M. Yuen","doi":"10.1109/EUROSIME.2016.7463307","DOIUrl":"https://doi.org/10.1109/EUROSIME.2016.7463307","url":null,"abstract":"Nanoimprint lithography (NIL) provides a low cost process for nano-pattern mass production. Polymer filling and de-molding processes determine the quality of the imprinted pattern in NIL. In UV-nanoimprint lithography, low viscous polymer reduces the requirement of imprint pressure in polymer filling. The interaction between pre-patterned mold and UV-curable polymer during de-molding greatly affect the patterning result. Due to the length scale issues, molecular simulation or traditional finite element method cannot individually simulate the de-molding process. Therefore, a multi-scale approach combining both MD simulation and finite element analysis is proposed to predict the adhesion force between the mold and polymer layer in UV-nanoimprint lithography. The present study is focused on incorporating material behavior at the de-molding interface of nano-patterns. Simulation of molecular dynamics is used to calculate the interfacial energy between the polyvinyl alcohol mold and a methacrylate-based resist layer. A stress-displacement curve can be achieved from the slope of the energy-displacement relation. The result is then utilized to characterize the material properties of cohesive zone elements at the finite element model. A contact debonding model is built to simulate the de-molding process. And the model is verified by the results from peel-off experiment.","PeriodicalId":438097,"journal":{"name":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130798207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-04-18DOI: 10.1109/EUROSIME.2016.7463334
A. Samson, M. Janicki, T. Raszkowski, M. Zubert
The investigations presented in this paper illustrate the problem of modelling the average value of the convective heat transfer coefficient in the case of a free convection cooled power device with a heat sink. The total junction-to-ambient thermal resistance is dominated then by its component reflecting the heat exchange with the ambient at outer surfaces of the heat sink. Therefore, the proper modelling of this physical phenomenon is crucial for the accurate prediction of device junction temperature. Based on obtained temperature measurement results an empirical formula is proposed allowing the determination of the average heat transfer coefficient value in function of the heat sink surface temperature rise.
{"title":"Determination of average heat transfer coefficient value in compact thermal models","authors":"A. Samson, M. Janicki, T. Raszkowski, M. Zubert","doi":"10.1109/EUROSIME.2016.7463334","DOIUrl":"https://doi.org/10.1109/EUROSIME.2016.7463334","url":null,"abstract":"The investigations presented in this paper illustrate the problem of modelling the average value of the convective heat transfer coefficient in the case of a free convection cooled power device with a heat sink. The total junction-to-ambient thermal resistance is dominated then by its component reflecting the heat exchange with the ambient at outer surfaces of the heat sink. Therefore, the proper modelling of this physical phenomenon is crucial for the accurate prediction of device junction temperature. Based on obtained temperature measurement results an empirical formula is proposed allowing the determination of the average heat transfer coefficient value in function of the heat sink surface temperature rise.","PeriodicalId":438097,"journal":{"name":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"16 2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126629911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}