Pub Date : 2024-04-15DOI: 10.1093/biostatistics/kxad017
{"title":"Correction to: A transformation perspective on marginal and conditional models.","authors":"","doi":"10.1093/biostatistics/kxad017","DOIUrl":"10.1093/biostatistics/kxad017","url":null,"abstract":"","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"597"},"PeriodicalIF":2.1,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017110/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10301897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-15DOI: 10.1093/biostatistics/kxad004
Lan Luo, Devan V Mehrotra, Judong Shen, Zheng-Zheng Tang
Identifying genotype-by-environment interaction (GEI) is challenging because the GEI analysis generally has low power. Large-scale consortium-based studies are ultimately needed to achieve adequate power for identifying GEI. We introduce Multi-Trait Analysis of Gene-Environment Interactions (MTAGEI), a powerful, robust, and computationally efficient framework to test gene-environment interactions on multiple traits in large data sets, such as the UK Biobank (UKB). To facilitate the meta-analysis of GEI studies in a consortium, MTAGEI efficiently generates summary statistics of genetic associations for multiple traits under different environmental conditions and integrates the summary statistics for GEI analysis. MTAGEI enhances the power of GEI analysis by aggregating GEI signals across multiple traits and variants that would otherwise be difficult to detect individually. MTAGEI achieves robustness by combining complementary tests under a wide spectrum of genetic architectures. We demonstrate the advantages of MTAGEI over existing single-trait-based GEI tests through extensive simulation studies and the analysis of the whole exome sequencing data from the UKB.
{"title":"Multi-trait analysis of gene-by-environment interactions in large-scale genetic studies.","authors":"Lan Luo, Devan V Mehrotra, Judong Shen, Zheng-Zheng Tang","doi":"10.1093/biostatistics/kxad004","DOIUrl":"10.1093/biostatistics/kxad004","url":null,"abstract":"<p><p>Identifying genotype-by-environment interaction (GEI) is challenging because the GEI analysis generally has low power. Large-scale consortium-based studies are ultimately needed to achieve adequate power for identifying GEI. We introduce Multi-Trait Analysis of Gene-Environment Interactions (MTAGEI), a powerful, robust, and computationally efficient framework to test gene-environment interactions on multiple traits in large data sets, such as the UK Biobank (UKB). To facilitate the meta-analysis of GEI studies in a consortium, MTAGEI efficiently generates summary statistics of genetic associations for multiple traits under different environmental conditions and integrates the summary statistics for GEI analysis. MTAGEI enhances the power of GEI analysis by aggregating GEI signals across multiple traits and variants that would otherwise be difficult to detect individually. MTAGEI achieves robustness by combining complementary tests under a wide spectrum of genetic architectures. We demonstrate the advantages of MTAGEI over existing single-trait-based GEI tests through extensive simulation studies and the analysis of the whole exome sequencing data from the UKB.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"504-520"},"PeriodicalIF":2.1,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9090518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-15DOI: 10.1093/biostatistics/kxad009
Chunyu Wang, Jiaming Shen, Christiana Charalambous, Jianxin Pan
The role of visit-to-visit variability of a biomarker in predicting related disease has been recognized in medical science. Existing measures of biological variability are criticized for being entangled with random variability resulted from measurement error or being unreliable due to limited measurements per individual. In this article, we propose a new measure to quantify the biological variability of a biomarker by evaluating the fluctuation of each individual-specific trajectory behind longitudinal measurements. Given a mixed-effects model for longitudinal data with the mean function over time specified by cubic splines, our proposed variability measure can be mathematically expressed as a quadratic form of random effects. A Cox model is assumed for time-to-event data by incorporating the defined variability as well as the current level of the underlying longitudinal trajectory as covariates, which, together with the longitudinal model, constitutes the joint modeling framework in this article. Asymptotic properties of maximum likelihood estimators are established for the present joint model. Estimation is implemented via an Expectation-Maximization (EM) algorithm with fully exponential Laplace approximation used in E-step to reduce the computation burden due to the increase of the random effects dimension. Simulation studies are conducted to reveal the advantage of the proposed method over the two-stage method, as well as a simpler joint modeling approach which does not take into account biomarker variability. Finally, we apply our model to investigate the effect of systolic blood pressure variability on cardiovascular events in the Medical Research Council elderly trial, which is also the motivating example for this article.
