Pub Date : 2024-07-23DOI: 10.1016/j.segan.2024.101474
Zhiping Cheng, Kaifang Wang, Zhongwen Li
The time delay is inevitable in the communication process of actual microgrids (MGs), which may lead to controller failure and even affect stability. This paper proposes a distributed weighted average prediction (WAP) control for the secondary control of islanded MGs with time delay and analyzes its delay margins. Firstly, a secondary control strategy is designed to achieve the frequency and average voltage recovery and accurate active and reactive power-sharing. Secondly, a WAP strategy is proposed to improve the delay margin of the designed MG system. Finally, the stability and delay margin of the MG system is analyzed in the frequency domain and a rigorous formula is derived to calculate the delay margin. Compared with the system without WAP control, the delay margin of the system can be increased by 15.8%. The simulation results and the experimental results based on the StarSim Modeling Tech Real-time experimental platform verify the effectiveness and feasibility of the proposed method. The results demonstrate that the proposed control strategy can improve the delay margin of the system. The proposed analysis method can obtain the expression of specific system delay margins, which can guide the parameter design.
{"title":"Distributed weighted average predictive control and delay margin analysis for an islanded microgrid with time delay","authors":"Zhiping Cheng, Kaifang Wang, Zhongwen Li","doi":"10.1016/j.segan.2024.101474","DOIUrl":"10.1016/j.segan.2024.101474","url":null,"abstract":"<div><p>The time delay is inevitable in the communication process of actual microgrids (MGs), which may lead to controller failure and even affect stability. This paper proposes a distributed weighted average prediction (WAP) control for the secondary control of islanded MGs with time delay and analyzes its delay margins. Firstly, a secondary control strategy is designed to achieve the frequency and average voltage recovery and accurate active and reactive power-sharing. Secondly, a WAP strategy is proposed to improve the delay margin of the designed MG system. Finally, the stability and delay margin of the MG system is analyzed in the frequency domain and a rigorous formula is derived to calculate the delay margin. Compared with the system without WAP control, the delay margin of the system can be increased by 15.8%. The simulation results and the experimental results based on the StarSim Modeling Tech Real-time experimental platform verify the effectiveness and feasibility of the proposed method. The results demonstrate that the proposed control strategy can improve the delay margin of the system. The proposed analysis method can obtain the expression of specific system delay margins, which can guide the parameter design.</p></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":"39 ","pages":"Article 101474"},"PeriodicalIF":4.8,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141950119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.1016/j.segan.2024.101482
Fernando-David Martín-Utrilla , José Pablo Chaves-Ávila , Rafael Cossent
The Transmission System Operators (TSO) and Distribution System Operators (DSO) coordination literature deals with different coordination schemes or coordination methodologies. However, consumer actions or regular DSO operations continuously affect the system balance operation, and no major coordination is required as these actions individually have negligible impacts on the overall system. The literature has not previously analysed where the limit beyond which coordination is necessary. This question requires an analysis of the DSO operations where the need for coordination is foreseen and a case-by-case study of what type of impacts are created by the activation of the DSO flexibility resources on the responsibilities of the TSO. Such analysis helps to define thresholds and scenarios considering existing changes in distribution networks, which can be a reference for delimitating costly coordination procedures. This paper presents a revision of all the possible scenarios of the DSO operation needs and their impacts on TSO responsibilities considering the possible TSO/DSO borders at different voltage levels. Afterward, a methodology is proposed to analyse more deeply the impact of flexibility activation with an expected significant load increase. Representative case studies evaluate the possible impacts on TSO responsibilities of local flexibility activation. This paper concludes that the impact of local flexibility is expected to be significant when large power changes are managed in the short term, estimated in more than 50 MW if the DSO operates in 132 kV or more than 15 MW if the DSO operates up to 66 kV. At LV or MV level, minor coordination would be needed.
