首页 > 最新文献

Simulation Modelling Practice and Theory最新文献

英文 中文
Towards resilient cities: A hybrid simulation framework for risk mitigation through data-driven decision making 建设具有抗灾能力的城市:通过数据驱动决策降低风险的混合模拟框架
IF 4.2 2区 计算机科学 Q1 Mathematics Pub Date : 2024-03-12 DOI: 10.1016/j.simpat.2024.102924
David Carramiñana , Ana M. Bernardos , Juan A. Besada , José R. Casar

Providing a comprehensive view of the city operation and offering useful metrics for decision-making is a well-known challenge for urban risk-analysis systems. Existing systems are, in many cases, generalizations of previous domain specific tools/methodologies that may not cover all urban interdependencies and makes it difficult to have homogeneous indicators. In order to overcome this limitation while seeking for effective support to decision makers, this article introduces a novel hybrid simulation framework for risk mitigation. The framework is built on a proposed city concept that considers the urban space as a Complex Adaptive System composed by interconnected Critical Infrastructures. In this concept, a Social System, which models daily patterns and social interactions of the citizens in the Urban Landscape, drives the CIs demand to configure the full city picture. The framework's hybrid design integrates agent-based and network-based modeling by breaking down city agents into system-dependent subagents, to enable both inter and intra-system interaction simulation, respectively. A layered structure of indicators at different aggregation levels is also developed, to ensure that decisions are not only data-driven but also explainable. Therefore, the proposed simulation framework can serve as a DSS tool that allows the quantitative analysis of the impact of threats at different levels. First, system-level metrics can be used to get a broad view on the city resilience. Then, agent-level metrics back those figures and provide better explainability. On implementation, the proposed framework enables component reusability (for eased coding), simulation federation (enabling the integration of existing system-oriented simulators), discrete simulation in accelerated time (for rapid scenario simulation) and decision-oriented visualization (for informed outputs). The system built under the proposed approach facilitates to simulate various risk mitigation strategies for a scenario under analysis, allowing decision-makers to foresee potential outcomes. A case study has been deployed on a framework prototype to demonstrate how the DSS can be used in real-world situations, specifically combining cyber hazards over health and traffic infrastructures. The proposal aims at pushing the boundaries of urban city simulation towards more real, intelligent, and automated frameworks.

提供城市运行的综合视图并为决策提供有用的指标是城市风险分析系统面临的一个众所周知的挑战。现有系统在很多情况下都是对以前特定领域工具/方法的概括,可能无法涵盖所有城市相互依存关系,因此很难有同质指标。为了克服这一局限性,同时为决策者提供有效支持,本文介绍了一种新型的风险缓解混合模拟框架。该框架建立在一个拟议的城市概念之上,将城市空间视为一个由相互关联的关键基础设施组成的复杂适应系统。在这一概念中,社会系统对城市景观中市民的日常模式和社会互动进行建模,并驱动关键基础设施的需求,以配置完整的城市图景。该框架的混合设计整合了基于代理和基于网络的建模,将城市代理分解为依赖于系统的子代理,以分别实现系统间和系统内的交互模拟。此外,还开发了不同汇总级别的分层指标结构,以确保决策不仅以数据为导向,而且可以解释。因此,建议的模拟框架可以作为一种 DSS 工具,对不同层次的威胁影响进行定量分析。首先,可以使用系统级指标来了解城市复原力的总体情况。然后,代理级指标可以支持这些数字,并提供更好的可解释性。在实施方面,建议的框架实现了组件的可重用性(简化编码)、仿真联合(整合现有的面向系统的仿真器)、加速时间离散仿真(快速场景仿真)和面向决策的可视化(知情输出)。根据所提议的方法建立的系统有助于模拟所分析情景的各种风险缓解策略,使决策者能够预见潜在的结果。在一个框架原型上部署了一个案例研究,以演示如何在现实世界的情况下使用 DSS,特别是结合健康和交通基础设施的网络危害。该提案旨在推动城市仿真向更真实、更智能和更自动化的框架发展。
{"title":"Towards resilient cities: A hybrid simulation framework for risk mitigation through data-driven decision making","authors":"David Carramiñana ,&nbsp;Ana M. Bernardos ,&nbsp;Juan A. Besada ,&nbsp;José R. Casar","doi":"10.1016/j.simpat.2024.102924","DOIUrl":"10.1016/j.simpat.2024.102924","url":null,"abstract":"<div><p>Providing a comprehensive view of the city operation and offering useful metrics for decision-making is a well-known challenge for urban risk-analysis systems. Existing systems are, in many cases, generalizations of previous domain specific tools/methodologies that may not cover all urban interdependencies and makes it difficult to have homogeneous indicators. In order to overcome this limitation while seeking for effective support to decision makers, this article introduces a novel hybrid simulation framework for risk mitigation. The framework is built on a proposed city concept that considers the urban space as a Complex Adaptive System composed by interconnected Critical Infrastructures. In this concept, a Social System, which models daily patterns and social interactions of the citizens in the Urban Landscape, drives the CIs demand to configure the full city picture. The framework's hybrid design integrates agent-based and network-based modeling by breaking down city agents into system-dependent subagents, to enable both inter and intra-system interaction simulation, respectively. A layered structure of indicators at different aggregation levels is also developed, to ensure that decisions are not only data-driven but also explainable. Therefore, the proposed simulation framework can serve as a DSS tool that allows the quantitative analysis of the impact of threats at different levels. First, system-level metrics can be used to get a broad view on the city resilience. Then, agent-level metrics back those figures and provide better explainability. On implementation, the proposed framework enables component reusability (for eased coding), simulation federation (enabling the integration of existing system-oriented simulators), discrete simulation in accelerated time (for rapid scenario simulation) and decision-oriented visualization (for informed outputs). The system built under the proposed approach facilitates to simulate various risk mitigation strategies for a scenario under analysis, allowing decision-makers to foresee potential outcomes. A case study has been deployed on a framework prototype to demonstrate how the DSS can be used in real-world situations, specifically combining cyber hazards over health and traffic infrastructures. The proposal aims at pushing the boundaries of urban city simulation towards more real, intelligent, and automated frameworks.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569190X24000388/pdfft?md5=04ef681b2c9c771225ceb322adfb1cce&pid=1-s2.0-S1569190X24000388-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140149674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulation–optimization configurations for real-time decision-making in fugitive interception 用于逃犯拦截实时决策的仿真优化配置
IF 4.2 2区 计算机科学 Q1 Mathematics Pub Date : 2024-03-11 DOI: 10.1016/j.simpat.2024.102923
Irene S. van Droffelaar , Jan H. Kwakkel , Jelte P. Mense , Alexander Verbraeck