医学界已经认识到生物标志物的逐次变异性在预测相关疾病中的作用。现有的生物变异性测量方法因与测量误差导致的随机变异性纠缠在一起或因每个人的测量值有限而不可靠而受到批评。在本文中,我们提出了一种新的测量方法,通过评估纵向测量背后每个个体特定轨迹的波动来量化生物标志物的生物变异性。鉴于纵向数据的混合效应模型中,随时间变化的均值函数是由三次样条指定的,我们提出的变异性测量方法在数学上可以表示为随机效应的二次形式。通过将定义的变异性和基本纵向轨迹的当前水平作为协变量,假设时间到事件数据采用 Cox 模型,该模型与纵向模型一起构成了本文的联合建模框架。本文为本联合模型建立了最大似然估计器的渐近特性。估计是通过期望最大化(EM)算法实现的,在 E 步中使用了全指数拉普拉斯近似,以减少随机效应维度增加带来的计算负担。我们进行了模拟研究,以揭示所提出的方法相对于两阶段方法的优势,以及不考虑生物标记变异性的更简单的联合建模方法的优势。最后,我们应用我们的模型研究了医学研究委员会老年试验中收缩压变异性对心血管事件的影响,这也是本文的激励实例。
{"title":"Modeling biomarker variability in joint analysis of longitudinal and time-to-event data.","authors":"Chunyu Wang, Jiaming Shen, Christiana Charalambous, Jianxin Pan","doi":"10.1093/biostatistics/kxad009","DOIUrl":"10.1093/biostatistics/kxad009","url":null,"abstract":"<p><p>The role of visit-to-visit variability of a biomarker in predicting related disease has been recognized in medical science. Existing measures of biological variability are criticized for being entangled with random variability resulted from measurement error or being unreliable due to limited measurements per individual. In this article, we propose a new measure to quantify the biological variability of a biomarker by evaluating the fluctuation of each individual-specific trajectory behind longitudinal measurements. Given a mixed-effects model for longitudinal data with the mean function over time specified by cubic splines, our proposed variability measure can be mathematically expressed as a quadratic form of random effects. A Cox model is assumed for time-to-event data by incorporating the defined variability as well as the current level of the underlying longitudinal trajectory as covariates, which, together with the longitudinal model, constitutes the joint modeling framework in this article. Asymptotic properties of maximum likelihood estimators are established for the present joint model. Estimation is implemented via an Expectation-Maximization (EM) algorithm with fully exponential Laplace approximation used in E-step to reduce the computation burden due to the increase of the random effects dimension. Simulation studies are conducted to reveal the advantage of the proposed method over the two-stage method, as well as a simpler joint modeling approach which does not take into account biomarker variability. Finally, we apply our model to investigate the effect of systolic blood pressure variability on cardiovascular events in the Medical Research Council elderly trial, which is also the motivating example for this article.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"577-596"},"PeriodicalIF":2.1,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017116/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9522826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-15DOI: 10.1093/biostatistics/kxad007
Shuo Chen, Yuan Zhang, Qiong Wu, Chuan Bi, Peter Kochunov, L Elliot Hong
Whole-brain connectome data characterize the connections among distributed neural populations as a set of edges in a large network, and neuroscience research aims to systematically investigate associations between brain connectome and clinical or experimental conditions as covariates. A covariate is often related to a number of edges connecting multiple brain areas in an organized structure. However, in practice, neither the covariate-related edges nor the structure is known. Therefore, the understanding of underlying neural mechanisms relies on statistical methods that are capable of simultaneously identifying covariate-related connections and recognizing their network topological structures. The task can be challenging because of false-positive noise and almost infinite possibilities of edges combining into subnetworks. To address these challenges, we propose a new statistical approach to handle multivariate edge variables as outcomes and output covariate-related subnetworks. We first study the graph properties of covariate-related subnetworks from a graph and combinatorics perspective and accordingly bridge the inference for individual connectome edges and covariate-related subnetworks. Next, we develop efficient algorithms to exact covariate-related subnetworks from the whole-brain connectome data with an $ell_0$ norm penalty. We validate the proposed methods based on an extensive simulation study, and we benchmark our performance against existing methods. Using our proposed method, we analyze two separate resting-state functional magnetic resonance imaging data sets for schizophrenia research and obtain highly replicable disease-related subnetworks.