{"title":"Analyzing the boundaries for TSO-DSO coordination when activating flexibility for DSO´s in networks with an expected significant load increase","authors":"Fernando-David Martín-Utrilla , José Pablo Chaves-Ávila , Rafael Cossent","doi":"10.1016/j.segan.2024.101482","DOIUrl":"10.1016/j.segan.2024.101482","url":null,"abstract":"<div><p>The Transmission System Operators (TSO) and Distribution System Operators (DSO) coordination literature deals with different coordination schemes or coordination methodologies. However, consumer actions or regular DSO operations continuously affect the system balance operation, and no major coordination is required as these actions individually have negligible impacts on the overall system. The literature has not previously analysed where the limit beyond which coordination is necessary. This question requires an analysis of the DSO operations where the need for coordination is foreseen and a case-by-case study of what type of impacts are created by the activation of the DSO flexibility resources on the responsibilities of the TSO. Such analysis helps to define thresholds and scenarios considering existing changes in distribution networks, which can be a reference for delimitating costly coordination procedures. This paper presents a revision of all the possible scenarios of the DSO operation needs and their impacts on TSO responsibilities considering the possible TSO/DSO borders at different voltage levels. Afterward, a methodology is proposed to analyse more deeply the impact of flexibility activation with an expected significant load increase. Representative case studies evaluate the possible impacts on TSO responsibilities of local flexibility activation. This paper concludes that the impact of local flexibility is expected to be significant when large power changes are managed in the short term, estimated in more than 50 MW if the DSO operates in 132 kV or more than 15 MW if the DSO operates up to 66 kV. At LV or MV level, minor coordination would be needed.</p></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":"39 ","pages":"Article 101482"},"PeriodicalIF":4.8,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141851628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-22DOI: 10.1016/j.segan.2024.101477
Kamil Erdayandi , Mustafa A. Mustafa
In this paper, we propose a novel Privacy-Preserving clearance mechanism for Local Energy Markets (PP-LEM), designed for computational efficiency and social welfare. PP-LEM incorporates a novel competitive game-theoretical clearance mechanism, modelled as a Stackelberg Game. Based on this mechanism, a privacy-preserving market model is developed using a partially homomorphic cryptosystem, allowing buyers’ reaction function calculations to be executed over encrypted data without exposing sensitive information of both buyers and sellers. The comprehensive performance evaluation demonstrates that PP-LEM is highly effective in delivering an incentive clearance mechanism with computational efficiency, enabling it to clear the market for 200 users within the order of seconds while concurrently protecting user privacy. Compared to the state of the art, PP-LEM achieves improved computational efficiency without compromising social welfare while still providing user privacy protection.
{"title":"PP-LEM: Efficient and Privacy-Preserving Clearance Mechanism for Local Energy Markets","authors":"Kamil Erdayandi , Mustafa A. Mustafa","doi":"10.1016/j.segan.2024.101477","DOIUrl":"10.1016/j.segan.2024.101477","url":null,"abstract":"<div><p>In this paper, we propose a novel Privacy-Preserving clearance mechanism for Local Energy Markets (PP-LEM), designed for computational efficiency and social welfare. PP-LEM incorporates a novel <em>competitive</em> game-theoretical clearance mechanism, modelled as a Stackelberg Game. Based on this mechanism, a privacy-preserving market model is developed using a partially homomorphic cryptosystem, allowing buyers’ reaction function calculations to be executed over encrypted data without exposing sensitive information of both buyers and sellers. The comprehensive performance evaluation demonstrates that PP-LEM is highly effective in delivering an incentive clearance mechanism with computational efficiency, enabling it to clear the market for 200 users within the order of seconds while concurrently protecting user privacy. Compared to the state of the art, PP-LEM achieves improved computational efficiency without compromising social welfare while still providing user privacy protection.</p></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":"39 ","pages":"Article 101477"},"PeriodicalIF":4.8,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352467724002066/pdfft?md5=a143959cb4a44455d94eddc609b58c66&pid=1-s2.0-S2352467724002066-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-20DOI: 10.1016/j.segan.2024.101478
Yalin Chen , Bo Wang , Xianjia Wang , Shilong Ge , Heap-Yih Chong
Given the unbalanced distribution of power resources and demands in geography, cross-regional electricity transactions alleviate the conflict through the long-distance power supply. To ensure sustainable, efficient transactions, the market mechanism addressing the unavoidable transmission charges is essential for balancing the interests of all parties. This research designs a mechanism based on the Generalized Vickrey-Clarke-Groves (G-VCG) and threshold value setting considering generators' withholding behavior and power transmission charges. The theoretical analysis proves that this mechanism maximizes social welfare while satisfying individual rationality, incentive compatibility and weak budget balance. It can encourage all participants to report truthful information and motivate more power generation. Numerical studies of the PJM electricity market also demonstrate the effectiveness of this mechanism in the electricity market. The proposed mechanism contributes to new guidance and practical references for achieving fair and efficient transactions in the crossing-regional electricity market and improving the vigor of market participants.
{"title":"Optimizing cross-regional electricity transaction concerning transmission charges: A new market mechanism design","authors":"Yalin Chen , Bo Wang , Xianjia Wang , Shilong Ge , Heap-Yih Chong","doi":"10.1016/j.segan.2024.101478","DOIUrl":"10.1016/j.segan.2024.101478","url":null,"abstract":"<div><p>Given the unbalanced distribution of power resources and demands in geography, cross-regional electricity transactions alleviate the conflict through the long-distance power supply. To ensure sustainable, efficient transactions, the market mechanism addressing the unavoidable transmission charges is essential for balancing the interests of all parties. This research designs a mechanism based on the Generalized Vickrey-Clarke-Groves (G-VCG) and threshold value setting considering generators' withholding behavior and power transmission charges. The theoretical analysis proves that this mechanism maximizes social welfare while satisfying individual rationality, incentive compatibility and weak budget balance. It can encourage all participants to report truthful information and motivate more power generation. Numerical studies of the PJM electricity market also demonstrate the effectiveness of this mechanism in the electricity market. The proposed mechanism contributes to new guidance and practical references for achieving fair and efficient transactions in the crossing-regional electricity market and improving the vigor of market participants.</p></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":"39 ","pages":"Article 101478"},"PeriodicalIF":4.8,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141845180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-17DOI: 10.1016/j.segan.2024.101476
Luciana Marques, Anibal Sanjab
This paper investigates the way in which the design of a TSO-DSO coordinated flexibility market can enable strategic behavior by flexibility service providers (FSPs). Multiple flexibility market models are considered for the procurement of flexibility services by transmission and distribution system operators, namely: a common (joint) market, a fragmented market, and a sequential multi-level market. Considering these market models, three non-cooperative games are introduced to investigate the strategic bidding and interaction between FSPs therein. Detailed conclusions are then drawn on the existence and uniqueness of Nash Equilibria (NEs) in the developed games, including derivations of closed-form expressions of the resulting NEs and corresponding price-of-anarchy, capturing the FSPs’ strategic bidding impact on the markets’ efficiency. The analysis considers – first in a duopoly setting, then with multiple players – three different use cases representing when: (1) a sufficient flexible capacity exists (sufficient flexibility offered from the FSPs and adequate interconnection/grid capacity between systems); (2) participants have a scarce flexibility capacity; and (3) a restrictive interface capacity exists between the systems. A case study considering an interconnected transmission–distribution system and multiple FSPs corroborates the analytical findings. The obtained results show that market participants have incentives to set bid prices greater than their marginal costs, thus decreasing the markets’ efficiency. This aspect is shown to be more pronounced when the available flexible capacity is limited, a restrictive line limit is present, or when the market is fragmented, thus supporting the need for additional network investments and the creation of joint flexibility market formats.
{"title":"Strategic behavior in TSO-DSO coordinated flexibility markets: A Nash equilibrium and efficiency analysis","authors":"Luciana Marques, Anibal Sanjab","doi":"10.1016/j.segan.2024.101476","DOIUrl":"10.1016/j.segan.2024.101476","url":null,"abstract":"<div><p>This paper investigates the way in which the design of a TSO-DSO coordinated flexibility market can enable strategic behavior by flexibility service providers (FSPs). Multiple flexibility market models are considered for the procurement of flexibility services by transmission and distribution system operators, namely: a common (joint) market, a fragmented market, and a sequential multi-level market. Considering these market models, three non-cooperative games are introduced to investigate the strategic bidding and interaction between FSPs therein. Detailed conclusions are then drawn on the existence and uniqueness of Nash Equilibria (NEs) in the developed games, including derivations of closed-form expressions of the resulting NEs and corresponding price-of-anarchy, capturing the FSPs’ strategic bidding impact on the markets’ efficiency. The analysis considers – first in a duopoly setting, then with multiple players – three different use cases representing when: (1) a sufficient flexible capacity exists (sufficient flexibility offered from the FSPs and adequate interconnection/grid capacity between systems); (2) participants have a scarce flexibility capacity; and (3) a restrictive interface capacity exists between the systems. A case study considering an interconnected transmission–distribution system and multiple FSPs corroborates the analytical findings. The obtained results show that market participants have incentives to set bid prices greater than their marginal costs, thus decreasing the markets’ efficiency. This aspect is shown to be more pronounced when the available flexible capacity is limited, a restrictive line limit is present, or when the market is fragmented, thus supporting the need for additional network investments and the creation of joint flexibility market formats.</p></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":"39 ","pages":"Article 101476"},"PeriodicalIF":4.8,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352467724002054/pdfft?md5=4db3ad05c919b56d9ef2c078ac832bf4&pid=1-s2.0-S2352467724002054-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141852543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-10DOI: 10.1016/j.segan.2024.101475
Gaurav Kansal, Rajive Tiwari
Demand response provides an opportunity for consumers to play a significant role in the operation of the electric grid by reducing or shifting their electricity usage during peak periods in response to time-based rates or other forms of financial incentives. These programs are important as they have the potential to help electricity providers save money through reductions in peak demand and the ability to defer construction of new power plants and power delivery systems specifically, those reserved for use during peak times. For the successful application of DR in day-to-day life, DR models are necessary to be implemented. Many of the existing DR models primarily focus on the formulation of after-DR demand based on price elasticity. Though these models are devoid of basic humans’ micro-economic behavior, which is an essential part of a DR stakeholder. Considering these shortcomings of the existing DR literature, this paper envisages formulating DR models based on the foundation of basic humans’ manifestations of demand flexibility, willingness, load recovery, and altruistic behavior. Hence, this paper proposes two price-based DR models known as the three-state Overlapping Generation (OLG) model and the Gift and Bequest (G&B) based DR model. These models are based on customers’ microeconomic behaviors and are suitable for representing load recovery with minimal parameters. Both three-state OLG and G&B-based DR models are examined on IEEE 33-bus and 118-bus distribution systems and are compared with the existing price-elasticity model (PEM) and two-state OLG-based DR model.
需求响应为消费者提供了一个在电网运行中发挥重要作用的机会,他们可以根据基于时间的费率或其他形式的经济激励措施,在用电高峰期减少或转移用电量。这些计划非常重要,因为它们有可能帮助电力供应商通过减少高峰需求来节省资金,并能够推迟新发电厂和电力输送系统的建设,特别是那些为高峰时段使用而预留的发电厂和电力输送系统。要在日常生活中成功应用减少电力需求,就必须实施减少电力需求模式。许多现有的 DR 模型主要侧重于根据价格弹性制定 DR 后的需求。尽管这些模型缺乏基本的人类微观经济行为,而这正是 DR 利益相关者的重要组成部分。考虑到现有 DR 文献的这些缺陷,本文设想在人类需求灵活性、意愿、负荷恢复和利他行为等基本表现的基础上制定 DR 模型。因此,本文提出了两种基于价格的 DR 模型,即三态重叠发电(OLG)模型和基于赠与和遗赠(G&B)的 DR 模型。这些模型以客户的微观经济行为为基础,适用于以最小参数表示负荷恢复。我们在 IEEE 33 总线和 118 总线配电系统上检验了三态 OLG 模型和基于 G&B 的 DR 模型,并与现有的价格弹性模型 (PEM) 和基于 OLG 的两态 DR 模型进行了比较。
{"title":"A constrained price-based demand response framework employing utility functions in three-state Overlapping Generation and Gift and Bequest based model in distribution system","authors":"Gaurav Kansal, Rajive Tiwari","doi":"10.1016/j.segan.2024.101475","DOIUrl":"10.1016/j.segan.2024.101475","url":null,"abstract":"<div><p>Demand response provides an opportunity for consumers to play a significant role in the operation of the electric grid by reducing or shifting their electricity usage during peak periods in response to time-based rates or other forms of financial incentives. These programs are important as they have the potential to help electricity providers save money through reductions in peak demand and the ability to defer construction of new power plants and power delivery systems specifically, those reserved for use during peak times. For the successful application of DR in day-to-day life, DR models are necessary to be implemented. Many of the existing DR models primarily focus on the formulation of after-DR demand based on price elasticity. Though these models are devoid of basic humans’ micro-economic behavior, which is an essential part of a DR stakeholder. Considering these shortcomings of the existing DR literature, this paper envisages formulating DR models based on the foundation of basic humans’ manifestations of demand flexibility, willingness, load recovery, and altruistic behavior. Hence, this paper proposes two price-based DR models known as the three-state Overlapping Generation (OLG) model and the Gift and Bequest (G&B) based DR model. These models are based on customers’ microeconomic behaviors and are suitable for representing load recovery with minimal parameters. Both three-state OLG and G&B-based DR models are examined on IEEE 33-bus and 118-bus distribution systems and are compared with the existing price-elasticity model (PEM) and two-state OLG-based DR model.</p></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":"39 ","pages":"Article 101475"},"PeriodicalIF":4.8,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-10DOI: 10.1016/j.segan.2024.101473