Simulation–optimization models are well-suited for real-time decision-support to the control room for search and interception of fugitives by Police on a road network, due to their ability to encode complex behavior while still optimizing the interception.

The typical simulation–optimization configuration is simulation model optimization, where the simulation model describes the system to be optimized, and the optimizer attempts to find the combination of decision variables that maximizes the interception probability. However, the repeated evaluation of the simulation model leads to high computation time, thus rendering it inadequate for time-constrained decision contexts. To support police interception operations in real-time, timely calculation of the solution is essential. Sequential simulation–optimization, where the simulation model, with its rich behavior, constructs (part of) the constraints of an optimization problem, could decrease the computation time.

We compare the computation time for two configurations of simulation–optimization (typical simulation model optimization and sequential simulation–optimization) for various problem instances of the fugitive interception problem. We show that sequential simulation–optimization reduces the computation time of large instances of the fugitive interception case study ten-fold. This result illustrates the potential of sequential simulation–optimization to mitigate the expensive optimization of simulation models.

仿真优化模型非常适合为控制室提供实时决策支持,以便警方在路网中搜索和拦截逃犯,这是因为仿真优化模型既能编码复杂行为,又能优化拦截。然而,对仿真模型的反复评估会导致计算时间过长,因此无法满足时间有限的决策环境。为了支持警方的实时拦截行动,及时计算解决方案至关重要。我们比较了针对不同逃犯拦截问题实例的两种模拟优化配置(典型模拟模型优化和顺序模拟优化)的计算时间。我们发现,顺序仿真优化可将逃犯拦截案例研究中大型实例的计算时间缩短十倍。这一结果说明了顺序仿真优化在降低仿真模型优化成本方面的潜力。
{"title":"Simulation–optimization configurations for real-time decision-making in fugitive interception","authors":"Irene S. van Droffelaar ,&nbsp;Jan H. Kwakkel ,&nbsp;Jelte P. Mense ,&nbsp;Alexander Verbraeck","doi":"10.1016/j.simpat.2024.102923","DOIUrl":"https://doi.org/10.1016/j.simpat.2024.102923","url":null,"abstract":"<div><p>Simulation–optimization models are well-suited for real-time decision-support to the control room for search and interception of fugitives by Police on a road network, due to their ability to encode complex behavior while still optimizing the interception.</p><p>The typical simulation–optimization configuration is simulation model optimization, where the simulation model describes the system to be optimized, and the optimizer attempts to find the combination of decision variables that maximizes the interception probability. However, the repeated evaluation of the simulation model leads to high computation time, thus rendering it inadequate for time-constrained decision contexts. To support police interception operations in real-time, timely calculation of the solution is essential. Sequential simulation–optimization, where the simulation model, with its rich behavior, constructs (part of) the constraints of an optimization problem, could decrease the computation time.</p><p>We compare the computation time for two configurations of simulation–optimization (typical simulation model optimization and sequential simulation–optimization) for various problem instances of the fugitive interception problem. We show that sequential simulation–optimization reduces the computation time of large instances of the fugitive interception case study ten-fold. This result illustrates the potential of sequential simulation–optimization to mitigate the expensive optimization of simulation models.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569190X24000376/pdfft?md5=093851bd77272b9ca24179a64a5dd683&pid=1-s2.0-S1569190X24000376-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140121916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A dynamic simulation framework based on hybrid modeling paradigm for parallel scheduling systems in warehouses 基于混合建模范式的动态模拟框架,用于仓库并行调度系统
IF 4.2 2区 计算机科学 Q1 Mathematics Pub Date : 2024-03-07 DOI: 10.1016/j.simpat.2024.102921
YuQin Zeng , WenBing Li , ChangHai Li

Efficient warehouse management is of crucial significance for the smooth operation of a company's supply chain. With the challenging nature of warehouse environment changes, research on warehouse operational issues is increasingly important. Moreover, system simulation has emerged as a prevalent means of investigating warehouse operational management. However, prior research on warehouse simulation either utilized singular paradigms or lacked a generalized modeling framework. This remains a challenge for modelers exploring diverse domains of warehouse-related issues using simulation techniques. In this context, this study presents an integrated control methodology(ICM) based on the state changes of dispatchers and logistics equipments, the discrimination of task scenarios, and the behaviors of dispatchers. This methodology is incorporated into the warehouse workflow model. The workflow model serves as a conceptual abstraction of a warehouse's parallel scheduling system, while the integrated control methodology (ICM) simulates the entire decision-making process of dispatchers to resolve potential deadlock issues during task execution. Subsequently, we utilize a steel slab warehouse in a case study, employing a dynamic simulation using a hybrid paradigm based on Discrete Event Simulation (DES) and Agent-Based Simulation (ABS) to replicate the historical scheduling process within the warehouse. This demonstration confirms the feasibility of the proposed framework. Finally, we devise multiple dimensions of validation metrics to confirm the model's effectiveness.