{"title":"Identifying covariate-related subnetworks for whole-brain connectome analysis.","authors":"Shuo Chen, Yuan Zhang, Qiong Wu, Chuan Bi, Peter Kochunov, L Elliot Hong","doi":"10.1093/biostatistics/kxad007","DOIUrl":"10.1093/biostatistics/kxad007","url":null,"abstract":"<p><p>Whole-brain connectome data characterize the connections among distributed neural populations as a set of edges in a large network, and neuroscience research aims to systematically investigate associations between brain connectome and clinical or experimental conditions as covariates. A covariate is often related to a number of edges connecting multiple brain areas in an organized structure. However, in practice, neither the covariate-related edges nor the structure is known. Therefore, the understanding of underlying neural mechanisms relies on statistical methods that are capable of simultaneously identifying covariate-related connections and recognizing their network topological structures. The task can be challenging because of false-positive noise and almost infinite possibilities of edges combining into subnetworks. To address these challenges, we propose a new statistical approach to handle multivariate edge variables as outcomes and output covariate-related subnetworks. We first study the graph properties of covariate-related subnetworks from a graph and combinatorics perspective and accordingly bridge the inference for individual connectome edges and covariate-related subnetworks. Next, we develop efficient algorithms to exact covariate-related subnetworks from the whole-brain connectome data with an $ell_0$ norm penalty. We validate the proposed methods based on an extensive simulation study, and we benchmark our performance against existing methods. Using our proposed method, we analyze two separate resting-state functional magnetic resonance imaging data sets for schizophrenia research and obtain highly replicable disease-related subnetworks.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"541-558"},"PeriodicalIF":2.1,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017127/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9846712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-15DOI: 10.1093/biostatistics/kxac048
Luisa Barbanti, Torsten Hothorn
Clustered observations are ubiquitous in controlled and observational studies and arise naturally in multicenter trials or longitudinal surveys. We present a novel model for the analysis of clustered observations where the marginal distributions are described by a linear transformation model and the correlations by a joint multivariate normal distribution. The joint model provides an analytic formula for the marginal distribution. Owing to the richness of transformation models, the techniques are applicable to any type of response variable, including bounded, skewed, binary, ordinal, or survival responses. We demonstrate how the common normal assumption for reaction times can be relaxed in the sleep deprivation benchmark data set and report marginal odds ratios for the notoriously difficult toe nail data. We furthermore discuss the analysis of two clinical trials aiming at the estimation of marginal treatment effects. In the first trial, pain was repeatedly assessed on a bounded visual analog scale and marginal proportional-odds models are presented. The second trial reported disease-free survival in rectal cancer patients, where the marginal hazard ratio from Weibull and Cox models is of special interest. An empirical evaluation compares the performance of the novel approach to general estimation equations for binary responses and to conditional mixed-effects models for continuous responses. An implementation is available in the tram add-on package to the R system and was benchmarked against established models in the literature.
