Biochar has been widely applied as an efficiency soil additive to modify the quality of cultivated field. However, the effects of long-term biochar addition on spatial and temporal dynamics of soil compaction, and the changes in soil moisture condition and plant root growth remain unclear. Hence, an eight-year (2015/16–2023/24) consecutive field experiment on wheat was conducted in the subtropical humid region of east China, using three treatments: no N fertilizer (PK), chemical fertilizer (NPK), NPK plus biochar (5 t ha−1 yr−1, NPKB). Relative to NPK, across nine growing seasons of wheat, NPKB decreased the soil bulk density by 0.019 and 0.013 units (g cm−3 yr−1), and decreased the soil penetration resistance by 0.028 and 0.015 units (MPa yr−1) in 0–10 cm and 10–20 cm depths, respectively. Biochar addition improved soil water content from seeding to flowering, increased wheat root distribution during the whole growth period, and enhanced soil N supply capacity by promoting N adsorption, which gave rise to greater biomass and N accumulation and more biomass allocation in grain. As a result, NPKB increased wheat yield by 14.8 %, N recovery efficiency by 55.1 %, and crop water productivity by 14.9 %, relative to NPK, on average across four growing seasons of wheat. Therefore, long-term biochar addition has potential to substantially increase grain yield of post-rice wheat, water productivity, and N recovery efficiency. Hence, for the sustainable intensification cropping in the long-run, successive biochar addition could be a finable management for wheat production on the rainfed Yangtze River Region of China.
扫码关注我们
求助内容:
应助结果提醒方式:
