Pub Date : 2025-12-01Epub Date: 2025-01-07DOI: 10.1080/19336934.2024.2447617
Ziwei Zhao, Erika R Geisbrecht
The bipartite GAL4/UAS system is the most widely used method for targeted gene expression in Drosophila melanogaster and facilitates rapid in vivo genetic experimentation. Defining precise gene expression patterns for tissues and/or cell types under GAL4 control will continue to evolve to suit experimental needs. However, the precise spatial and temporal expression patterns for some commonly used muscle tissue promoters are still unclear. This missing information limits the precise timing of experiments during development. Here, we focus on three muscle-enriched GAL4 drivers (Mef2-GAL4, C57-GAL4 and G7-GAL4) to better inform selection of the most appropriate muscle promoter for experimental needs. Specifically, C57-GAL4 and G7-GAL4 turn on in the first or second instar larval stages, respectively, and can be used to bypass myogenesis for studies of muscle function after development.
{"title":"Stage-specific modulation of <i>Drosophila</i> gene expression with muscle GAL4 promoters.","authors":"Ziwei Zhao, Erika R Geisbrecht","doi":"10.1080/19336934.2024.2447617","DOIUrl":"10.1080/19336934.2024.2447617","url":null,"abstract":"<p><p>The bipartite GAL4/UAS system is the most widely used method for targeted gene expression in <i>Drosophila melanogaster</i> and facilitates rapid <i>in vivo</i> genetic experimentation. Defining precise gene expression patterns for tissues and/or cell types under GAL4 control will continue to evolve to suit experimental needs. However, the precise spatial and temporal expression patterns for some commonly used muscle tissue promoters are still unclear. This missing information limits the precise timing of experiments during development. Here, we focus on three muscle-enriched GAL4 drivers (<i>Mef2</i>-GAL4, <i>C57</i>-GAL4 and <i>G7</i>-GAL4) to better inform selection of the most appropriate muscle promoter for experimental needs. Specifically, <i>C57</i>-GAL4 and <i>G7</i>-GAL4 turn on in the first or second instar larval stages, respectively, and can be used to bypass myogenesis for studies of muscle function after development.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"19 1","pages":"2447617"},"PeriodicalIF":2.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730430/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142946813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-01-21DOI: 10.1080/13510002.2025.2454887
Kazuhiro Kato, Hironobu Yasui, Hideo Sato-Akaba, Miho C Emoto, Hirotada G Fujii, Maciej M Kmiec, Periannan Kuppusamy, Masaki Nagane, Tadashi Yamashita, Osamu Inanami
Targeting ferroptosis, cell death caused by the iron-dependent accumulation of lipid peroxides, and disruption of the redox balance are promising strategies in cancer therapy owing to the physiological characteristics of cancer cells. However, the detection of ferroptosis using in vivo imaging remains challenging. We previously reported that redox maps showing the reduction power per unit time of implanted tumor tissues via non-invasive redox imaging using a novel, compact, and portable electron paramagnetic resonance imaging (EPRI) device could be compared with tumor tissue sections. This study aimed to apply the EPRI technique to the in vivo detection of ferroptosis. Notably, redox maps reflecting changes in the redox status of tumors induced by the ferroptosis-inducing agent imidazole ketone erastin (IKE) were compared with the immunohistochemical images of 4-hydroxynonenal (4-HNE) in tumor tissue sections. Our comparison revealed a negative correlation between the reducing power of tumor tissue and the number of 4-HNE-positive cells. Furthermore, the control and IKE-treated groups exhibited significantly different distributions on the correlation map. Therefore, redox imaging using EPRI may contribute to the non-invasive detection of ferroptosis in vivo.
{"title":"Non-invasive electron paramagnetic resonance imaging detects tumor redox imbalance induced by ferroptosis.","authors":"Kazuhiro Kato, Hironobu Yasui, Hideo Sato-Akaba, Miho C Emoto, Hirotada G Fujii, Maciej M Kmiec, Periannan Kuppusamy, Masaki Nagane, Tadashi Yamashita, Osamu Inanami","doi":"10.1080/13510002.2025.2454887","DOIUrl":"10.1080/13510002.2025.2454887","url":null,"abstract":"<p><p>Targeting ferroptosis, cell death caused by the iron-dependent accumulation of lipid peroxides, and disruption of the redox balance are promising strategies in cancer therapy owing to the physiological characteristics of cancer cells. However, the detection of ferroptosis using <i>in vivo</i> imaging remains challenging. We previously reported that redox maps showing the reduction power per unit time of implanted tumor tissues via non-invasive redox imaging using a novel, compact, and portable electron paramagnetic resonance imaging (EPRI) device could be compared with tumor tissue sections. This study aimed to apply the EPRI technique to the <i>in vivo</i> detection of ferroptosis. Notably, redox maps reflecting changes in the redox status of tumors induced by the ferroptosis-inducing agent imidazole ketone erastin (IKE) were compared with the immunohistochemical images of 4-hydroxynonenal (4-HNE) in tumor tissue sections. Our comparison revealed a negative correlation between the reducing power of tumor tissue and the number of 4-HNE-positive cells. Furthermore, the control and IKE-treated groups exhibited significantly different distributions on the correlation map. Therefore, redox imaging using EPRI may contribute to the non-invasive detection of ferroptosis <i>in vivo</i>.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"30 1","pages":"2454887"},"PeriodicalIF":5.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753017/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143010806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2024-12-26DOI: 10.1080/21505594.2024.2439497
Carol Uphoff Meteyer, Justin G Boyles
{"title":"Fungal chimera: A lethal mammalian fungus with invasion strategies of plant pathogens.","authors":"Carol Uphoff Meteyer, Justin G Boyles","doi":"10.1080/21505594.2024.2439497","DOIUrl":"https://doi.org/10.1080/21505594.2024.2439497","url":null,"abstract":"","PeriodicalId":23747,"journal":{"name":"Virulence","volume":"16 1","pages":"2439497"},"PeriodicalIF":5.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142898482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2024-12-23DOI: 10.1080/15476286.2024.2443876
Yan Yang, Yinchun Zhong, Liang Chen
Circular RNAs (circRNAs) are a unique class of covalently closed single-stranded RNA molecules that play diverse roles in normal physiology and pathology. Among the major types of circRNA, exon-intron circRNA (EIciRNA) distinguishes itself by its sequence composition and nuclear localization. Recent RNA-seq technologies and computational methods have facilitated the detection and characterization of EIciRNAs, with features like circRNA intron retention (CIR) and tissue-specificity being characterized. EIciRNAs have been identified to exert their functions via mechanisms such as regulating gene transcription, and the physiological relevance of EIciRNAs has been reported. Within this review, we present a summary of the current understanding of EIciRNAs, delving into their identification and molecular functions. Additionally, we emphasize factors regulating EIciRNA biogenesis and the physiological roles of EIciRNAs based on recent research. We also discuss the future challenges in EIciRNA exploration, underscoring the potential for novel functions and functional mechanisms of EIciRNAs for further investigation.