{"title":"A transformation perspective on marginal and conditional models.","authors":"Luisa Barbanti, Torsten Hothorn","doi":"10.1093/biostatistics/kxac048","DOIUrl":"10.1093/biostatistics/kxac048","url":null,"abstract":"<p><p>Clustered observations are ubiquitous in controlled and observational studies and arise naturally in multicenter trials or longitudinal surveys. We present a novel model for the analysis of clustered observations where the marginal distributions are described by a linear transformation model and the correlations by a joint multivariate normal distribution. The joint model provides an analytic formula for the marginal distribution. Owing to the richness of transformation models, the techniques are applicable to any type of response variable, including bounded, skewed, binary, ordinal, or survival responses. We demonstrate how the common normal assumption for reaction times can be relaxed in the sleep deprivation benchmark data set and report marginal odds ratios for the notoriously difficult toe nail data. We furthermore discuss the analysis of two clinical trials aiming at the estimation of marginal treatment effects. In the first trial, pain was repeatedly assessed on a bounded visual analog scale and marginal proportional-odds models are presented. The second trial reported disease-free survival in rectal cancer patients, where the marginal hazard ratio from Weibull and Cox models is of special interest. An empirical evaluation compares the performance of the novel approach to general estimation equations for binary responses and to conditional mixed-effects models for continuous responses. An implementation is available in the tram add-on package to the R system and was benchmarked against established models in the literature.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"402-428"},"PeriodicalIF":1.8,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11212492/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10297317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-15DOI: 10.1093/biostatistics/kxad011
Yuanzhi Yu, Roderick J Little, Matthew Perzanowski, Qixuan Chen
Measurement error is common in environmental epidemiologic studies, but methods for correcting measurement error in regression models with multiple environmental exposures as covariates have not been well investigated. We consider a multiple imputation approach, combining external or internal calibration samples that contain information on both true and error-prone exposures with the main study data of multiple exposures measured with error. We propose a constrained chained equations multiple imputation (CEMI) algorithm that places constraints on the imputation model parameters in the chained equations imputation based on the assumptions of strong nondifferential measurement error. We also extend the constrained CEMI method to accommodate nondetects in the error-prone exposures in the main study data. We estimate the variance of the regression coefficients using the bootstrap with two imputations of each bootstrapped sample. The constrained CEMI method is shown by simulations to outperform existing methods, namely the method that ignores measurement error, classical calibration, and regression prediction, yielding estimated regression coefficients with smaller bias and confidence intervals with coverage close to the nominal level. We apply the proposed method to the Neighborhood Asthma and Allergy Study to investigate the associations between the concentrations of multiple indoor allergens and the fractional exhaled nitric oxide level among asthmatic children in New York City. The constrained CEMI method can be implemented by imposing constraints on the imputation matrix using the mice and bootImpute packages in R.
{"title":"Multiple imputation of more than one environmental exposure with nondifferential measurement error.","authors":"Yuanzhi Yu, Roderick J Little, Matthew Perzanowski, Qixuan Chen","doi":"10.1093/biostatistics/kxad011","DOIUrl":"10.1093/biostatistics/kxad011","url":null,"abstract":"<p><p>Measurement error is common in environmental epidemiologic studies, but methods for correcting measurement error in regression models with multiple environmental exposures as covariates have not been well investigated. We consider a multiple imputation approach, combining external or internal calibration samples that contain information on both true and error-prone exposures with the main study data of multiple exposures measured with error. We propose a constrained chained equations multiple imputation (CEMI) algorithm that places constraints on the imputation model parameters in the chained equations imputation based on the assumptions of strong nondifferential measurement error. We also extend the constrained CEMI method to accommodate nondetects in the error-prone exposures in the main study data. We estimate the variance of the regression coefficients using the bootstrap with two imputations of each bootstrapped sample. The constrained CEMI method is shown by simulations to outperform existing methods, namely the method that ignores measurement error, classical calibration, and regression prediction, yielding estimated regression coefficients with smaller bias and confidence intervals with coverage close to the nominal level. We apply the proposed method to the Neighborhood Asthma and Allergy Study to investigate the associations between the concentrations of multiple indoor allergens and the fractional exhaled nitric oxide level among asthmatic children in New York City. The constrained CEMI method can be implemented by imposing constraints on the imputation matrix using the mice and bootImpute packages in R.