高效的仓库管理对公司供应链的顺利运作至关重要。随着仓库环境变化的挑战性,对仓库运营问题的研究越来越重要。此外,系统仿真已成为研究仓库运营管理的一种普遍手段。然而,之前的仓库仿真研究要么使用单一的范式,要么缺乏通用的建模框架。这对于使用仿真技术探索仓库相关问题的不同领域的建模人员来说,仍然是一个挑战。在此背景下,本研究提出了一种基于调度员和物流设备状态变化、任务场景判别以及调度员行为的集成控制方法(ICM)。该方法被纳入仓库工作流程模型。工作流模型是仓库并行调度系统的概念抽象,而集成控制方法(ICM)则模拟调度员的整个决策过程,以解决任务执行过程中可能出现的僵局问题。随后,我们利用一个钢板仓库进行案例研究,采用基于离散事件仿真(DES)和基于代理仿真(ABS)的混合范式进行动态仿真,复制仓库内的历史调度流程。这一演示证实了拟议框架的可行性。最后,我们设计了多个维度的验证指标,以确认模型的有效性。
{"title":"A dynamic simulation framework based on hybrid modeling paradigm for parallel scheduling systems in warehouses","authors":"YuQin Zeng ,&nbsp;WenBing Li ,&nbsp;ChangHai Li","doi":"10.1016/j.simpat.2024.102921","DOIUrl":"https://doi.org/10.1016/j.simpat.2024.102921","url":null,"abstract":"<div><p>Efficient warehouse management is of crucial significance for the smooth operation of a company's supply chain. With the challenging nature of warehouse environment changes, research on warehouse operational issues is increasingly important. Moreover, system simulation has emerged as a prevalent means of investigating warehouse operational management. However, prior research on warehouse simulation either utilized singular paradigms or lacked a generalized modeling framework. This remains a challenge for modelers exploring diverse domains of warehouse-related issues using simulation techniques. In this context, this study presents an integrated control methodology(ICM) based on the state changes of dispatchers and logistics equipments, the discrimination of task scenarios, and the behaviors of dispatchers. This methodology is incorporated into the warehouse workflow model. The workflow model serves as a conceptual abstraction of a warehouse's parallel scheduling system, while the integrated control methodology (ICM) simulates the entire decision-making process of dispatchers to resolve potential deadlock issues during task execution. Subsequently, we utilize a steel slab warehouse in a case study, employing a dynamic simulation using a hybrid paradigm based on Discrete Event Simulation (DES) and Agent-Based Simulation (ABS) to replicate the historical scheduling process within the warehouse. This demonstration confirms the feasibility of the proposed framework. Finally, we devise multiple dimensions of validation metrics to confirm the model's effectiveness.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140187243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A discrete event approach to micro-scale traffic modeling in urban environment 城市环境中微尺度交通建模的离散事件方法
IF 4.2 2区 计算机科学 Q1 Mathematics Pub Date : 2024-03-05 DOI: 10.1016/j.simpat.2024.102920
Florian Condette , Eric Ramat , Patrick Sondi

In this work, we present a new approach based on a discrete event formalism to model and simulate micro-scale urban traffic systems. The formalism is a coupling between the P-DEVS (Parallel-Discrete Event System Specification) formalism and UML (Unified Modeling Language) state machines. A system is represented by a set of coupled components. Each component supports the dynamics and logic of a system element. The models presented include the streets, intersections and traffic signs, all of which can be synchronized together through specific mechanisms. These models can be applied to real-world OpenStreetMap networks. A discrete event-driven adaptation of the simplified Gipps car-following model is introduced, and subsequently compared to its discrete time counterpart. The results show that our discrete event model follows dynamics which are similar to those of a discrete time model with a low update time step of 0.1s, despite not taking certain non-linearities of the latter into account. In terms of vehicle state changes and computation time, our approach outperforms the discrete time one with an update time step of 1s, both on a simple case study and on a real network.

在这项工作中,我们提出了一种基于离散事件形式主义的新方法,用于建模和模拟微尺度城市交通系统。该形式主义是 P-DEVS(并行离散事件系统规范)形式主义与 UML(统一建模语言)状态机之间的耦合。系统由一组耦合组件表示。每个组件都支持系统元素的动态和逻辑。所展示的模型包括街道、交叉路口和交通标志,所有这些都可以通过特定机制同步在一起。这些模型可应用于真实世界的 OpenStreetMap 网络。本文介绍了简化版 Gipps 汽车跟随模型的离散事件驱动改编版,并将其与离散时间对应模型进行了比较。结果表明,我们的离散事件模型与更新时间步长为 0.1 秒的离散时间模型的动态相似,尽管后者的某些非线性因素未被考虑在内。就车辆状态变化和计算时间而言,无论是在简单的案例研究中还是在真实网络中,我们的方法都优于更新时间步长为 1s 的离散时间方法。
{"title":"A discrete event approach to micro-scale traffic modeling in urban environment","authors":"Florian Condette ,&nbsp;Eric Ramat ,&nbsp;Patrick Sondi","doi":"10.1016/j.simpat.2024.102920","DOIUrl":"https://doi.org/10.1016/j.simpat.2024.102920","url":null,"abstract":"<div><p>In this work, we present a new approach based on a discrete event formalism to model and simulate micro-scale urban traffic systems. The formalism is a coupling between the P-DEVS (Parallel-Discrete Event System Specification) formalism and UML (Unified Modeling Language) state machines. A system is represented by a set of coupled components. Each component supports the dynamics and logic of a system element. The models presented include the streets, intersections and traffic signs, all of which can be synchronized together through specific mechanisms. These models can be applied to real-world OpenStreetMap networks. A discrete event-driven adaptation of the simplified Gipps car-following model is introduced, and subsequently compared to its discrete time counterpart. The results show that our discrete event model follows dynamics which are similar to those of a discrete time model with a low update time step of 0.1s, despite not taking certain non-linearities of the latter into account. In terms of vehicle state changes and computation time, our approach outperforms the discrete time one with an update time step of 1s, both on a simple case study and on a real network.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140052509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ELEKTRA: Empowering prosumers with distributed prosumer grouping and game-theoretic energy procurement ELEKTRA:通过分布式用户分组和博弈论能源采购为用户赋权
IF 4.2 2区 计算机科学 Q1 Mathematics Pub Date : 2024-03-04 DOI: 10.1016/j.simpat.2024.102918
Nicholas Kemp, Md Sadman Siraj, Eirini Eleni Tsiropoulou

