Pub Date : 2023-09-25DOI: 10.1007/s13391-023-00462-z
Jiunan Xie, Hua Hu, Peixin Chen, Han Lei, Anmin Hu, Yunwen Wu, Ming Li
A low-temperature solid-state bonding technology using palladium-coated Co micro-nano cones array (MCA) and Sn-3.0Ag-0.5Cu (wt%) solder was investigated. The Pd modification layer on the surface of Co MCA reduced the growth of oxide film. Low-temperature solid-state bonding was achieved using Co/Pd MCA under the bonding condition of 750 gf, 175 °C and 150 s with the shear strength of 49.55 MPa, and there was no void found along the bonding interface. Microscopic observation revealed that Co/Pd MCA was fully embedded in the soft solder. The average shear strength of the bonding joint was measured and demonstrate that Co/Pd MCA has higher reliability than Co MCA. This work highlights the advantages of bonding based on Co/Pd MCA, which has great potential for extensive practical applications.
{"title":"Electrodeposited Palladium Coating on Co Micro-Nano Cones Array for Low-Temperature Solid-State Bonding","authors":"Jiunan Xie, Hua Hu, Peixin Chen, Han Lei, Anmin Hu, Yunwen Wu, Ming Li","doi":"10.1007/s13391-023-00462-z","DOIUrl":"10.1007/s13391-023-00462-z","url":null,"abstract":"<div><p>A low-temperature solid-state bonding technology using palladium-coated Co micro-nano cones array (MCA) and Sn-3.0Ag-0.5Cu (wt%) solder was investigated. The Pd modification layer on the surface of Co MCA reduced the growth of oxide film. Low-temperature solid-state bonding was achieved using Co/Pd MCA under the bonding condition of 750 gf, 175 °C and 150 s with the shear strength of 49.55 MPa, and there was no void found along the bonding interface. Microscopic observation revealed that Co/Pd MCA was fully embedded in the soft solder. The average shear strength of the bonding joint was measured and demonstrate that Co/Pd MCA has higher reliability than Co MCA. This work highlights the advantages of bonding based on Co/Pd MCA, which has great potential for extensive practical applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 3","pages":"326 - 336"},"PeriodicalIF":2.1,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135817753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-22DOI: 10.1007/s13391-023-00459-8
Sang Jeong Park, Seyun Kim, Okmin Park, Se Woong Lee, Sang-il Kim
Transition-metal chalcogenides with tunable electronic transport properties and unique crystal structures have attracted much attention as potential thermoelectric materials. In this study, the electrical, thermal, and thermoelectrical transport properties of Co0.5Fe0.5Se2, Co0.5Fe0.5Te2 and a series of solid-solution compositions (Co0.5Fe0.5(Se1−yTey)2, y = 0.25, 0.5, and 0.75) were investigated. Co0.5Fe0.5Se2 and Co0.5Fe0.5Te2 polycrystalline alloys exhibited high power factors of 1.37 and 1.53 mW/mK2 at 600 K, respectively, and their solid-solution compositions exhibited lower power factors between 0.38 and 0.81 mW/mK2. The lattice thermal conductivities of Co0.5Fe0.5Se2 and Co0.5Fe0.5Te2 were 2.87 and 1.71 W/mK at 300 K, respectively, and their solid-solution compositions exhibited lower lattice thermal conductivities between 0.96 and 1.98 W/mK. Consequently, the thermoelectric figure of merit (zT) of the Co0.5Fe0.5Se2 and Co0.5Fe0.5Te2 polycrystalline alloys was 0.16 and 0.18 at 600 K, respectively, and the zT of their solid-solution composition exhibited lower values between 0.04 and 0.09. As the solid-solution composition exhibited a lower thermoelectric performance than the Co0.5Fe0.5Se2 and Co0.5Fe0.5Te2 polycrystalline alloys, the lower thermoelectric performance was analyzed and discussed.
