Pub Date : 2023-09-22DOI: 10.1007/s13391-023-00459-8
Sang Jeong Park, Seyun Kim, Okmin Park, Se Woong Lee, Sang-il Kim
Transition-metal chalcogenides with tunable electronic transport properties and unique crystal structures have attracted much attention as potential thermoelectric materials. In this study, the electrical, thermal, and thermoelectrical transport properties of Co0.5Fe0.5Se2, Co0.5Fe0.5Te2 and a series of solid-solution compositions (Co0.5Fe0.5(Se1−yTey)2, y = 0.25, 0.5, and 0.75) were investigated. Co0.5Fe0.5Se2 and Co0.5Fe0.5Te2 polycrystalline alloys exhibited high power factors of 1.37 and 1.53 mW/mK2 at 600 K, respectively, and their solid-solution compositions exhibited lower power factors between 0.38 and 0.81 mW/mK2. The lattice thermal conductivities of Co0.5Fe0.5Se2 and Co0.5Fe0.5Te2 were 2.87 and 1.71 W/mK at 300 K, respectively, and their solid-solution compositions exhibited lower lattice thermal conductivities between 0.96 and 1.98 W/mK. Consequently, the thermoelectric figure of merit (zT) of the Co0.5Fe0.5Se2 and Co0.5Fe0.5Te2 polycrystalline alloys was 0.16 and 0.18 at 600 K, respectively, and the zT of their solid-solution composition exhibited lower values between 0.04 and 0.09. As the solid-solution composition exhibited a lower thermoelectric performance than the Co0.5Fe0.5Se2 and Co0.5Fe0.5Te2 polycrystalline alloys, the lower thermoelectric performance was analyzed and discussed.
{"title":"Thermoelectric Transport Properties of Co0.5Fe0.5Se2, Co0.5Fe0.5Te2, and Their Solid-Solution Compositions","authors":"Sang Jeong Park, Seyun Kim, Okmin Park, Se Woong Lee, Sang-il Kim","doi":"10.1007/s13391-023-00459-8","DOIUrl":"10.1007/s13391-023-00459-8","url":null,"abstract":"<div><p>Transition-metal chalcogenides with tunable electronic transport properties and unique crystal structures have attracted much attention as potential thermoelectric materials. In this study, the electrical, thermal, and thermoelectrical transport properties of Co<sub>0.5</sub>Fe<sub>0.5</sub>Se<sub>2</sub>, Co<sub>0.5</sub>Fe<sub>0.5</sub>Te<sub>2</sub> and a series of solid-solution compositions (Co<sub>0.5</sub>Fe<sub>0.5</sub>(Se<sub>1−<i>y</i></sub>Te<sub><i>y</i></sub>)<sub>2</sub>, <i>y</i> = 0.25, 0.5, and 0.75) were investigated. Co<sub>0.5</sub>Fe<sub>0.5</sub>Se<sub>2</sub> and Co<sub>0.5</sub>Fe<sub>0.5</sub>Te<sub>2</sub> polycrystalline alloys exhibited high power factors of 1.37 and 1.53 mW/mK<sup>2</sup> at 600 K, respectively, and their solid-solution compositions exhibited lower power factors between 0.38 and 0.81 mW/mK<sup>2</sup>. The lattice thermal conductivities of Co<sub>0.5</sub>Fe<sub>0.5</sub>Se<sub>2</sub> and Co<sub>0.5</sub>Fe<sub>0.5</sub>Te<sub>2</sub> were 2.87 and 1.71 W/mK at 300 K, respectively, and their solid-solution compositions exhibited lower lattice thermal conductivities between 0.96 and 1.98 W/mK. Consequently, the thermoelectric figure of merit (<i>zT</i>) of the Co<sub>0.5</sub>Fe<sub>0.5</sub>Se<sub>2</sub> and Co<sub>0.5</sub>Fe<sub>0.5</sub>Te<sub>2</sub> polycrystalline alloys was 0.16 and 0.18 at 600 K, respectively, and the <i>zT</i> of their solid-solution composition exhibited lower values between 0.04 and 0.09. As the solid-solution composition exhibited a lower thermoelectric performance than the Co<sub>0.5</sub>Fe<sub>0.5</sub>Se<sub>2</sub> and Co<sub>0.5</sub>Fe<sub>0.5</sub>Te<sub>2</sub> polycrystalline alloys, the lower thermoelectric performance was analyzed and discussed.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 4","pages":"432 - 439"},"PeriodicalIF":2.1,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136060240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-12DOI: 10.1007/s13391-023-00458-9
Vipin Kumar, Rajneesh Kumar Mishra, Le Gia Trung, Pushpendra Kumar, Sagar M. Mane, Jae Cheol Shin, Jin Seog Gwag
Fossil fuels have a vital role in global energy resources. The burning of fossil fuels produces pollutants and harms the environment. These environmental problems can be solved by searching for a substitute for fossil fuels. Hydrogen production by water electrolysis has emerged as a promising substitute. It is a green, clean, and renewable energy source. Low-cost water is abundant on the Earth. The metal and its composite material have been used to develop water electrolysis. Among these composite catalytic materials, WS2/WO3 composite catalyst is well-known for its excellent physical and chemical behavior in water electrolysis to produce hydrogen. Engineered catalysts can further enhance the catalytic performance. Therefore, we investigate and analyze the catalytic performance of copper (Cu), palladium (Pd), and r-GO co-doped WS2/WO3 composite material for water electrolysis to produce green, clean, and renewable hydrogen energy by hydrogen evolution reaction (HER). The hydrothermal synthesis method is used to prepare the WS2/WO3 composite material co-doped with Cu, Pd, and r-GO. The co-doping is favorable for fast charge transfer by providing many active catalytic sites for HER and enhancing the HER catalytic performance. Therefore, the co-doped tungsten disulfide/oxide could be a potential composite material for efficient water electrolysis for clean and renewable hydrogen production by electrochemical water electrolysis.
Graphical Abstract
化石燃料在全球能源资源中发挥着至关重要的作用。化石燃料的燃烧会产生污染物,对环境造成危害。这些环境问题可以通过寻找化石燃料的替代品来解决。水电解制氢已成为一种前景广阔的替代品。它是一种绿色、清洁和可再生能源。地球上有大量低成本的水。金属及其复合材料已被用于开发水电解。在这些复合催化材料中,WS2/WO3 复合催化剂因其在电解水制氢过程中优异的物理和化学性能而闻名。工程催化剂可进一步提高催化性能。因此,我们研究并分析了铜(Cu)、钯(Pd)和r-GO共掺杂的WS2/WO3复合材料在水电解中的催化性能,以利用氢进化反应(HER)生产绿色、清洁和可再生的氢能。该研究采用水热合成法制备了共掺杂 Cu、Pd 和 r-GO 的 WS2/WO3 复合材料。共掺杂为 HER 提供了许多活性催化位点,有利于电荷的快速转移,从而提高 HER 的催化性能。因此,共掺杂的二硫化钨/氧化物可以成为一种潜在的复合材料,用于高效电解水,通过电化学电解水法生产清洁和可再生氢气。
{"title":"Copper, Palladium, and Reduced Graphene Oxide Co-doped Layered WS2/WO3 Nanostructures for Electrocatalytic Hydrogen Generation","authors":"Vipin Kumar, Rajneesh Kumar Mishra, Le Gia Trung, Pushpendra Kumar, Sagar M. Mane, Jae Cheol Shin, Jin Seog Gwag","doi":"10.1007/s13391-023-00458-9","DOIUrl":"10.1007/s13391-023-00458-9","url":null,"abstract":"<div><p>Fossil fuels have a vital role in global energy resources. The burning of fossil fuels produces pollutants and harms the environment. These environmental problems can be solved by searching for a substitute for fossil fuels. Hydrogen production by water electrolysis has emerged as a promising substitute. It is a green, clean, and renewable energy source. Low-cost water is abundant on the Earth. The metal and its composite material have been used to develop water electrolysis. Among these composite catalytic materials, WS<sub>2</sub>/WO<sub>3</sub> composite catalyst is well-known for its excellent physical and chemical behavior in water electrolysis to produce hydrogen. Engineered catalysts can further enhance the catalytic performance. Therefore, we investigate and analyze the catalytic performance of copper (Cu), palladium (Pd), and r-GO co-doped WS<sub>2</sub>/WO<sub>3</sub> composite material for water electrolysis to produce green, clean, and renewable hydrogen energy by hydrogen evolution reaction (HER). The hydrothermal synthesis method is used to prepare the WS<sub>2</sub>/WO<sub>3</sub> composite material co-doped with Cu, Pd, and r-GO. The co-doping is favorable for fast charge transfer by providing many active catalytic sites for HER and enhancing the HER catalytic performance. Therefore, the co-doped tungsten disulfide/oxide could be a potential composite material for efficient water electrolysis for clean and renewable hydrogen production by electrochemical water electrolysis.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 4","pages":"414 - 424"},"PeriodicalIF":2.1,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135878889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-10DOI: 10.1007/s13391-023-00457-w
Hong Seong Park, Kyeong-Rim Yeo, Won Suk Jung, Soo-Kil Kim
In this study, we investigated ternary transition metal catalysts composed of Cu, Ni, and Mo for application to hydrogen oxidation reaction (HOR) in alkaline electrolyte. A series of catalysts with a wide range of elemental compositions were fabricated by a simple electrodeposition method, and their material and electrochemical properties were investigated. In particular, to avoid inaccurate activity measurements due to oxidation and reduction of the transition metal-based catalysts during the HOR test, the electrochemical measurements were performed in both H2- and N2-saturated electrolytes, and the results were compared. The fabricated CuNiMo catalyst with an optimized composition exhibited an excellent HOR activity of 2.03 mA cm−2 at 0.1 VRHE, while the current density decreased only by 0.55 mA cm−2 after 3000 cycles. The enhanced HOR activity is attributed to the combined effects of the modified crystal structure, increased surface area, alloying effects beneficial to the hydrogen binding energy and OH− binding energy, and appropriate surface compositions between the H-adsorbing metallic state and OH-adsorbing oxophilic states. The characteristics of the catalyst demonstrated in this study can provide insights for the development of non-precious catalysts for HOR in alkaline electrolytes.