In this paper, the ELEKTRA framework is introduced, a novel community energy management system that organizes the prosumers into autonomous communities and determines the prosumers’ optimal energy procurement in a distributed manner. Our motivation stems from the increasing complexity of the energy procurement for prosumers and the need for more efficient and decentralized approaches to optimize their energy consumption. The first element of the ELEKTRA framework implements an autonomous hedonic game-theoretic model at the prosumers’ home energy management controllers, considering the prosumers’ individual energy consumption and generation patterns, as well as the utility-provided rewards for proactive participation. Specifically, the prosumer grouping is modeled as a hedonic game, demonstrating the existence of a Nash-stable and individually-stable prosumer grouping. The second element of the ELEKTRA framework employs a distributed non-cooperative game-theoretic approach. This addresses how prosumers strategically consume energy to meet their needs while maximizing their payoff by procuring additional energy from the utility company. Also, utilizing the theory of n-person concave games allows for a thorough evaluation of accuracy, performance, and complexity in determining optimal energy consumption for prosumers. A comprehensive evaluation of the ELEKTRA framework is conducted using real data from the southwest region of USA. The results demonstrate the operational effectiveness of the ELEKTRA framework, showcasing its superiority in optimizing prosumer payoff compared to existing models. The performance assessment, grounded in real-world data, provides valuable insights into the efficacy of the ELEKTRA framework in contrast to current state-of-the-art.

本文介绍了 ELEKTRA 框架,它是一种新型社区能源管理系统,可将消费者组织成自治社区,并以分布式方式确定消费者的最佳能源采购。我们的动机源于职业消费者的能源采购日益复杂,需要更高效、更分散的方法来优化他们的能源消耗。ELEKTRA 框架的第一个要素是在消费者的家庭能源管理控制器上实施一个自主享乐博弈理论模型,考虑消费者的个人能源消耗和发电模式,以及公用事业公司为主动参与提供的奖励。具体来说,消费者分组被模拟为一种享乐博弈,证明了纳什稳定和个体稳定的消费者分组的存在。ELEKTRA 框架的第二个要素采用了分布式非合作博弈理论方法。该方法解决了消费者如何战略性地消耗能源以满足自身需求,同时通过从公用事业公司采购额外能源来实现收益最大化的问题。此外,利用 n 人凹陷博弈理论,还能对确定消费者最佳能源消耗的准确性、性能和复杂性进行全面评估。我们使用美国西南部地区的真实数据对 ELEKTRA 框架进行了全面评估。评估结果表明了 ELEKTRA 框架的运行效果,与现有模型相比,该框架在优化消费者收益方面更具优势。基于真实数据的性能评估为 ELEKTRA 框架与当前最先进技术的对比提供了宝贵的见解。
{"title":"ELEKTRA: Empowering prosumers with distributed prosumer grouping and game-theoretic energy procurement","authors":"Nicholas Kemp,&nbsp;Md Sadman Siraj,&nbsp;Eirini Eleni Tsiropoulou","doi":"10.1016/j.simpat.2024.102918","DOIUrl":"https://doi.org/10.1016/j.simpat.2024.102918","url":null,"abstract":"<div><p>In this paper, the <span>ELEKTRA</span> framework is introduced, a novel community energy management system that organizes the prosumers into autonomous communities and determines the prosumers’ optimal energy procurement in a distributed manner. Our motivation stems from the increasing complexity of the energy procurement for prosumers and the need for more efficient and decentralized approaches to optimize their energy consumption. The first element of the <span>ELEKTRA</span> framework implements an autonomous hedonic game-theoretic model at the prosumers’ home energy management controllers, considering the prosumers’ individual energy consumption and generation patterns, as well as the utility-provided rewards for proactive participation. Specifically, the prosumer grouping is modeled as a hedonic game, demonstrating the existence of a Nash-stable and individually-stable prosumer grouping. The second element of the <span>ELEKTRA</span> framework employs a distributed non-cooperative game-theoretic approach. This addresses how prosumers strategically consume energy to meet their needs while maximizing their payoff by procuring additional energy from the utility company. Also, utilizing the theory of <span><math><mi>n</mi></math></span>-person concave games allows for a thorough evaluation of accuracy, performance, and complexity in determining optimal energy consumption for prosumers. A comprehensive evaluation of the <span>ELEKTRA</span> framework is conducted using real data from the southwest region of USA. The results demonstrate the operational effectiveness of the <span>ELEKTRA</span> framework, showcasing its superiority in optimizing prosumer payoff compared to existing models. The performance assessment, grounded in real-world data, provides valuable insights into the efficacy of the <span>ELEKTRA</span> framework in contrast to current state-of-the-art.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140031228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Hybrid Simulation Platform for quality-aware evaluation of complex events in an IoT environment 用于物联网环境中复杂事件质量感知评估的混合仿真平台
IF 4.2 2区 计算机科学 Q1 Mathematics Pub Date : 2024-03-04 DOI: 10.1016/j.simpat.2024.102919
Dimitris Gkoulis, Cleopatra Bardaki, Mara Nikolaidou, George Kousiouris, Anargyros Tsadimas

