Pub Date : 2024-09-13DOI: 10.1007/s10035-024-01464-w
Jakob Leck
A two-dimensional argument by Bagnold for the flux over the brink line of a shape-invariantly moving dune is generalized to three dimensions. This is achieved by describing the slip face as the solution to an eikonal equation with an unusual Dirichlet boundary condition where part of the boundary is to be determined. With the assumption of potential flow the flux over a heap is obtained based on kinematics, by solving a Poisson equation and without making reference to the wind profile or sand flux laws. Matching it with the brink line flux can be used in the results of field observations by Sauermann et al. (Geomorphology 36:47–62, 2000) to explain one of the five measured shape parameters of a barchan, the brink line curvature, from the other four. More generally the brink line flux formula proposed here could serve as an evolution equation for the brink line position in a given height and flux profile, in the limit that the avalanching processes are much faster than the rest of the surface evolution.
{"title":"Flux atop an advancing slip face and the brink line curvature of barchan dunes","authors":"Jakob Leck","doi":"10.1007/s10035-024-01464-w","DOIUrl":"10.1007/s10035-024-01464-w","url":null,"abstract":"<p>A two-dimensional argument by Bagnold for the flux over the brink line of a shape-invariantly moving dune is generalized to three dimensions. This is achieved by describing the slip face as the solution to an eikonal equation with an unusual Dirichlet boundary condition where part of the boundary is to be determined. With the assumption of potential flow the flux over a heap is obtained based on kinematics, by solving a Poisson equation and without making reference to the wind profile or sand flux laws. Matching it with the brink line flux can be used in the results of field observations by Sauermann et al. (Geomorphology 36:47–62, 2000) to explain one of the five measured shape parameters of a barchan, the brink line curvature, from the other four. More generally the brink line flux formula proposed here could serve as an evolution equation for the brink line position in a given height and flux profile, in the limit that the avalanching processes are much faster than the rest of the surface evolution.</p>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"26 4","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study presents a discrete element numerical model for the unidirectional compaction of microfine magnesite powder, designed to enhance the green body density based on laboratory apparatus configurations. The research demonstrated that as particle size decreased, porosity significantly reduced and density increased, resulting in a more uniform internal distribution within the green body. This led to closer particle contacts and an increased coordination number, which in turn intensified inter-particle interactions and the effectiveness of force transmission. During compaction, the distribution of force chains became more uniform, reducing localized stress concentrations and enhancing the mechanical integrity of the green body. The stress–strain relationship followed a polynomial pattern, highlighting the significant influence of particle size on the mechanical behavior during compaction. These findings provide a valuable theoretical basis for optimizing the compression molding process of microfine magnesite powder, facilitating the production of high-density, high-performance molded products.
{"title":"Numerical analysis of multi-scale mechanical theory of microfine magnesite powder molding","authors":"Ruinan Zhang, Zhaoyang Liu, Songyang Pan, Lei Yuan, Tianpeng Wen, Jingkun Yu","doi":"10.1007/s10035-024-01466-8","DOIUrl":"10.1007/s10035-024-01466-8","url":null,"abstract":"<div><p>This study presents a discrete element numerical model for the unidirectional compaction of microfine magnesite powder, designed to enhance the green body density based on laboratory apparatus configurations. The research demonstrated that as particle size decreased, porosity significantly reduced and density increased, resulting in a more uniform internal distribution within the green body. This led to closer particle contacts and an increased coordination number, which in turn intensified inter-particle interactions and the effectiveness of force transmission. During compaction, the distribution of force chains became more uniform, reducing localized stress concentrations and enhancing the mechanical integrity of the green body. The stress–strain relationship followed a polynomial pattern, highlighting the significant influence of particle size on the mechanical behavior during compaction. These findings provide a valuable theoretical basis for optimizing the compression molding process of microfine magnesite powder, facilitating the production of high-density, high-performance molded products.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"26 4","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Accurate simulation of laboratory undrained and cyclic triaxial tests on granular materials using the Discrete Element Method (DEM) is a crucial concern. The evolution of shear bands and non-uniform stress distribution, affected by the membrane boundary condition, can significantly impact the mechanical behavior of samples. In this work, the flexible membrane is simulated by using the Finite Element Method coupled with DEM. In addition, we introduce a hydro-mechanical coupling scheme with a compressible fluid to reproduce the different undrained laboratory tests by using the membrane boundary. The evolution of pore pressure is computed incrementally based on the variation of volumetric strain inside the sample. The results of the membrane boundary condition are compared with more classical DEM simulations such as rigid wall and periodic boundaries. The comparison at different scales reveals many differences, such as the initial anisotropic value for a given preparation procedure, fabric evolution, volumetric strain and the formation of shear bands. Notably, the flexible boundary exhibits more benefits and better aligns with experimental data. As for the undrained condition, the results of the membrane condition are compared with experimental data of Toyoura sand and rigid wall boundary with constant volume. Finally, stress heterogeneity during undrained monotonic and cyclic conditions using the membrane boundary is highlighted.