Graphical Abstract
本研究探讨了由铜、镍和钼组成的三元过渡金属催化剂在碱性电解液中氢氧化反应(HOR)中的应用。通过简单的电沉积方法制备了一系列元素组成范围广泛的催化剂,并研究了它们的材料和电化学特性。特别是,为了避免在 HOR 测试过程中由于过渡金属基催化剂的氧化和还原而导致活性测量不准确,电化学测量同时在 H2- 和 N2 饱和电解质中进行,并对结果进行了比较。具有优化成分的铜镍钼催化剂在 0.1 VRHE 条件下表现出 2.03 mA cm-2 的优异 HOR 活性,而电流密度在 3000 次循环后仅下降了 0.55 mA cm-2。HOR 活性的提高归功于改良的晶体结构、增大的表面积、有利于氢结合能和羟基结合能的合金效应以及吸附 H 的金属态和吸附羟基的亲氧化态之间适当的表面成分的综合作用。本研究中展示的催化剂特性可为开发用于碱性电解质中 HOR 的非贵金属催化剂提供启示。
{"title":"Electrodeposited Ternary CuNiMo Catalysts for Alkaline Hydrogen Oxidation","authors":"Hong Seong Park, Kyeong-Rim Yeo, Won Suk Jung, Soo-Kil Kim","doi":"10.1007/s13391-023-00457-w","DOIUrl":"10.1007/s13391-023-00457-w","url":null,"abstract":"<div><p>In this study, we investigated ternary transition metal catalysts composed of Cu, Ni, and Mo for application to hydrogen oxidation reaction (HOR) in alkaline electrolyte. A series of catalysts with a wide range of elemental compositions were fabricated by a simple electrodeposition method, and their material and electrochemical properties were investigated. In particular, to avoid inaccurate activity measurements due to oxidation and reduction of the transition metal-based catalysts during the HOR test, the electrochemical measurements were performed in both H<sub>2</sub>- and N<sub>2</sub>-saturated electrolytes, and the results were compared. The fabricated CuNiMo catalyst with an optimized composition exhibited an excellent HOR activity of 2.03 mA cm<sup>−2</sup> at 0.1 V<sub>RHE</sub>, while the current density decreased only by 0.55 mA cm<sup>−2</sup> after 3000 cycles. The enhanced HOR activity is attributed to the combined effects of the modified crystal structure, increased surface area, alloying effects beneficial to the hydrogen binding energy and OH<sup>−</sup> binding energy, and appropriate surface compositions between the H-adsorbing metallic state and OH-adsorbing oxophilic states. The characteristics of the catalyst demonstrated in this study can provide insights for the development of non-precious catalysts for HOR in alkaline electrolytes.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 3","pages":"293 - 305"},"PeriodicalIF":2.1,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136071650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-05DOI: 10.1007/s13391-023-00456-x
Jong Seok Chung, Eung Soo Kim
Microwave dielectric properties of MgTi1-x(Mn1/3Nb2/3)xO3 (0 ≤ x ≤ 0.05) ceramics were investigated based on their crystal structure characteristics. For the specimens sintered at 1400 °C for 4 h, complete solid solutions with a single phase and an ilmenite structure were obtained for the entire range of compositions. The quality factor (Qf) was dependent on the average Ti-site covalency related to the electronegativity difference and the reduction state of Ti4+. MgTi0.995(Mn1/3Nb2/3)0.005O3 exhibited the highest Qf value of 212,000 GHz owing to the high average covalency obtained from the Rietveld refinement of X-ray Diffraction patterns, high binding energy, and small full width at half maximum of Ti 2p peaks, as confirmed by X-ray Photoelectron Spectroscopy of MgTiO3 –based ceramics. The temperature coefficients of the resonant frequency (TCF) of MgTiO3-based ceramics were dependent on the degree of average oxygen octahedral distortion of the ilmenite structure. The dielectric constant (K) was affected by the theoretical dielectric polarizability of the constituent ions of sintered specimens. Excellent microwave dielectric properties were obtained for MgTi0.995(Mn1/3Nb2/3)0.005O3; K = 18.05, Qf = 212,000 GHz, TCF = − 37.04 ppm/°C. The microwave dielectric properties were improved by substituting (Mn1/3Nb2/3)4+ for Ti4+ in MgTiO3-based ceramics.