{"title":"EIciRNAs in focus: current understanding and future perspectives.","authors":"Yan Yang, Yinchun Zhong, Liang Chen","doi":"10.1080/15476286.2024.2443876","DOIUrl":"10.1080/15476286.2024.2443876","url":null,"abstract":"<p><p>Circular RNAs (circRNAs) are a unique class of covalently closed single-stranded RNA molecules that play diverse roles in normal physiology and pathology. Among the major types of circRNA, exon-intron circRNA (EIciRNA) distinguishes itself by its sequence composition and nuclear localization. Recent RNA-seq technologies and computational methods have facilitated the detection and characterization of EIciRNAs, with features like circRNA intron retention (CIR) and tissue-specificity being characterized. EIciRNAs have been identified to exert their functions via mechanisms such as regulating gene transcription, and the physiological relevance of EIciRNAs has been reported. Within this review, we present a summary of the current understanding of EIciRNAs, delving into their identification and molecular functions. Additionally, we emphasize factors regulating EIciRNA biogenesis and the physiological roles of EIciRNAs based on recent research. We also discuss the future challenges in EIciRNA exploration, underscoring the potential for novel functions and functional mechanisms of EIciRNAs for further investigation.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"22 1","pages":"1-12"},"PeriodicalIF":3.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142877855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2024-12-31DOI: 10.1080/19336934.2024.2440950
Simon G Sprecher
{"title":"Disentangling how the brain is wired.","authors":"Simon G Sprecher","doi":"10.1080/19336934.2024.2440950","DOIUrl":"https://doi.org/10.1080/19336934.2024.2440950","url":null,"abstract":"","PeriodicalId":12128,"journal":{"name":"Fly","volume":"19 1","pages":"2440950"},"PeriodicalIF":2.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142906813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2024-12-30DOI: 10.1080/19336934.2024.2448022
Esther D Domenie, Paola Cusumano, Sara Montagnese, Rodolfo Costa
The aim of the present study was to assess sleep timing in Drosophila melanogaster at different ages, within the setting of an enforced schedule of varying light-dark stimuli, simulating light exposure variations between four typical office working days and one free day spent outside by a human, for a total of 30 days. Locomotor activity recording started when male flies were 3 days old. Flies exhibited a bimodal activity pattern, with a morning and an evening peak, and clear anticipation of the lights on and lights off transitions. From experimental day 10 (i.e. 12-day-old flies) onwards, a decrease in activity counts/increase in sleep amount were observed. On free days, a rise in activity counts and a reduction in sleep amount during the lights on interval was observed and was also present, albeit less obvious, on the subsequent working day during the lights off interval. A progressive delay in sleep onset was observed in the first days of the experiment, peaking on day 4 (i.e. 6-day-old flies), after which sleep onset timing gradually advanced. A delay in sleep offset was also observed for the first 13 days of the experiment, after which sleep offset stabilized. In conclusion, 'adolescent' flies exhibited changes in sleep timing that were reminiscent of those of human adolescents.
{"title":"Sleep timing in flies from \"adolescence\" to adulthood.","authors":"Esther D Domenie, Paola Cusumano, Sara Montagnese, Rodolfo Costa","doi":"10.1080/19336934.2024.2448022","DOIUrl":"https://doi.org/10.1080/19336934.2024.2448022","url":null,"abstract":"<p><p>The aim of the present study was to assess sleep timing in <i>Drosophila melanogaster</i> at different ages, within the setting of an enforced schedule of varying light-dark stimuli, simulating light exposure variations between four typical office <i>working days</i> and one <i>free day</i> spent outside by a human, for a total of 30 days. Locomotor activity recording started when male flies were 3 days old. Flies exhibited a bimodal activity pattern, with a morning and an evening peak, and clear anticipation of the <i>lights on</i> and <i>lights off</i> transitions. From experimental day 10 (i.e. 12-day-old flies) onwards, a decrease in activity counts/increase in sleep amount were observed. On <i>free days</i>, a rise in activity counts and a reduction in sleep amount during the <i>lights on</i> interval was observed and was also present, albeit less obvious, on the subsequent <i>working day</i> during the <i>lights off</i> interval. A progressive delay in sleep onset was observed in the first days of the experiment, peaking on day 4 (i.e. 6-day-old flies), after which sleep onset timing gradually advanced. A delay in sleep offset was also observed for the first 13 days of the experiment, after which sleep offset stabilized. In conclusion, 'adolescent' flies exhibited changes in sleep timing that were reminiscent of those of human adolescents.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"19 1","pages":"2448022"},"PeriodicalIF":2.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702927/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142946810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-02-13DOI: 10.1080/15476286.2025.2465196
Vincent G Osnaya, Laura Gómez-Romero, Gabriel Moreno-Hagelsieb, Greco Hernández
The mRNA translation defines the composition of the cell proteome in all forms of life and diseases. In this process, precise selection of the mRNA translation initiation site (TIS) is crucial, as it establishes the correct open reading frame for triplet decoding. We have gathered and curated all published TIS consensus context sequences. We also included the TIS consensus context from novel 538 fungal genomes available from NCBI's RefSeq database. To do so, we wrote ad hoc programs in PERL to find and extract the TIS for each annotated gene, plus ten bases upstream and three downstream. For each genome, the sequences around the TIS of each gene were obtained, and the consensus was further calculated according to the Cavener rules and by the LOGOS algorithm. We created AUGcontext DB, a portal with a comprehensive collection of TIS context sequences across eukaryotes in a range from -10 to + 6. The compilation covers species of 30 vertebrates, 17 invertebrates, 25 plants, 14 fungi, and 11 protists studied in silico; 23 experimental studies; data on biotechnology; and the discovery of 8 diseases associated with specific mutations. Additionally, TIS context sequences of cellular IRESs were included. AUGcontext DB belongs to the National Institute of Cancer (Instituto Nacional de Cancerología, INCan), Mexico, and is freely available at http://108.161.138.77:8096/. Our catalogue allows us to do comparative studies between species, may help improve the diagnosis of certain diseases, and will be key to maximize the production of recombinant proteins.