Graphic abstract
使用离散元素法(DEM)对实验室颗粒材料的不排水和循环三轴试验进行精确模拟是一个至关重要的问题。受膜边界条件的影响,剪切带和非均匀应力分布的演变会严重影响样品的力学行为。在这项工作中,我们使用有限元法和 DEM 对柔性膜进行了模拟。此外,我们还引入了可压缩流体的水力机械耦合方案,利用膜边界重现不同的实验室排水试验。孔隙压力的演变是根据样本内部体积应变的变化逐步计算得出的。膜边界条件的结果与更经典的 DEM 模拟(如刚性壁和周期性边界)进行了比较。不同尺度的比较显示出许多差异,如给定制备程序的初始各向异性值、织物演变、体积应变和剪切带的形成。值得注意的是,柔性边界表现出更多优势,与实验数据更加吻合。至于排水条件,膜条件的结果与丰浦砂和恒定体积刚性壁边界的实验数据进行了比较。最后,强调了使用膜边界的单调和循环条件下的应力异质性。
{"title":"Flexible membrane boundary condition DEM-FEM for drained and undrained monotonic and cyclic triaxial tests","authors":"Tarek Mohamed, Jérôme Duriez, Guillaume Veylon, Laurent Peyras","doi":"10.1007/s10035-024-01462-y","DOIUrl":"10.1007/s10035-024-01462-y","url":null,"abstract":"<div><p>Accurate simulation of laboratory undrained and cyclic triaxial tests on granular materials using the Discrete Element Method (DEM) is a crucial concern. The evolution of shear bands and non-uniform stress distribution, affected by the membrane boundary condition, can significantly impact the mechanical behavior of samples. In this work, the flexible membrane is simulated by using the Finite Element Method coupled with DEM. In addition, we introduce a hydro-mechanical coupling scheme with a compressible fluid to reproduce the different undrained laboratory tests by using the membrane boundary. The evolution of pore pressure is computed incrementally based on the variation of volumetric strain inside the sample. The results of the membrane boundary condition are compared with more classical DEM simulations such as rigid wall and periodic boundaries. The comparison at different scales reveals many differences, such as the initial anisotropic value for a given preparation procedure, fabric evolution, volumetric strain and the formation of shear bands. Notably, the flexible boundary exhibits more benefits and better aligns with experimental data. As for the undrained condition, the results of the membrane condition are compared with experimental data of Toyoura sand and rigid wall boundary with constant volume. Finally, stress heterogeneity during undrained monotonic and cyclic conditions using the membrane boundary is highlighted.</p><h3>Graphic abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"26 4","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1007/s10035-024-01465-9
Zhongnian Yang, Zhaochi Lu, Wei Shi, Huan He, Xinyi Nie, Xianzhang Ling, Jin Zhang, Da Guan
The deformation of expansive soil in seasonally frozen regions caused by freeze–thaw cycles has severely affected the long-term performance of engineering applications. The alteration of expansive soil microstructure has resulted in many geotechnical engineering failures, such as soil cracking and settlement. Consequently, the micropore contraction and expansion mechanisms of expansive soil have drawn extensive attention. Nuclear Magnetic Resonance (NMR) is widely used as a rapid, non-destructive detection technique for moisture monitoring and microstructure evolution characterization in porous media. In addition, Magnetic Resonance Imaging (MRI) can visualize the migration pattern of pore water under different numbers of freeze–thaw cycles. SEM is the most effective and direct method to reveal the structure of particle and micropore arrangement. This paper investigates the pore size evolution and pore structure distribution characteristics of saturated expansive soil via 6 freeze–thaw cycle tests using NMR and SEM techniques. The evolution law of saturated expansive soil under freeze–thaw cycles is obtained. The results show that pore water migrates from the center to the periphery under freeze–thaw cycles. The pore size decreases as the number of freeze–thaw cycles increases and small particles increase significantly. During the freeze–thaw cycle, the arrangement pattern changed from surface-surface contact to stacking.
{"title":"Experimental investigation of freeze–thaw effects on the micropore properties of expansive soil using NMR–SEM techniques","authors":"Zhongnian Yang, Zhaochi Lu, Wei Shi, Huan He, Xinyi Nie, Xianzhang Ling, Jin Zhang, Da Guan","doi":"10.1007/s10035-024-01465-9","DOIUrl":"10.1007/s10035-024-01465-9","url":null,"abstract":"<div><p>The deformation of expansive soil in seasonally frozen regions caused by freeze–thaw cycles has severely affected the long-term performance of engineering applications. The alteration of expansive soil microstructure has resulted in many geotechnical engineering failures, such as soil cracking and settlement. Consequently, the micropore contraction and expansion mechanisms of expansive soil have drawn extensive attention. Nuclear Magnetic Resonance (NMR) is widely used as a rapid, non-destructive detection technique for moisture monitoring and microstructure evolution characterization in porous media. In addition, Magnetic Resonance Imaging (MRI) can visualize the migration pattern of pore water under different numbers of freeze–thaw cycles. SEM is the most effective and direct method to reveal the structure of particle and micropore arrangement. This paper investigates the pore size evolution and pore structure distribution characteristics of saturated expansive soil via 6 freeze–thaw cycle tests using NMR and SEM techniques. The evolution law of saturated expansive soil under freeze–thaw cycles is obtained. The results show that pore water migrates from the center to the periphery under freeze–thaw cycles. The pore size decreases as the number of freeze–thaw cycles increases and small particles increase significantly. During the freeze–thaw cycle, the arrangement pattern changed from surface-surface contact to stacking.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"26 4","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aggregates consisting of submicron-sized cohesive dust grains are ubiquitous, and understanding the collisional behavior of dust aggregates is essential. It is known that low-speed collisions of dust aggregates result in either sticking or bouncing, and local and permanent compaction occurs near the contact area upon collision. In this study, we perform numerical simulations of collisions between two aggregates and investigate their compressive behavior. We find that the maximum compression length is proportional to the radius of aggregates and increases with the collision velocity. We also reveal that a theoretical model of contact between two elastoplastic spheres successfully reproduces the size- and velocity-dependence of the maximum compression length observed in our numerical simulations. Our findings on the plastic deformation of aggregates during collisional compression provide a clue to understanding the collisional growth process of aggregates.