Graphical Abstract
根据 MgTi1-x(Mn1/3Nb2/3)xO3(0 ≤ x ≤ 0.05)陶瓷的晶体结构特征,研究了其微波介电性能。对于在 1400 °C 下烧结 4 小时的试样,在整个成分范围内都获得了具有单相和钛铁矿结构的完整固溶体。品质因数(Qf)取决于与电负性差异和 Ti4+ 的还原状态有关的平均 Ti 位共价。MgTi0.995(Mn1/3Nb2/3)0.005O3 的 Qf 值最高,达到 212,000 GHz,这是因为根据 X 射线衍射图样的里特维尔德细化得到的平均共价率高、结合能高、Ti 2p 峰的半最大全宽小,这一点已通过 MgTiO3 基陶瓷的 X 射线光电子能谱分析得到证实。MgTiO3 基陶瓷的共振频率温度系数(TCF)取决于钛铁矿结构的八面体平均氧畸变程度。介电常数(K)受烧结试样中组成离子的理论介电极化率的影响。MgTi0.995(Mn1/3Nb2/3)0.005O3 获得了优异的微波介电性能;K = 18.05,Qf = 212,000 GHz,TCF = - 37.04 ppm/°C。通过在 MgTiO3 基陶瓷中用 (Mn1/3Nb2/3)4+ 代替 Ti4+,微波介电性能得到了改善。 图文摘要
{"title":"Improvement of Microwave Dielectric Properties of MgTiO3 Ceramics by Ti-Site Complex Substitution","authors":"Jong Seok Chung, Eung Soo Kim","doi":"10.1007/s13391-023-00456-x","DOIUrl":"10.1007/s13391-023-00456-x","url":null,"abstract":"<div><p>Microwave dielectric properties of MgTi<sub>1-<i>x</i></sub>(Mn<sub>1/3</sub>Nb<sub>2/3</sub>)<sub><i>x</i></sub>O<sub>3</sub> (0 ≤ <i>x</i> ≤ 0.05) ceramics were investigated based on their crystal structure characteristics. For the specimens sintered at 1400 °C for 4 h, complete solid solutions with a single phase and an ilmenite structure were obtained for the entire range of compositions. The quality factor (<i>Qf</i>) was dependent on the average Ti-site covalency related to the electronegativity difference and the reduction state of Ti<sup>4+</sup>. MgTi<sub>0.995</sub>(Mn<sub>1/3</sub>Nb<sub>2/3</sub>)<sub>0.005</sub>O<sub>3</sub> exhibited the highest <i>Qf</i> value of 212,000 GHz owing to the high average covalency obtained from the Rietveld refinement of X-ray Diffraction patterns, high binding energy, and small full width at half maximum of Ti 2<i>p</i> peaks, as confirmed by X-ray Photoelectron Spectroscopy of MgTiO<sub>3</sub> –based ceramics. The temperature coefficients of the resonant frequency (<i>TCF</i>) of MgTiO<sub>3</sub>-based ceramics were dependent on the degree of average oxygen octahedral distortion of the ilmenite structure. The dielectric constant (<i>K</i>) was affected by the theoretical dielectric polarizability of the constituent ions of sintered specimens. Excellent microwave dielectric properties were obtained for MgTi<sub>0.995</sub>(Mn<sub>1/3</sub>Nb<sub>2/3</sub>)<sub>0.005</sub>O<sub>3</sub>; <i>K</i> = 18.05, <i>Qf</i> = 212,000 GHz, TCF = − 37.04 ppm/°C. The microwave dielectric properties were improved by substituting (Mn<sub>1/3</sub>Nb<sub>2/3</sub>)<sup>4+</sup> for Ti<sup>4+</sup> in MgTiO<sub>3</sub>-based ceramics.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 1","pages":"56 - 64"},"PeriodicalIF":2.1,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44908522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1007/s13391-023-00454-z
Yaoyang Hu, Geoffrey Rivers, Michael P. Weir, David B. Amabilino, Christopher J. Tuck, Ricky D. Wildman, Oleg Makarovsky, Simon Woodward
We describe the synthesis and characterisation of the first of a new class of soluble ladder oligomeric thermoelectric material based on previously unutilised ethene-1,1,2,2-tetrasulfonic acid. Reaction of Ba(OH)2 and propionic acid at a 1:1 stoichiometry leads to the formation of the previously unrecognised soluble [Ba(OH)(O2CEt)]⋅H2O. The latter when used to hydrolyse 1,3,4,6-tetrathiapentalene-2,5-dione (TPD), in the presence of NiCl2, forms a new material whose elemental composition is in accord with the formula [(EtCO2Ba)4Ni8{(O3S)2C = C(SO3)2}5]⋅22H2O (4). Compound 4 can be pressed into pellets, drop-cast as DMSO solutions or ink-jet printed (down to sub-mm resolutions). While its room temperature thermoelectric properties are modest (σmax 0.04 S cm−1 and Seebeck coefficient, αmax − 25.8 μV K−1) we introduce a versatile new oligomeric material that opens new possible synthetic routes for n-type thermoelectrics.