Complex Event Processing (CEP) is a successful method to transform simple IoT events created by sensors into meaningful complex business events. To enhance availability, an event fabrication mechanism is integrated within the CEP model, generating synthetic events to offset missing data, resulting in a quality-aware CEP model. In this model, generated complex events are characterized by quality properties, namely completeness and timeliness. To empirically assess the quality of complex events through experimentation, we have developed a hybrid simulation platform. The platform’s dual nature stems from its distinctive approach of simulating sensor behaviors while concurrently running the quality-aware CEP IoT platform. Users can conduct experiments that closely mimic actual operational scenarios and have, in real-time, full visibility and control over all involved aspects, including composite transformations, quality assessment, event fabrication and its effectiveness, and aggregated reports. A representative experiment in an IoT-enabled greenhouse with missing events is presented to demonstrate the usefulness of the platform. The contribution of the hybrid simulation platform is twofold: provide (a) quality assessment of complex events, using two established quality properties for IoT environments with specific computation formulas and (b) a comprehensive testbed covering all aspects of a typical IoT setup for realistic experimentation. Together, these elements provide significant cost–benefit advantages by enabling researchers and practitioners to pre-optimize operational efficiency and decision-making in IoT systems.

复杂事件处理(CEP)是将传感器产生的简单物联网事件转化为有意义的复杂业务事件的一种成功方法。为提高可用性,在 CEP 模型中集成了事件制造机制,生成合成事件以抵消缺失数据,从而形成质量感知的 CEP 模型。在该模型中,生成的复杂事件具有质量属性,即完整性和及时性。为了通过实验对复杂事件的质量进行实证评估,我们开发了一个混合模拟平台。该平台的双重性质源于其独特的方法,即在模拟传感器行为的同时运行质量感知 CEP 物联网平台。用户可以进行近似实际操作场景的实验,并实时全面了解和控制所有相关方面,包括复合转换、质量评估、事件制造及其有效性以及汇总报告。为了展示该平台的实用性,我们介绍了在一个物联网温室中进行的具有代表性的缺失事件实验。混合仿真平台有两方面的贡献:a)提供复杂事件的质量评估,为物联网环境使用两个既定的质量属性和特定的计算公式;b)提供全面的测试平台,涵盖典型物联网设置的所有方面,以进行实际实验。这些要素结合在一起,使研究人员和从业人员能够预先优化物联网系统的运行效率和决策,从而带来显著的成本效益优势。
{"title":"A Hybrid Simulation Platform for quality-aware evaluation of complex events in an IoT environment","authors":"Dimitris Gkoulis,&nbsp;Cleopatra Bardaki,&nbsp;Mara Nikolaidou,&nbsp;George Kousiouris,&nbsp;Anargyros Tsadimas","doi":"10.1016/j.simpat.2024.102919","DOIUrl":"10.1016/j.simpat.2024.102919","url":null,"abstract":"<div><p>Complex Event Processing (CEP) is a successful method to transform simple IoT events created by sensors into meaningful complex business events. To enhance availability, an event fabrication mechanism is integrated within the CEP model, generating synthetic events to offset missing data, resulting in a quality-aware CEP model. In this model, generated complex events are characterized by quality properties, namely completeness and timeliness. To empirically assess the quality of complex events through experimentation, we have developed a hybrid simulation platform. The platform’s dual nature stems from its distinctive approach of simulating sensor behaviors while concurrently running the quality-aware CEP IoT platform. Users can conduct experiments that closely mimic actual operational scenarios and have, in real-time, full visibility and control over all involved aspects, including composite transformations, quality assessment, event fabrication and its effectiveness, and aggregated reports. A representative experiment in an IoT-enabled greenhouse with missing events is presented to demonstrate the usefulness of the platform. The contribution of the hybrid simulation platform is twofold: provide (a) quality assessment of complex events, using two established quality properties for IoT environments with specific computation formulas and (b) a comprehensive testbed covering all aspects of a typical IoT setup for realistic experimentation. Together, these elements provide significant cost–benefit advantages by enabling researchers and practitioners to pre-optimize operational efficiency and decision-making in IoT systems.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140071288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Many-objective joint optimization of computation offloading and service caching in mobile edge computing 移动边缘计算中计算卸载和服务缓存的多目标联合优化
IF 4.2 2区 计算机科学 Q1 Mathematics Pub Date : 2024-03-02 DOI: 10.1016/j.simpat.2024.102917
Zhihua Cui , Xiangyu Shi , Zhixia Zhang , Wensheng Zhang , Jinjun Chen

The computation offloading problem in mobile edge computing (MEC) has received a lot of attention, but service caching is also a research topic that cannot be ignored in MEC. Due to the limited resources available on the Edge Server (ES), a wise computation offloading and service caching policy must be formulated in order to maximize system offload efficiency. In this paper, a many-objective joint optimization computation offloading and service caching model (MaJOCOSC) is designed. The model takes into account the limited computing and storage resources of ES, the delay and energy consumption constraints of different types of tasks, and multiple processing modes of user tasks, and sets delay, energy consumption, task hit service rate, service cache balancing, and load balancing as the five optimization objectives of MaJOCOSC. Meanwhile, a non-dominated sorting genetic algorithm (NSGAIII-ASF&WD) based on achievement scalar function (ASF) and the k-nearest neighbor weighted distance mating selection strategy is proposed for better solving the model. The ASF ensures that the given strategy performs well for each objective value, and the k-nearest neighbor weighted distance provides the user with a diversity of strategies. Simulation results show that NSGAIII-ASF&WD can obtain better objective values when solving the model compared with other many-objective evolutionary algorithms, and a suitable computation offloading and service caching strategy is obtained.