{"title":"AUGcontext DB: a comprehensive catalog of the mRNA AUG initiator codon context across eukaryotes.","authors":"Vincent G Osnaya, Laura Gómez-Romero, Gabriel Moreno-Hagelsieb, Greco Hernández","doi":"10.1080/15476286.2025.2465196","DOIUrl":"10.1080/15476286.2025.2465196","url":null,"abstract":"<p><p>The mRNA translation defines the composition of the cell proteome in all forms of life and diseases. In this process, precise selection of the mRNA translation initiation site (TIS) is crucial, as it establishes the correct open reading frame for triplet decoding. We have gathered and curated all published TIS consensus context sequences. We also included the TIS consensus context from novel 538 fungal genomes available from NCBI's RefSeq database. To do so, we wrote ad hoc programs in PERL to find and extract the TIS for each annotated gene, plus ten bases upstream and three downstream. For each genome, the sequences around the TIS of each gene were obtained, and the consensus was further calculated according to the Cavener rules and by the LOGOS algorithm. We created AUGcontext DB, a portal with a comprehensive collection of TIS context sequences across eukaryotes in a range from -10 to + 6. The compilation covers species of 30 vertebrates, 17 invertebrates, 25 plants, 14 fungi, and 11 protists studied in silico; 23 experimental studies; data on biotechnology; and the discovery of 8 diseases associated with specific mutations. Additionally, TIS context sequences of cellular IRESs were included. AUGcontext DB belongs to the National Institute of Cancer (Instituto Nacional de Cancerología, INCan), Mexico, and is freely available at http://108.161.138.77:8096/. Our catalogue allows us to do comparative studies between species, may help improve the diagnosis of certain diseases, and will be key to maximize the production of recombinant proteins.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":" ","pages":"1-5"},"PeriodicalIF":3.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834415/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143399899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-02-15DOI: 10.1080/21505594.2025.2466503
Xidian Tang, Chenyibo Zhang, Qingru Geng, Dekun Chen, Wentao Ma
Orf virus (ORFV) has been demonstrated to infect both goat non-immune cells, specifically goat epithelial cells, and goat blood immune cells. Our previous studies have indicated that ORFV gains entry into goat epithelial cells via clathrin-mediated endocytosis and macropinocytosis pathways. However, the pathway by which ORFV enters goat blood immune cells has not yet been elucidated. Our findings revealed a differential viral internalization pathway in ORFV-infects goat immune cells contrasting the internalization pathways in goat epithelial cells, potentially involving an antibody-related mechanism. Therefore, our hypothesis posits that ORFV gains entry into goat immune cells via the antibody-dependent enhancement (ADE) pathway. Our experimental findings confirm the presence of the ADE effect in ORFV-infected goat immune cells, mediated by Fc receptors (FcRs) as demonstrated in antibody-blocking experiments. Furthermore, the ADE effect was also observed in goat epithelial cells. Nevertheless, the ADE effect observed in goat epithelial cells was not found to be dependent on the interaction between the virus-antibody complex and Fc receptors, as demonstrated by antibody-blocking experiments. Instead, it is suggested that an alternative mechanism involving the complement factor and complement receptors (CRs) may be responsible. Overall, this research offers insights into the unique ADE pathway of ORFV infection in different cell types, offering a novel perspective on the infection and pathogenic mechanisms of ORFV.