{"title":"A Soluble ‘Ba(Ni-ett)’ (ett = 1,1,2,2-Ethenetetrathiolate) Derived Thermoelectric Material","authors":"Yaoyang Hu, Geoffrey Rivers, Michael P. Weir, David B. Amabilino, Christopher J. Tuck, Ricky D. Wildman, Oleg Makarovsky, Simon Woodward","doi":"10.1007/s13391-023-00454-z","DOIUrl":"10.1007/s13391-023-00454-z","url":null,"abstract":"<div><p>We describe the synthesis and characterisation of the first of a new class of soluble ladder oligomeric thermoelectric material based on previously unutilised ethene-1,1,2,2-tetrasulfonic acid. Reaction of Ba(OH)<sub>2</sub> and propionic acid at a 1:1 stoichiometry leads to the formation of the previously unrecognised soluble [Ba(OH)(O<sub>2</sub>CEt)]⋅H<sub>2</sub>O. The latter when used to hydrolyse 1,3,4,6-tetrathiapentalene-2,5-dione (TPD), in the presence of NiCl<sub>2</sub>, forms a new material whose elemental composition is in accord with the formula [(EtCO<sub>2</sub>Ba)<sub>4</sub>Ni<sub>8</sub>{(O<sub>3</sub>S)<sub>2</sub>C = C(SO<sub>3</sub>)<sub>2</sub>}<sub>5</sub>]⋅22H<sub>2</sub>O (<b>4</b>). Compound <b>4</b> can be pressed into pellets, drop-cast as DMSO solutions or ink-jet printed (down to sub-mm resolutions). While its room temperature thermoelectric properties are modest (σ<sub>max</sub> 0.04 S cm<sup>−1</sup> and Seebeck coefficient, α<sub>max</sub> − 25.8 μV K<sup>−1</sup>) we introduce a versatile new oligomeric material that opens new possible synthetic routes for n-type thermoelectrics.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 2","pages":"150 - 157"},"PeriodicalIF":2.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13391-023-00454-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48695533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-28DOI: 10.1007/s13391-023-00455-y
Tae-Kyung Lee, Seung-Wook Kim, Dae-Yong Jeong
The demand for soft magnetic amorphous metal powders with high saturation magnetization values and low energy loss has increased to achieve high-performance inductors for mobile electronic devices. In this study, Fe-based Fe92.3Si3.5B3.0C0.7P0.5 (wt.%) amorphous metal powders were prepared using different atomization methods for controlling the surface oxidation of the metal alloy powder. Conventional high-pressure water atomization and the newly developed high-speed water screen atomization methods were used for preparation. Regardless of the preparation methods, both alloy powders were amorphous, and their magnetic flux density (Bs) values were more than 165 emu/g. Compared to the powders from the conventional high-pressure water atomization method, the amorphous metal powder manufactured using the high-speed water screen atomization process had lower eddy current loss because of the formation of a thin and uniform oxide layer. Furthermore, the magnetic properties of the consolidated magnetic cores fabricated with the amorphous powders produced by the high-speed water screen atomization method using compact-pressing techniques were characterized. Magnetic powders with fewer surface oxidation layers exhibited increased initial permeability and a smaller coercive field, leading to a lower core loss value. The magnetic core made from Fe92.3Si3.5B3.0C0.7P0.5 (wt.%) amorphous powder with an oxide content of 0.12 (wt.%) using the high-speed water screen atomization method exhibited an initial permeability of 25 in the frequency range up to 5 MHz, and a loss of 237 mW/cm3 with Bm = (0.2,{text{T}}) at 1 MHz.