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"306-322"},"PeriodicalIF":2.1,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017114/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9522828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-15DOI: 10.1093/biostatistics/kxac052
Harrison T Reeder, Kyu Ha Lee, Sebastien Haneuse
An important task in survival analysis is choosing a structure for the relationship between covariates of interest and the time-to-event outcome. For example, the accelerated failure time (AFT) model structures each covariate effect as a constant multiplicative shift in the outcome distribution across all survival quantiles. Though parsimonious, this structure cannot detect or capture effects that differ across quantiles of the distribution, a limitation that is analogous to only permitting proportional hazards in the Cox model. To address this, we propose a general framework for quantile-varying multiplicative effects under the AFT model. Specifically, we embed flexible regression structures within the AFT model and derive a novel formula for interpretable effects on the quantile scale. A regression standardization scheme based on the g-formula is proposed to enable the estimation of both covariate-conditional and marginal effects for an exposure of interest. We implement a user-friendly Bayesian approach for the estimation and quantification of uncertainty while accounting for left truncation and complex censoring. We emphasize the intuitive interpretation of this model through numerical and graphical tools and illustrate its performance through simulation and application to a study of Alzheimer's disease and dementia.
生存分析中的一项重要任务是为相关协变量与时间到事件结果之间的关系选择一种结构。例如,加速失效时间(AFT)模型将每个协变量的影响结构化为结果分布在所有生存量级上的恒定乘法移动。这种结构虽然简洁,但无法检测或捕捉不同量级分布的效应,这种局限性类似于 Cox 模型中只允许比例危险度。为了解决这个问题,我们提出了 AFT 模型下的量级变化乘法效应一般框架。具体来说,我们在 AFT 模型中嵌入了灵活的回归结构,并推导出一个新颖的公式来解释量级上的效应。我们还提出了一种基于 g 公式的回归标准化方案,以估算相关暴露的协变量条件效应和边际效应。我们采用了一种用户友好的贝叶斯方法来估计和量化不确定性,同时考虑到左截断和复杂的普查。我们强调通过数字和图形工具对该模型进行直观解释,并通过模拟和应用于阿尔茨海默病和痴呆症研究来说明该模型的性能。
{"title":"Characterizing quantile-varying covariate effects under the accelerated failure time model.","authors":"Harrison T Reeder, Kyu Ha Lee, Sebastien Haneuse","doi":"10.1093/biostatistics/kxac052","DOIUrl":"10.1093/biostatistics/kxac052","url":null,"abstract":"<p><p>An important task in survival analysis is choosing a structure for the relationship between covariates of interest and the time-to-event outcome. For example, the accelerated failure time (AFT) model structures each covariate effect as a constant multiplicative shift in the outcome distribution across all survival quantiles. Though parsimonious, this structure cannot detect or capture effects that differ across quantiles of the distribution, a limitation that is analogous to only permitting proportional hazards in the Cox model. To address this, we propose a general framework for quantile-varying multiplicative effects under the AFT model. Specifically, we embed flexible regression structures within the AFT model and derive a novel formula for interpretable effects on the quantile scale. A regression standardization scheme based on the g-formula is proposed to enable the estimation of both covariate-conditional and marginal effects for an exposure of interest. We implement a user-friendly Bayesian approach for the estimation and quantification of uncertainty while accounting for left truncation and complex censoring. We emphasize the intuitive interpretation of this model through numerical and graphical tools and illustrate its performance through simulation and application to a study of Alzheimer's disease and dementia.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"449-467"},"PeriodicalIF":1.8,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484523/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10513263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-15DOI: 10.1093/biostatistics/kxad005
Yannick Vandendijck, Oswaldo Gressani, Christel Faes, Carlo G Camarda, Niel Hens