Tomislav Antić , Andrew Keane , Tomislav Capuder
Hosting capacity (HC) and dynamic operating envelopes (DOEs), defined as dynamic, time-varying HC, are calculated using three-phase optimal power flow (OPF) formulations. Due to the computational complexity of such optimisation problems, HC and DOE are often calculated by introducing certain assumptions and approximations, including the linearised OPF formulation, which we implement in the Python-based tool ppOPF. Furthermore, we investigate how assumptions of the distributed energy resource (DER) connection phase impact the objective function value and computational time in calculating HC and DOE in distribution networks of different sizes. The results are not unambiguous and show that it is not possible to determine the optimal connection phase without introducing binary variables since, no matter the case study, the highest objective function values are calculated with mixed integer OPF formulations. The difference is especially visible in a real-world low-voltage network in which the difference between different scenarios is up to 14 MW in a single day. However, binary variables make the problem computationally complex and increase computational time to several hours in the DOE calculation, even when the optimality gap different from zero is set.
托管容量(HC)和动态运行包络(DOE),定义为动态、时变的 HC,使用三相优化功率流(OPF)公式计算。由于此类优化问题的计算复杂性,HC 和 DOE 通常通过引入某些假设和近似值来计算,包括线性化 OPF 公式,我们在基于 Python 的工具 ppOPF 中实现了这一计算。此外,我们还研究了在计算不同规模配电网络的 HC 和 DOE 时,分布式能源资源 (DER) 连接阶段的假设如何影响目标函数值和计算时间。结果并不明确,并表明不引入二进制变量不可能确定最佳连接阶段,因为无论案例研究如何,最高目标函数值都是通过混合整数 OPF 公式计算得出的。这种差异在现实世界的低压电网中尤为明显,不同方案在一天内的差异高达 14 兆瓦。然而,二进制变量会使问题的计算变得复杂,即使设置了与零不同的优化差距,DOE 计算的计算时间也会增加几个小时。
{"title":"Impact of phase selection on accuracy and scalability in calculating distributed energy resources hosting capacity","authors":"Tomislav Antić , Andrew Keane , Tomislav Capuder","doi":"10.1016/j.segan.2024.101473","DOIUrl":"10.1016/j.segan.2024.101473","url":null,"abstract":"<div><p>Hosting capacity (HC) and dynamic operating envelopes (DOEs), defined as dynamic, time-varying HC, are calculated using three-phase optimal power flow (OPF) formulations. Due to the computational complexity of such optimisation problems, HC and DOE are often calculated by introducing certain assumptions and approximations, including the linearised OPF formulation, which we implement in the Python-based tool ppOPF. Furthermore, we investigate how assumptions of the distributed energy resource (DER) connection phase impact the objective function value and computational time in calculating HC and DOE in distribution networks of different sizes. The results are not unambiguous and show that it is not possible to determine the optimal connection phase without introducing binary variables since, no matter the case study, the highest objective function values are calculated with mixed integer OPF formulations. The difference is especially visible in a real-world low-voltage network in which the difference between different scenarios is up to 14 MW in a single day. However, binary variables make the problem computationally complex and increase computational time to several hours in the DOE calculation, even when the optimality gap different from zero is set.</p></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":"39 ","pages":"Article 101473"},"PeriodicalIF":4.8,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-07DOI: 10.1016/j.segan.2024.101472
Jingxuan Dong, Jian Li
The urgent global concern regarding climate change has highlighted the necessity for transitioning to power generation with zero carbon emissions to promote a sustainable and environmentally conscious society. A crucial element in this transformation is reducing our dependence on the primary grid, which is predominantly powered by fossil fuels, natural gas, and coal. An innovative strategy for achieving this essential transition is through peer-to-peer energy trading (P2PET). However, the effectiveness of P2PET relies on successfully aligning the energy-related objectives of its participants. Identifying and effectively addressing these goals is a significant challenge. In response, this paper introduces a game-theoretic framework designed to encourage subscribers to engage in P2PET, both in islanded microgrids and interconnected grid configurations. Our methodology begins by introducing a model that captures the core energy-related objectives of both energy producers and consumers. This model is supported by a layered architectural framework tailored for peer-to-peer (P2P) marketplaces, enhancing the identification and classification of existing technologies in this domain. Following this, we delve into the formulation of an extended-form game rooted in non-cooperative game theory. We systematically evaluate the presence of strict Nash equilibria within this game-theoretic structure. To promote active engagement and trading in the peer-to-peer energy market (P2PEM), we introduce an innovative energy allocation policy. This policy is strategically devised to ensure the inclusion of every subscriber in the market, irrespective of fluctuations in supply and demand dynamics. Our proposed P2PET scheme is tested on a representative system, specifically a 14-bus IEEE network, incorporating 8 energy producers and 11 consumers as active participants in the market. By conducting an extensive series of tests, we accurately evaluate the design's performance. The results, compared to previous studies, show a significant reduction in consumer energy bills, ranging from 33 % to 7 %. This convincing result underscores the effectiveness and robustness of our proposed energy trading framework. In a world grappling with the imperative to transition to sustainable energy practices, our game-theoretic approach to incentivizing participants in P2PET emerges as a pivotal contribution. It demonstrates tangible benefits, promotes green energy production, and encourages responsible energy consumption.
{"title":"Incentivizing sustainable practices: Game-theoretic approach to peer-to-peer energy trading in the green transition era","authors":"Jingxuan Dong, Jian Li","doi":"10.1016/j.segan.2024.101472","DOIUrl":"https://doi.org/10.1016/j.segan.2024.101472","url":null,"abstract":"<div><p>The urgent global concern regarding climate change has highlighted the necessity for transitioning to power generation with zero carbon emissions to promote a sustainable and environmentally conscious society. A crucial element in this transformation is reducing our dependence on the primary grid, which is predominantly powered by fossil fuels, natural gas, and coal. An innovative strategy for achieving this essential transition is through peer-to-peer energy trading (P2PET). However, the effectiveness of P2PET relies on successfully aligning the energy-related objectives of its participants. Identifying and effectively addressing these goals is a significant challenge. In response, this paper introduces a game-theoretic framework designed to encourage subscribers to engage in P2PET, both in islanded microgrids and interconnected grid configurations. Our methodology begins by introducing a model that captures the core energy-related objectives of both energy producers and consumers. This model is supported by a layered architectural framework tailored for peer-to-peer (P2P) marketplaces, enhancing the identification and classification of existing technologies in this domain. Following this, we delve into the formulation of an extended-form game rooted in non-cooperative game theory. We systematically evaluate the presence of strict Nash equilibria within this game-theoretic structure. To promote active engagement and trading in the peer-to-peer energy market (P2PEM), we introduce an innovative energy allocation policy. This policy is strategically devised to ensure the inclusion of every subscriber in the market, irrespective of fluctuations in supply and demand dynamics. Our proposed P2PET scheme is tested on a representative system, specifically a 14-bus IEEE network, incorporating 8 energy producers and 11 consumers as active participants in the market. By conducting an extensive series of tests, we accurately evaluate the design's performance. The results, compared to previous studies, show a significant reduction in consumer energy bills, ranging from 33 % to 7 %. This convincing result underscores the effectiveness and robustness of our proposed energy trading framework. In a world grappling with the imperative to transition to sustainable energy practices, our game-theoretic approach to incentivizing participants in P2PET emerges as a pivotal contribution. It demonstrates tangible benefits, promotes green energy production, and encourages responsible energy consumption.</p></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":"39 ","pages":"Article 101472"},"PeriodicalIF":4.8,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141607116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The presence of uncertain parameters in power systems has led to many challenges for the designers and operators of these systems. One of these challenges is reactive power management in the presence of distributed renewable generation sources.
In this article, the management of reactive power in distribution networks in the electricity market and the presence of distributed renewable generation sources, including wind and solar power plants, is performed considering the uncertainties in the network load, power generation of distributed generation sources, and active and reactive power market prices. Furthermore, reactive power cost modeling of reactive power compensation equipment is carried out.
A hybrid stochastic/robust optimization method is employed to model the uncertainties in the problem. Finally, the efficiency of the method is confirmed by numerical examinations using the IEEE 33-bus distribution network and the GAMS optimization software. Simulation results indicate that in the risk-averse strategy, for a certain increase in cost, the radius of uncertainty in the active and reactive power market prices increases. Also, in this strategy, as β increases, the total cost of network operating increases by 81.72 %, while in a risk-seeking strategy, with the increase of β, the total operating cost of the network decreases by 77.78 %.
{"title":"Reactive power management in distribution networks in the presence of distributed generation sources based on information gap decision theory","authors":"Maryam Ramezani, Mahboobeh Etemadizadeh, Hamid Falaghi","doi":"10.1016/j.segan.2024.101470","DOIUrl":"https://doi.org/10.1016/j.segan.2024.101470","url":null,"abstract":"<div><p>The presence of uncertain parameters in power systems has led to many challenges for the designers and operators of these systems. One of these challenges is reactive power management in the presence of distributed renewable generation sources.</p><p>In this article, the management of reactive power in distribution networks in the electricity market and the presence of distributed renewable generation sources, including wind and solar power plants, is performed considering the uncertainties in the network load, power generation of distributed generation sources, and active and reactive power market prices. Furthermore, reactive power cost modeling of reactive power compensation equipment is carried out.</p><p>A hybrid stochastic/robust optimization method is employed to model the uncertainties in the problem. Finally, the efficiency of the method is confirmed by numerical examinations using the IEEE 33-bus distribution network and the GAMS optimization software. Simulation results indicate that in the risk-averse strategy, for a certain increase in cost, the radius of uncertainty in the active and reactive power market prices increases. Also, in this strategy, as β increases, the total cost of network operating increases by 81.72 %, while in a risk-seeking strategy, with the increase of β, the total operating cost of the network decreases by 77.78 %.</p></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":"39 ","pages":"Article 101470"},"PeriodicalIF":4.8,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141594893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-04DOI: 10.1016/j.segan.2024.101471
Laura Campagna, Giuliano Rancilio, Lucio Radaelli, Marco Merlo
Energy poverty has been increasing since the early 2020s because of rising energy prices. This is attributed to geopolitical crises and the inclusion of the energy cost of pricing, which was historically an externality. Policymakers and citizens need new tools to address this issue, and energy communities are recognized as a valuable tool for mitigation. This study proposes two complementary approaches that relate to energy poverty and Renewable Energy Communities (RECs). The first aims to define and map energy poverty to support the policy in targeting measures and incentives. Using publicly available data, a new methodology is proposed for mapping energy poverty risk over a large territory with a fine granularity. The second approach taken sees REC managers at the center, who are tasked with sharing the economic benefits appropriately and equitably. A series of multi-criteria sharing mechanisms were developed and compared with the existing ones (e.g., based on Shapley value), including the energy poverty mitigation among them and the assessment of the impact of RECs on it. The results show that sharing methods can be one of the viable pathways for mitigating energy poverty through RECs without compromising the economy of non-vulnerable REC members.
{"title":"Renewable energy communities and mitigation of energy poverty: Instruments for policymakers and community managers","authors":"Laura Campagna, Giuliano Rancilio, Lucio Radaelli, Marco Merlo","doi":"10.1016/j.segan.2024.101471","DOIUrl":"10.1016/j.segan.2024.101471","url":null,"abstract":"<div><p>Energy poverty has been increasing since the early 2020s because of rising energy prices. This is attributed to geopolitical crises and the inclusion of the energy cost of <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> pricing, which was historically an externality. Policymakers and citizens need new tools to address this issue, and energy communities are recognized as a valuable tool for mitigation. This study proposes two complementary approaches that relate to energy poverty and Renewable Energy Communities (RECs). The first aims to define and map energy poverty to support the policy in targeting measures and incentives. Using publicly available data, a new methodology is proposed for mapping energy poverty risk over a large territory with a fine granularity. The second approach taken sees REC managers at the center, who are tasked with sharing the economic benefits appropriately and equitably. A series of multi-criteria sharing mechanisms were developed and compared with the existing ones (e.g., based on Shapley value), including the energy poverty mitigation among them and the assessment of the impact of RECs on it. The results show that sharing methods can be one of the viable pathways for mitigating energy poverty through RECs without compromising the economy of non-vulnerable REC members.</p></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":"39 ","pages":"Article 101471"},"PeriodicalIF":4.8,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352467724002005/pdfft?md5=ba85db879c7a5b023294b0ab572bc8ba&pid=1-s2.0-S2352467724002005-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}