{"title":"Effects of Surface Oxidation on the Magnetic Properties of Fe-Based Amorphous Metal Powder Made by Atomization Methods","authors":"Tae-Kyung Lee, Seung-Wook Kim, Dae-Yong Jeong","doi":"10.1007/s13391-023-00455-y","DOIUrl":"10.1007/s13391-023-00455-y","url":null,"abstract":"<div><p>The demand for soft magnetic amorphous metal powders with high saturation magnetization values and low energy loss has increased to achieve high-performance inductors for mobile electronic devices. In this study, Fe-based Fe<sub>92.3</sub>Si<sub>3.5</sub>B<sub>3.0</sub>C<sub>0.7</sub>P<sub>0.5</sub> (wt.%) amorphous metal powders were prepared using different atomization methods for controlling the surface oxidation of the metal alloy powder. Conventional high-pressure water atomization and the newly developed high-speed water screen atomization methods were used for preparation. Regardless of the preparation methods, both alloy powders were amorphous, and their magnetic flux density (<i>B</i>s) values were more than 165 emu/g. Compared to the powders from the conventional high-pressure water atomization method, the amorphous metal powder manufactured using the high-speed water screen atomization process had lower eddy current loss because of the formation of a thin and uniform oxide layer. Furthermore, the magnetic properties of the consolidated magnetic cores fabricated with the amorphous powders produced by the high-speed water screen atomization method using compact-pressing techniques were characterized. Magnetic powders with fewer surface oxidation layers exhibited increased initial permeability and a smaller coercive field, leading to a lower core loss value. The magnetic core made from Fe<sub>92.3</sub>Si<sub>3.5</sub>B<sub>3.0</sub>C<sub>0.7</sub>P<sub>0.5</sub> (wt.%) amorphous powder with an oxide content of 0.12 (wt.%) using the high-speed water screen atomization method exhibited an initial permeability of 25 in the frequency range up to 5 MHz, and a loss of 237 mW/cm<sup>3</sup> with <i>B</i><sub>m</sub> = <span>(0.2,{text{T}})</span> at 1 MHz.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 3","pages":"261 - 268"},"PeriodicalIF":2.1,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42020855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-27DOI: 10.1007/s13391-023-00451-2
Tae-Gyun Kwon, Younghoon Kim
Conductive paste inks have received considerable attention as facile conductive materials for the formation of electrode layers. However, conventional paste inks result in films with poor surface morphology. In addition, they require a high thermal annealing temperature for achieving high electrical conductivity because of their organic/inorganic composite structure, in which nanosized metal particles and polymeric organic binders are mixed in solvents. In this work, we prepare solvent-free and polymeric-binder-free metal nanoparticle (NP) fluids, which can be used as facile conductive pastes for forming an electrode layer after sintering at a considerably low temperature. We employ thiol-terminated imidazolium-type ionic liquid (IL-SH) molecules with a small molecular weight and fluidic behavior as the surface ligands of Ag NPs. IL-SH-stabilized Ag NPs exhibit fluidic behavior and metallic conducting properties at a considerably low sintering temperature of 250 °C.