The use of social contact rates is widespread in infectious disease modeling since it has been shown that they are key driving forces of important epidemiological parameters. Quantification of contact patterns is crucial to parameterize dynamic transmission models and to provide insights on the (basic) reproduction number. Information on social interactions can be obtained from population-based contact surveys, such as the European Commission project POLYMOD. Estimation of age-specific contact rates from these studies is often done using a piecewise constant approach or bivariate smoothing techniques. For the latter, typically, smoothness is introduced in the dimensions of the respondent's and contact's age (i.e., the rows and columns of the social contact matrix). We propose a smoothing constrained approach-taking into account the reciprocal nature of contacts-introducing smoothness over the diagonal (including all subdiagonals) of the social contact matrix. This modeling approach is justified assuming that when people age their contact behavior changes smoothly. We call this smoothing from a cohort perspective. Two approaches that allow for smoothing over social contact matrix diagonals are proposed, namely (i) reordering of the diagonal components of the contact matrix and (ii) reordering of the penalty matrix ensuring smoothness over the contact matrix diagonals. Parameter estimation is done in the likelihood framework by using constrained penalized iterative reweighted least squares. A simulation study underlines the benefits of cohort-based smoothing. Finally, the proposed methods are illustrated on the Belgian POLYMOD data of 2006. Code to reproduce the results of the article can be downloaded on this GitHub repository https://github.com/oswaldogressani/Cohort_smoothing.
{"title":"Cohort-based smoothing methods for age-specific contact rates.","authors":"Yannick Vandendijck, Oswaldo Gressani, Christel Faes, Carlo G Camarda, Niel Hens","doi":"10.1093/biostatistics/kxad005","DOIUrl":"10.1093/biostatistics/kxad005","url":null,"abstract":"<p><p>The use of social contact rates is widespread in infectious disease modeling since it has been shown that they are key driving forces of important epidemiological parameters. Quantification of contact patterns is crucial to parameterize dynamic transmission models and to provide insights on the (basic) reproduction number. Information on social interactions can be obtained from population-based contact surveys, such as the European Commission project POLYMOD. Estimation of age-specific contact rates from these studies is often done using a piecewise constant approach or bivariate smoothing techniques. For the latter, typically, smoothness is introduced in the dimensions of the respondent's and contact's age (i.e., the rows and columns of the social contact matrix). We propose a smoothing constrained approach-taking into account the reciprocal nature of contacts-introducing smoothness over the diagonal (including all subdiagonals) of the social contact matrix. This modeling approach is justified assuming that when people age their contact behavior changes smoothly. We call this smoothing from a cohort perspective. Two approaches that allow for smoothing over social contact matrix diagonals are proposed, namely (i) reordering of the diagonal components of the contact matrix and (ii) reordering of the penalty matrix ensuring smoothness over the contact matrix diagonals. Parameter estimation is done in the likelihood framework by using constrained penalized iterative reweighted least squares. A simulation study underlines the benefits of cohort-based smoothing. Finally, the proposed methods are illustrated on the Belgian POLYMOD data of 2006. Code to reproduce the results of the article can be downloaded on this GitHub repository https://github.com/oswaldogressani/Cohort_smoothing.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"521-540"},"PeriodicalIF":2.1,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9141117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-15DOI: 10.1093/biostatistics/kxad006
Jon A Steingrimsson, David H Barker, Ruofan Bie, Issa J Dahabreh
Causally interpretable meta-analysis combines information from a collection of randomized controlled trials to estimate treatment effects in a target population in which experimentation may not be possible but from which covariate information can be obtained. In such analyses, a key practical challenge is the presence of systematically missing data when some trials have collected data on one or more baseline covariates, but other trials have not, such that the covariate information is missing for all participants in the latter. In this article, we provide identification results for potential (counterfactual) outcome means and average treatment effects in the target population when covariate data are systematically missing from some of the trials in the meta-analysis. We propose three estimators for the average treatment effect in the target population, examine their asymptotic properties, and show that they have good finite-sample performance in simulation studies. We use the estimators to analyze data from two large lung cancer screening trials and target population data from the National Health and Nutrition Examination Survey (NHANES). To accommodate the complex survey design of the NHANES, we modify the methods to incorporate survey sampling weights and allow for clustering.