移动边缘计算(MEC)中的计算卸载问题已受到广泛关注,但服务缓存也是 MEC 中不容忽视的研究课题。由于边缘服务器(ES)的资源有限,必须制定明智的计算卸载和服务缓存策略,才能最大限度地提高系统的卸载效率。本文设计了一个多目标联合优化计算卸载和服务缓存模型(MaJOCOSC)。该模型考虑了 ES 有限的计算和存储资源、不同类型任务的时延和能耗约束以及用户任务的多种处理模式,将时延、能耗、任务命中服务率、服务缓存均衡和负载均衡作为 MaJOCOSC 的五个优化目标。同时,为了更好地求解该模型,提出了基于成就标度函数(ASF)的非支配排序遗传算法(NSGAIII-ASF&WD)和 k 近邻加权距离交配选择策略。ASF 确保给定的策略在每个目标值下都有良好的表现,而 k 近邻加权距离则为用户提供了多样化的策略。仿真结果表明,与其他多目标进化算法相比,NSGAIII-ASF&WD 在求解模型时能获得更好的目标值,并得到了合适的计算卸载和服务缓存策略。
{"title":"Many-objective joint optimization of computation offloading and service caching in mobile edge computing","authors":"Zhihua Cui ,&nbsp;Xiangyu Shi ,&nbsp;Zhixia Zhang ,&nbsp;Wensheng Zhang ,&nbsp;Jinjun Chen","doi":"10.1016/j.simpat.2024.102917","DOIUrl":"https://doi.org/10.1016/j.simpat.2024.102917","url":null,"abstract":"<div><p>The computation offloading problem in mobile edge computing (MEC) has received a lot of attention, but service caching is also a research topic that cannot be ignored in MEC. Due to the limited resources available on the Edge Server (ES), a wise computation offloading and service caching policy must be formulated in order to maximize system offload efficiency. In this paper, a many-objective joint optimization computation offloading and service caching model (MaJOCOSC) is designed. The model takes into account the limited computing and storage resources of ES, the delay and energy consumption constraints of different types of tasks, and multiple processing modes of user tasks, and sets delay, energy consumption, task hit service rate, service cache balancing, and load balancing as the five optimization objectives of MaJOCOSC. Meanwhile, a non-dominated sorting genetic algorithm (NSGAIII-ASF&amp;WD) based on achievement scalar function (ASF) and the k-nearest neighbor weighted distance mating selection strategy is proposed for better solving the model. The ASF ensures that the given strategy performs well for each objective value, and the k-nearest neighbor weighted distance provides the user with a diversity of strategies. Simulation results show that NSGAIII-ASF&amp;WD can obtain better objective values when solving the model compared with other many-objective evolutionary algorithms, and a suitable computation offloading and service caching strategy is obtained.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140031226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
User-defined weight based multi objective task scheduling in cloud using whale optimization algorithm 使用鲸鱼优化算法实现基于用户自定义权重的云计算多目标任务调度
IF 4.2 2区 计算机科学 Q1 Mathematics Pub Date : 2024-02-29 DOI: 10.1016/j.simpat.2024.102915
Swati Gupta, Ravi Shankar Singh

Cloud computing has revolutionized the IT landscape, providing scalable, on-demand computing resource. For efficiency in cloud environments, it is essential for modern organizations, where objectives often include cost reduction, resource consumption, operational efficiency and load balancing etc, to implement multi objective solutions. Single-objective systems can fail in handling dynamic and diverse workloads. This study introduces the Multi-Objective Whale Optimization-Based Scheduler (WOA-Scheduler) for efficient task scheduling in cloud computing environments. Leveraging the Whale Optimization Algorithm (WOA), the scheduler optimizes multiple objectives simultaneously, including cost, time, and load balancing. A key feature of the WOA-Scheduler is its flexibility in accommodating user-defined weights for different objectives, allowing organizations to prioritize optimization goals based on their specific requirements. Comparative analysis across various cloud environments demonstrates the superiority of the WOA-Scheduler over traditional single-objective approaches. By achieving a better balance between cost, time, and resource utilization, the scheduler enhances overall performance. Moreover, its multi-objective optimization capabilities enable dynamic adjustment of task assignments in response to changing workload conditions, ensuring efficient resource utilization and workload distribution. Overall, the WOA-Scheduler offers a customizable and adaptable solution for addressing the complexities of modern cloud services, ultimately improving performance and efficiency.

云计算为 IT 领域带来了革命性的变化,提供了可扩展的按需计算资源。现代组织的目标通常包括降低成本、资源消耗、运营效率和负载平衡等,为了提高云环境的效率,必须实施多目标解决方案。单目标系统可能无法处理动态和多样化的工作负载。本研究介绍了基于鲸鱼优化算法的多目标调度程序(WOA-Scheduler),用于云计算环境中的高效任务调度。利用鲸鱼优化算法(WOA),该调度程序可同时优化多个目标,包括成本、时间和负载平衡。WOA 调度器的一个主要特点是它能灵活地适应用户为不同目标定义的权重,使企业能够根据其特定要求确定优化目标的优先级。对各种云环境的比较分析表明,WOA-Scheduler 优于传统的单一目标方法。通过在成本、时间和资源利用率之间实现更好的平衡,该调度器提高了整体性能。此外,它的多目标优化功能还能根据不断变化的工作负载条件动态调整任务分配,确保高效的资源利用和工作负载分配。总之,WOA-Scheduler 为解决现代云服务的复杂性提供了一个可定制和适应性强的解决方案,最终提高了性能和效率。
{"title":"User-defined weight based multi objective task scheduling in cloud using whale optimization algorithm","authors":"Swati Gupta,&nbsp;Ravi Shankar Singh","doi":"10.1016/j.simpat.2024.102915","DOIUrl":"https://doi.org/10.1016/j.simpat.2024.102915","url":null,"abstract":"<div><p>Cloud computing has revolutionized the IT landscape, providing scalable, on-demand computing resource. For efficiency in cloud environments, it is essential for modern organizations, where objectives often include cost reduction, resource consumption, operational efficiency and load balancing etc, to implement multi objective solutions. Single-objective systems can fail in handling dynamic and diverse workloads. This study introduces the Multi-Objective Whale Optimization-Based Scheduler (WOA-Scheduler) for efficient task scheduling in cloud computing environments. Leveraging the Whale Optimization Algorithm (WOA), the scheduler optimizes multiple objectives simultaneously, including cost, time, and load balancing. A key feature of the WOA-Scheduler is its flexibility in accommodating user-defined weights for different objectives, allowing organizations to prioritize optimization goals based on their specific requirements. Comparative analysis across various cloud environments demonstrates the superiority of the WOA-Scheduler over traditional single-objective approaches. By achieving a better balance between cost, time, and resource utilization, the scheduler enhances overall performance. Moreover, its multi-objective optimization capabilities enable dynamic adjustment of task assignments in response to changing workload conditions, ensuring efficient resource utilization and workload distribution. Overall, the WOA-Scheduler offers a customizable and adaptable solution for addressing the complexities of modern cloud services, ultimately improving performance and efficiency.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140014179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modular deep learning-based network intrusion detection architecture for real-world cyber-attack simulation 基于深度学习的模块化网络入侵检测架构,用于真实世界网络攻击模拟
IF 4.2 2区 计算机科学 Q1 Mathematics Pub Date : 2024-02-29 DOI: 10.1016/j.simpat.2024.102916
Vladimir Ciric , Marija Milosevic , Danijel Sokolovic , Ivan Milentijevic

In an increasingly digitalized world, cybersecurity has emerged as a critical component of safeguarding sensitive information and infrastructure from malicious threats. The threat actors are often in line or even one step ahead of the defense, causing the increasing reliance of security teams on artificial intelligence while trying to detect zero-day attacks. However, most of the cybersecurity solutions based on artificial intelligence that can be found in the literature are trained and tested on reference datasets that are at least five or more years old, which gives a vague insight into their security performances. Moreover, they often tend to be designed as isolated, self-focused components. The aim of this paper is to design and implement a modular network intrusion detection architecture capable of simulating cyberattacks based on real-world scenarios while evaluating its defense capabilities. The architecture is designed as a full pipeline from real-time network data collection and transformation to threat-information presentation and visualization, with a pre-trained artificial intelligence module at its core. Well-known components like CICFlowMeter, Prometheus, and Grafana are used and modified to fit our data preparation and core modules to form the proposed architecture for real-world network traffic security monitoring. For the sake of cyberattack simulation, the proposed architecture is situated within a virtual environment, surrounded by the Kali Linux-based penetration simulation agent on one side and a vulnerable agent on the other. The intrusion detection artificial intelligence module is trained on the CICIDS-2017 dataset, and it is demonstrated using the proposed architecture that, despite being trained on an outdated dataset, the trained module is still effective in detecting sophisticated modern attacks. Two case studies are given to illustrate how modular architectures and virtual environments can be valuable tools to assess the security properties of artificial intelligence-based solutions through simulation in real-world scenarios.

在日益数字化的世界中,网络安全已成为保护敏感信息和基础设施免受恶意威胁的关键组成部分。威胁行为者往往比防御者领先一步,甚至更早一步,这导致安全团队在试图检测零日攻击时越来越依赖人工智能。然而,文献中可以找到的大多数基于人工智能的网络安全解决方案都是在至少五年或五年以上的参考数据集上进行训练和测试的,因此对其安全性能的了解比较模糊。此外,它们往往被设计成孤立的、自我关注的组件。本文旨在设计并实现一种模块化网络入侵检测架构,该架构能够模拟基于真实世界场景的网络攻击,同时评估其防御能力。该架构设计为从实时网络数据收集和转换到威胁信息展示和可视化的完整流水线,其核心是预先训练好的人工智能模块。我们使用了 CICFlowMeter、Prometheus 和 Grafana 等知名组件,并对其进行了修改,以适应我们的数据准备和核心模块,从而形成适用于现实世界网络流量安全监控的拟议架构。为了模拟网络攻击,拟议架构被置于虚拟环境中,一侧是基于 Kali Linux 的渗透模拟代理,另一侧是易受攻击代理。入侵检测人工智能模块是在 CICIDS-2017 数据集上进行训练的,使用所提出的架构证明,尽管是在过时的数据集上进行训练,但训练后的模块仍能有效检测到复杂的现代攻击。本文给出了两个案例研究,以说明模块化架构和虚拟环境如何成为有价值的工具,通过在真实世界场景中进行模拟,评估基于人工智能的解决方案的安全特性。
{"title":"Modular deep learning-based network intrusion detection architecture for real-world cyber-attack simulation","authors":"Vladimir Ciric ,&nbsp;Marija Milosevic ,&nbsp;Danijel Sokolovic ,&nbsp;Ivan Milentijevic","doi":"10.1016/j.simpat.2024.102916","DOIUrl":"10.1016/j.simpat.2024.102916","url":null,"abstract":"<div><p>In an increasingly digitalized world, cybersecurity has emerged as a critical component of safeguarding sensitive information and infrastructure from malicious threats. The threat actors are often in line or even one step ahead of the defense, causing the increasing reliance of security teams on artificial intelligence while trying to detect zero-day attacks. However, most of the cybersecurity solutions based on artificial intelligence that can be found in the literature are trained and tested on reference datasets that are at least five or more years old, which gives a vague insight into their security performances. Moreover, they often tend to be designed as isolated, self-focused components. The aim of this paper is to design and implement a modular network intrusion detection architecture capable of simulating cyberattacks based on real-world scenarios while evaluating its defense capabilities. The architecture is designed as a full pipeline from real-time network data collection and transformation to threat-information presentation and visualization, with a pre-trained artificial intelligence module at its core. Well-known components like CICFlowMeter, Prometheus, and Grafana are used and modified to fit our data preparation and core modules to form the proposed architecture for real-world network traffic security monitoring. For the sake of cyberattack simulation, the proposed architecture is situated within a virtual environment, surrounded by the Kali Linux-based penetration simulation agent on one side and a vulnerable agent on the other. The intrusion detection artificial intelligence module is trained on the CICIDS-2017 dataset, and it is demonstrated using the proposed architecture that, despite being trained on an outdated dataset, the trained module is still effective in detecting sophisticated modern attacks. Two case studies are given to illustrate how modular architectures and virtual environments can be valuable tools to assess the security properties of artificial intelligence-based solutions through simulation in real-world scenarios.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140016946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling and experimental validation of twin lip balanced vane pump considering micromotions, contact mechanics, and lubricating interfaces 考虑微动、接触力学和润滑界面的双唇平衡叶片泵建模和实验验证
IF 4.2 2区 计算机科学 Q1 Mathematics Pub Date : 2024-02-23 DOI: 10.1016/j.simpat.2024.102914
Zubin Mistry , Andrea Vacca , Sri Krishna Uppaluri

This paper presents a model formulation for balanced twin lip vane pumps and an experimental activity to validate the model. The simulation model begins with a geometrical module that preprocesses the CAD drawings of a given unit. The model then performs a fluid dynamic analysis using a lumped-parameter formulation to solve for the pressures inside properly defined control volumes within the unit. The fluid dynamic model is solved simultaneously with a motion module that evaluates the planar motions of the vanes using Newton’s law of motion and with a lubricating interface solver based on the Reynolds equation. Contact dynamics formulations and elastohydrodynamic relations are applied at the vane locations in contact with the cam ring. The comparison with experimental results highlights a good match in volumetric and hydromechanical efficiencies. The measured outlet pressure ripple matches the simulated one for all tested speeds and pressures. The paper also shows a breakdown of the distribution of volumetric and power losses arising from various components of the machine. The proposed methodology is computationally inexpensive, so it can be used in future design and optimization studies aimed at improving the performance of such units.

本文介绍了平衡双唇叶片泵的模型配方以及验证模型的实验活动。仿真模型从几何模块开始,对给定设备的 CAD 图纸进行预处理。然后,该模型使用集合参数公式进行流体动力学分析,以求解设备内适当定义的控制体积内的压力。流体动力学模型与运动模块同时求解,运动模块使用牛顿运动定律评估叶片的平面运动,润滑界面求解器则基于雷诺方程。在叶片与凸轮环接触的位置应用了接触动力学公式和弹性流体力学关系。与实验结果的对比显示,体积效率和水力机械效率非常吻合。在所有测试速度和压力下,测得的出口压力波纹与模拟波纹一致。论文还显示了机器各部件产生的体积损失和功率损失的分布情况。所提出的方法计算成本低廉,可用于今后旨在提高此类设备性能的设计和优化研究。
{"title":"Modeling and experimental validation of twin lip balanced vane pump considering micromotions, contact mechanics, and lubricating interfaces","authors":"Zubin Mistry ,&nbsp;Andrea Vacca ,&nbsp;Sri Krishna Uppaluri","doi":"10.1016/j.simpat.2024.102914","DOIUrl":"https://doi.org/10.1016/j.simpat.2024.102914","url":null,"abstract":"<div><p>This paper presents a model formulation for balanced twin lip vane pumps and an experimental activity to validate the model. The simulation model begins with a geometrical module that preprocesses the CAD drawings of a given unit. The model then performs a fluid dynamic analysis using a lumped-parameter formulation to solve for the pressures inside properly defined control volumes within the unit. The fluid dynamic model is solved simultaneously with a motion module that evaluates the planar motions of the vanes using Newton’s law of motion and with a lubricating interface solver based on the Reynolds equation. Contact dynamics formulations and elastohydrodynamic relations are applied at the vane locations in contact with the cam ring. The comparison with experimental results highlights a good match in volumetric and hydromechanical efficiencies. The measured outlet pressure ripple matches the simulated one for all tested speeds and pressures. The paper also shows a breakdown of the distribution of volumetric and power losses arising from various components of the machine. The proposed methodology is computationally inexpensive, so it can be used in future design and optimization studies aimed at improving the performance of such units.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139985373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Simulation Modelling Practice and Theory
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1