{"title":"Antibody-dependent enhancement of ORFV uptake into host cells.","authors":"Xidian Tang, Chenyibo Zhang, Qingru Geng, Dekun Chen, Wentao Ma","doi":"10.1080/21505594.2025.2466503","DOIUrl":"10.1080/21505594.2025.2466503","url":null,"abstract":"<p><p>Orf virus (ORFV) has been demonstrated to infect both goat non-immune cells, specifically goat epithelial cells, and goat blood immune cells. Our previous studies have indicated that ORFV gains entry into goat epithelial cells via clathrin-mediated endocytosis and macropinocytosis pathways. However, the pathway by which ORFV enters goat blood immune cells has not yet been elucidated. Our findings revealed a differential viral internalization pathway in ORFV-infects goat immune cells contrasting the internalization pathways in goat epithelial cells, potentially involving an antibody-related mechanism. Therefore, our hypothesis posits that ORFV gains entry into goat immune cells via the antibody-dependent enhancement (ADE) pathway. Our experimental findings confirm the presence of the ADE effect in ORFV-infected goat immune cells, mediated by Fc receptors (FcRs) as demonstrated in antibody-blocking experiments. Furthermore, the ADE effect was also observed in goat epithelial cells. Nevertheless, the ADE effect observed in goat epithelial cells was not found to be dependent on the interaction between the virus-antibody complex and Fc receptors, as demonstrated by antibody-blocking experiments. Instead, it is suggested that an alternative mechanism involving the complement factor and complement receptors (CRs) may be responsible. Overall, this research offers insights into the unique ADE pathway of ORFV infection in different cell types, offering a novel perspective on the infection and pathogenic mechanisms of ORFV.</p>","PeriodicalId":23747,"journal":{"name":"Virulence","volume":"16 1","pages":"2466503"},"PeriodicalIF":5.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834454/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143426363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-02-25DOI: 10.1080/15592294.2025.2471129
Allison A Appleton
Gestational epigenetic aging (GEA) is a novel approach for characterizing associations between prenatal exposures and postnatal risks. Psychosocial adversity in pregnancy may influence GEA, but the molecular mechanisms are not well understood. DNA methylation to glucocorticoid regulation and hypothalamic-pituitary-adrenal (HPA) axis genes are implicated but have not been fully examined in association with GEA. This study investigated whether a polyepigenetic glucocorticoid exposure score (PGES) and HPA axis gene (NR3C1, HSD11B2, FKBP5) methylation were associated with GEA, and whether associations were sex-specific. Participants were from a prospective cohort of racial/ethnic diverse and socially disadvantaged pregnant women and infants (n = 200). DNA methylation variables were estimated using umbilical cord blood. PGES was derived with CpGs shown to be sensitive to synthetic dexamethasone exposure. NR3C1, HSD11B2, and FKBP5 methylation was summarized via factor analysis. We found that PGES (β = -1.12, SE = 0.47, p = 0.02) and several NR3C1 and FKBP5 factor scores were associated with decelerated GEA (all p < 0.05). A significant sex interaction was observed for FKBP5 factor score 3 (β = -0.34, SE = 0.15, p = 0.02) suggesting decelerated GEA for males but not females. This study showed that glucocorticoid regulation-related DNA methylation was associated with a decelerated aging phenotype at birth that might indicate a neonatal risk.