{"title":"Conductive Paste Inks Prepared Using Ionic-Liquid-Stabilized Metal Nanoparticle Fluids and their Sintering Effect","authors":"Tae-Gyun Kwon, Younghoon Kim","doi":"10.1007/s13391-023-00451-2","DOIUrl":"10.1007/s13391-023-00451-2","url":null,"abstract":"<div><p>Conductive paste inks have received considerable attention as facile conductive materials for the formation of electrode layers. However, conventional paste inks result in films with poor surface morphology. In addition, they require a high thermal annealing temperature for achieving high electrical conductivity because of their organic/inorganic composite structure, in which nanosized metal particles and polymeric organic binders are mixed in solvents. In this work, we prepare solvent-free and polymeric-binder-free metal nanoparticle (NP) fluids, which can be used as facile conductive pastes for forming an electrode layer after sintering at a considerably low temperature. We employ thiol-terminated imidazolium-type ionic liquid (IL-SH) molecules with a small molecular weight and fluidic behavior as the surface ligands of Ag NPs. IL-SH-stabilized Ag NPs exhibit fluidic behavior and metallic conducting properties at a considerably low sintering temperature of 250 °C.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 3","pages":"337 - 344"},"PeriodicalIF":2.1,"publicationDate":"2023-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44583471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-24DOI: 10.1007/s13391-023-00453-0
Eunyeong Yang, Seoin Kang, Sanghyun Jeong, Kihyun Shin, Jung-Sub Wi, Joon Sik Park, Sangyeob Lee, Choong-Heui Chung
Mechanically flexible transparent conductive electrodes (TCEs) with high optoelectronic performance are essential for flexible or wearable optoelectronic devices, which are currently receiving a considerable amount of attention. In this study, we investigate the structural, electrical, optical and mechanical properties of electrodeposited hierarchical silver network TCEs consisting of two layers of silver nanowires (AgNWs) and a silver micromesh. Hierarchical structures are known to improve the optoelectronic properties of network-type TCEs. To fabricate an electrodeposited hierarchical network, a AgNW solution is first spun onto a substrate to form randomly distributed AgNWs, and a silver micromesh is then formed on the AgNWs. Subsequently, silver is electrodeposited onto the hierarchical network. As a result of the electrodeposition, AgNW-AgNW and AgNW-silver micromesh contacts are effectively welded, and the dimensions of the AgNWs and the silver micromesh are optimized to maximize the figure of merit of the TCE. Furthermore, the electrodeposited hierarchical silver network shows excellent mechanical flexibility and much less degradation of its sheet resistance than that experienced by ITO upon repeated convex and concave bending. Its resulting optoelectronic and mechanically flexible performance is superior to that of commercialized ITO.
{"title":"Electrodeposited Hierarchical Silver Network Transparent Conducting Electrodes with Excellent Optoelectronic Properties and Mechanical Flexibility","authors":"Eunyeong Yang, Seoin Kang, Sanghyun Jeong, Kihyun Shin, Jung-Sub Wi, Joon Sik Park, Sangyeob Lee, Choong-Heui Chung","doi":"10.1007/s13391-023-00453-0","DOIUrl":"10.1007/s13391-023-00453-0","url":null,"abstract":"<div><p>Mechanically flexible transparent conductive electrodes (TCEs) with high optoelectronic performance are essential for flexible or wearable optoelectronic devices, which are currently receiving a considerable amount of attention. In this study, we investigate the structural, electrical, optical and mechanical properties of electrodeposited hierarchical silver network TCEs consisting of two layers of silver nanowires (AgNWs) and a silver micromesh. Hierarchical structures are known to improve the optoelectronic properties of network-type TCEs. To fabricate an electrodeposited hierarchical network, a AgNW solution is first spun onto a substrate to form randomly distributed AgNWs, and a silver micromesh is then formed on the AgNWs. Subsequently, silver is electrodeposited onto the hierarchical network. As a result of the electrodeposition, AgNW-AgNW and AgNW-silver micromesh contacts are effectively welded, and the dimensions of the AgNWs and the silver micromesh are optimized to maximize the figure of merit of the TCE. Furthermore, the electrodeposited hierarchical silver network shows excellent mechanical flexibility and much less degradation of its sheet resistance than that experienced by ITO upon repeated convex and concave bending. Its resulting optoelectronic and mechanically flexible performance is superior to that of commercialized ITO.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 3","pages":"254 - 260"},"PeriodicalIF":2.1,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52846924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-23DOI: 10.1007/s13391-023-00450-3
Ju Won Kim, Jin Gi An, Guen Hyung Oh, Joo Hyung Park, TaeWan Kim
Molybdenum disulfide (MoS2) grown via metal-organic chemical vapor deposition is known to exhibit high transparency and superior quality. Transparent thin-film transistor (TFT) based on a multilayer MoS2 film and indium zinc oxide (IZO) using a representative transparent conducting oxide as source and drain electrodes indicate more than 70% transmittance in the visible wavelength. However, the device performance is limited by the large Schottky barrier height corresponding to the high work function of IZO (~ 5.1 eV) and surface impurities generated during the wet transfer process and subsequent oxidation. In this study, we addressed this problem by employing air thermal annealing to improve the TFT device performance. Consequently, contact resistance is reduced ~ 10 times, and the field-effect mobility and on/off ratio measured using ion-gel side gate, which are important parameters for TFT device operation, were enhanced by ~ 59 and ~ 81 times, respectively.