{"title":"Systematically missing data in causally interpretable meta-analysis.","authors":"Jon A Steingrimsson, David H Barker, Ruofan Bie, Issa J Dahabreh","doi":"10.1093/biostatistics/kxad006","DOIUrl":"10.1093/biostatistics/kxad006","url":null,"abstract":"<p><p>Causally interpretable meta-analysis combines information from a collection of randomized controlled trials to estimate treatment effects in a target population in which experimentation may not be possible but from which covariate information can be obtained. In such analyses, a key practical challenge is the presence of systematically missing data when some trials have collected data on one or more baseline covariates, but other trials have not, such that the covariate information is missing for all participants in the latter. In this article, we provide identification results for potential (counterfactual) outcome means and average treatment effects in the target population when covariate data are systematically missing from some of the trials in the meta-analysis. We propose three estimators for the average treatment effect in the target population, examine their asymptotic properties, and show that they have good finite-sample performance in simulation studies. We use the estimators to analyze data from two large lung cancer screening trials and target population data from the National Health and Nutrition Examination Survey (NHANES). To accommodate the complex survey design of the NHANES, we modify the methods to incorporate survey sampling weights and allow for clustering.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"289-305"},"PeriodicalIF":2.1,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017122/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9567977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-15DOI: 10.1093/biostatistics/kxad003
Justin J Slater, Aiyush Bansal, Harlan Campbell, Jeffrey S Rosenthal, Paul Gustafson, Patrick E Brown
Naive estimates of incidence and infection fatality rates (IFR) of coronavirus disease 2019 suffer from a variety of biases, many of which relate to preferential testing. This has motivated epidemiologists from around the globe to conduct serosurveys that measure the immunity of individuals by testing for the presence of SARS-CoV-2 antibodies in the blood. These quantitative measures (titer values) are then used as a proxy for previous or current infection. However, statistical methods that use this data to its full potential have yet to be developed. Previous researchers have discretized these continuous values, discarding potentially useful information. In this article, we demonstrate how multivariate mixture models can be used in combination with post-stratification to estimate cumulative incidence and IFR in an approximate Bayesian framework without discretization. In doing so, we account for uncertainty from both the estimated number of infections and incomplete deaths data to provide estimates of IFR. This method is demonstrated using data from the Action to Beat Coronavirus erosurvey in Canada.
{"title":"A Bayesian approach to estimating COVID-19 incidence and infection fatality rates.","authors":"Justin J Slater, Aiyush Bansal, Harlan Campbell, Jeffrey S Rosenthal, Paul Gustafson, Patrick E Brown","doi":"10.1093/biostatistics/kxad003","DOIUrl":"10.1093/biostatistics/kxad003","url":null,"abstract":"<p><p>Naive estimates of incidence and infection fatality rates (IFR) of coronavirus disease 2019 suffer from a variety of biases, many of which relate to preferential testing. This has motivated epidemiologists from around the globe to conduct serosurveys that measure the immunity of individuals by testing for the presence of SARS-CoV-2 antibodies in the blood. These quantitative measures (titer values) are then used as a proxy for previous or current infection. However, statistical methods that use this data to its full potential have yet to be developed. Previous researchers have discretized these continuous values, discarding potentially useful information. In this article, we demonstrate how multivariate mixture models can be used in combination with post-stratification to estimate cumulative incidence and IFR in an approximate Bayesian framework without discretization. In doing so, we account for uncertainty from both the estimated number of infections and incomplete deaths data to provide estimates of IFR. This method is demonstrated using data from the Action to Beat Coronavirus erosurvey in Canada.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"354-384"},"PeriodicalIF":2.1,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017123/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10850020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}