{"title":"A polyepigenetic glucocorticoid exposure score and HPA axis-related DNA methylation are associated with gestational epigenetic aging.","authors":"Allison A Appleton","doi":"10.1080/15592294.2025.2471129","DOIUrl":"10.1080/15592294.2025.2471129","url":null,"abstract":"<p><p>Gestational epigenetic aging (GEA) is a novel approach for characterizing associations between prenatal exposures and postnatal risks. Psychosocial adversity in pregnancy may influence GEA, but the molecular mechanisms are not well understood. DNA methylation to glucocorticoid regulation and hypothalamic-pituitary-adrenal (HPA) axis genes are implicated but have not been fully examined in association with GEA. This study investigated whether a polyepigenetic glucocorticoid exposure score (PGES) and HPA axis gene (<i>NR3C1, HSD11B2, FKBP5</i>) methylation were associated with GEA, and whether associations were sex-specific. Participants were from a prospective cohort of racial/ethnic diverse and socially disadvantaged pregnant women and infants (<i>n</i> = 200). DNA methylation variables were estimated using umbilical cord blood. PGES was derived with CpGs shown to be sensitive to synthetic dexamethasone exposure. <i>NR3C1</i>, <i>HSD11B2</i>, and <i>FKBP5</i> methylation was summarized via factor analysis. We found that PGES (β = -1.12, SE = 0.47, <i>p</i> = 0.02) and several <i>NR3C1</i> and <i>FKBP5</i> factor scores were associated with decelerated GEA (all <i>p</i> < 0.05). A significant sex interaction was observed for <i>FKBP5</i> factor score 3 (β = -0.34, SE = 0.15, <i>p</i> = 0.02) suggesting decelerated GEA for males but not females. This study showed that glucocorticoid regulation-related DNA methylation was associated with a decelerated aging phenotype at birth that might indicate a neonatal risk.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"20 1","pages":"2471129"},"PeriodicalIF":2.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11866962/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143499976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-03-06DOI: 10.1080/21505594.2025.2457949
Mei Li, Haixue Zheng
The African swine fever virus (ASFV) is the only giant double-stranded DNA virus known to be transmitted by insect vectors. It can infect pigs and cause clinical signs such as high fever, bleeding, and splenomegaly, which has been classified as a reportable disease by the WOAH. In 2018, African swine fever (ASF) was introduced into China and rapidly spread to several countries in the Asia-Pacific region, with morbidity and mortality rates reaching 100 percent, resulting in significant economic losses to the global pig industry. Because ASFV has large genomes and a complex escape host mechanism, there are currently no safe and effective drugs or vaccines against it. Therefore, it is necessary to optimize vaccination procedures and find effective treatments by studying the epidemiology of ASFV to reduce economic losses. This article reviews research progress on pathogenesis, genome, proteome and transcriptome, pathogenic mechanisms, and comprehensive control measures of ASFV infection.
{"title":"Insights and progress on epidemic characteristics, pathogenesis, and preventive measures of African swine fever virus: A review.","authors":"Mei Li, Haixue Zheng","doi":"10.1080/21505594.2025.2457949","DOIUrl":"10.1080/21505594.2025.2457949","url":null,"abstract":"<p><p>The African swine fever virus (ASFV) is the only giant double-stranded DNA virus known to be transmitted by insect vectors. It can infect pigs and cause clinical signs such as high fever, bleeding, and splenomegaly, which has been classified as a reportable disease by the WOAH. In 2018, African swine fever (ASF) was introduced into China and rapidly spread to several countries in the Asia-Pacific region, with morbidity and mortality rates reaching 100 percent, resulting in significant economic losses to the global pig industry. Because ASFV has large genomes and a complex escape host mechanism, there are currently no safe and effective drugs or vaccines against it. Therefore, it is necessary to optimize vaccination procedures and find effective treatments by studying the epidemiology of ASFV to reduce economic losses. This article reviews research progress on pathogenesis, genome, proteome and transcriptome, pathogenic mechanisms, and comprehensive control measures of ASFV infection.</p>","PeriodicalId":23747,"journal":{"name":"Virulence","volume":" ","pages":"2457949"},"PeriodicalIF":5.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901552/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143411133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}