{"title":"Improved Performance of Transparent MoS2 Thin-Film Transistor with IZO Electrodes by Air Thermal Annealing","authors":"Ju Won Kim, Jin Gi An, Guen Hyung Oh, Joo Hyung Park, TaeWan Kim","doi":"10.1007/s13391-023-00450-3","DOIUrl":"10.1007/s13391-023-00450-3","url":null,"abstract":"<div><p>Molybdenum disulfide (MoS<sub>2</sub>) grown via metal-organic chemical vapor deposition is known to exhibit high transparency and superior quality. Transparent thin-film transistor (TFT) based on a multilayer MoS<sub>2</sub> film and indium zinc oxide (IZO) using a representative transparent conducting oxide as source and drain electrodes indicate more than 70% transmittance in the visible wavelength. However, the device performance is limited by the large Schottky barrier height corresponding to the high work function of IZO (~ 5.1 eV) and surface impurities generated during the wet transfer process and subsequent oxidation. In this study, we addressed this problem by employing air thermal annealing to improve the TFT device performance. Consequently, contact resistance is reduced ~ 10 times, and the field-effect mobility and on/off ratio measured using ion-gel side gate, which are important parameters for TFT device operation, were enhanced by ~ 59 and ~ 81 times, respectively.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 3","pages":"225 - 231"},"PeriodicalIF":2.1,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47985145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-23DOI: 10.1007/s13391-023-00452-1
Suk-Ho Song, Jae-In Yoo, Hyo-Bin Kim, Sung-Cheon Kang, Kanghoon Kim, Sung-Jae Park, Qun Yan, Jang-Kun Song
The efficiency improvement of organic light-emitting diodes (OLEDs) is important but challenging. Here, we introduce a unique OLED with a hole modulation layer (HML) in the middle of its emission layer (EML). The external quantum efficiency and power efficiency can be improved by approximately 58% when an HML with optimized thickness is inserted. HML insertion can efficiently retard hole flow, thus improving (i) exciton distribution uniformity and (ii) local electron–hole charge balance. A systematic study of the individual contributions of two EMLs separated by the HML shows that the former factor dominantly works at low current densities (< 10 mA/cm2), whereas the latter factor functions over the entire current density range of the OLED. Therefore, the efficiency improvement is greatest at low current densities, which aligns with the typical operating range in display applications. The results provide a deeper understanding of the OLED emission mechanism, and the proposed OLED structure can significantly benefit high-performance OLED displays.
{"title":"Manipulation of Hole and Exciton Distributions in Organic Light-Emitting Diodes with Dual Emission Layers","authors":"Suk-Ho Song, Jae-In Yoo, Hyo-Bin Kim, Sung-Cheon Kang, Kanghoon Kim, Sung-Jae Park, Qun Yan, Jang-Kun Song","doi":"10.1007/s13391-023-00452-1","DOIUrl":"10.1007/s13391-023-00452-1","url":null,"abstract":"<div><p>The efficiency improvement of organic light-emitting diodes (OLEDs) is important but challenging. Here, we introduce a unique OLED with a hole modulation layer (HML) in the middle of its emission layer (EML). The external quantum efficiency and power efficiency can be improved by approximately 58% when an HML with optimized thickness is inserted. HML insertion can efficiently retard hole flow, thus improving (<i>i</i>) exciton distribution uniformity and (<i>ii</i>) local electron–hole charge balance. A systematic study of the individual contributions of two EMLs separated by the HML shows that the former factor dominantly works at low current densities (< 10 mA/cm<sup>2</sup>), whereas the latter factor functions over the entire current density range of the OLED. Therefore, the efficiency improvement is greatest at low current densities, which aligns with the typical operating range in display applications. The results provide a deeper understanding of the OLED emission mechanism, and the proposed OLED structure can significantly benefit high-performance OLED displays.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 3","pages":"232 - 242"},"PeriodicalIF":2.1,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46451038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}