{"title":"Thermoelectric Transport Properties of Co0.5Fe0.5Se2, Co0.5Fe0.5Te2, and Their Solid-Solution Compositions","authors":"Sang Jeong Park, Seyun Kim, Okmin Park, Se Woong Lee, Sang-il Kim","doi":"10.1007/s13391-023-00459-8","DOIUrl":"10.1007/s13391-023-00459-8","url":null,"abstract":"<div><p>Transition-metal chalcogenides with tunable electronic transport properties and unique crystal structures have attracted much attention as potential thermoelectric materials. In this study, the electrical, thermal, and thermoelectrical transport properties of Co<sub>0.5</sub>Fe<sub>0.5</sub>Se<sub>2</sub>, Co<sub>0.5</sub>Fe<sub>0.5</sub>Te<sub>2</sub> and a series of solid-solution compositions (Co<sub>0.5</sub>Fe<sub>0.5</sub>(Se<sub>1−<i>y</i></sub>Te<sub><i>y</i></sub>)<sub>2</sub>, <i>y</i> = 0.25, 0.5, and 0.75) were investigated. Co<sub>0.5</sub>Fe<sub>0.5</sub>Se<sub>2</sub> and Co<sub>0.5</sub>Fe<sub>0.5</sub>Te<sub>2</sub> polycrystalline alloys exhibited high power factors of 1.37 and 1.53 mW/mK<sup>2</sup> at 600 K, respectively, and their solid-solution compositions exhibited lower power factors between 0.38 and 0.81 mW/mK<sup>2</sup>. The lattice thermal conductivities of Co<sub>0.5</sub>Fe<sub>0.5</sub>Se<sub>2</sub> and Co<sub>0.5</sub>Fe<sub>0.5</sub>Te<sub>2</sub> were 2.87 and 1.71 W/mK at 300 K, respectively, and their solid-solution compositions exhibited lower lattice thermal conductivities between 0.96 and 1.98 W/mK. Consequently, the thermoelectric figure of merit (<i>zT</i>) of the Co<sub>0.5</sub>Fe<sub>0.5</sub>Se<sub>2</sub> and Co<sub>0.5</sub>Fe<sub>0.5</sub>Te<sub>2</sub> polycrystalline alloys was 0.16 and 0.18 at 600 K, respectively, and the <i>zT</i> of their solid-solution composition exhibited lower values between 0.04 and 0.09. As the solid-solution composition exhibited a lower thermoelectric performance than the Co<sub>0.5</sub>Fe<sub>0.5</sub>Se<sub>2</sub> and Co<sub>0.5</sub>Fe<sub>0.5</sub>Te<sub>2</sub> polycrystalline alloys, the lower thermoelectric performance was analyzed and discussed.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 4","pages":"432 - 439"},"PeriodicalIF":2.1,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136060240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-12DOI: 10.1007/s13391-023-00458-9
Vipin Kumar, Rajneesh Kumar Mishra, Le Gia Trung, Pushpendra Kumar, Sagar M. Mane, Jae Cheol Shin, Jin Seog Gwag
Fossil fuels have a vital role in global energy resources. The burning of fossil fuels produces pollutants and harms the environment. These environmental problems can be solved by searching for a substitute for fossil fuels. Hydrogen production by water electrolysis has emerged as a promising substitute. It is a green, clean, and renewable energy source. Low-cost water is abundant on the Earth. The metal and its composite material have been used to develop water electrolysis. Among these composite catalytic materials, WS2/WO3 composite catalyst is well-known for its excellent physical and chemical behavior in water electrolysis to produce hydrogen. Engineered catalysts can further enhance the catalytic performance. Therefore, we investigate and analyze the catalytic performance of copper (Cu), palladium (Pd), and r-GO co-doped WS2/WO3 composite material for water electrolysis to produce green, clean, and renewable hydrogen energy by hydrogen evolution reaction (HER). The hydrothermal synthesis method is used to prepare the WS2/WO3 composite material co-doped with Cu, Pd, and r-GO. The co-doping is favorable for fast charge transfer by providing many active catalytic sites for HER and enhancing the HER catalytic performance. Therefore, the co-doped tungsten disulfide/oxide could be a potential composite material for efficient water electrolysis for clean and renewable hydrogen production by electrochemical water electrolysis.