首页 > 最新文献

Current opinion in plant biology最新文献

英文 中文
Putting heads together: Developmental genetics of the Asteraceae capitulum 把头放在一起:菊科头状花序的发育遗传学
IF 8.3 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-01 DOI: 10.1016/j.pbi.2024.102589
Vandana Gurung, Sarita Muñoz-Gómez, Daniel S. Jones

Inflorescence architecture is highly variable across plant lineages yet is critical for facilitating reproductive success. The capitulum-type inflorescence of the Asteraceae is marked as a key morphological innovation that preceded the family's diversification and expansion. Despite its evolutionary significance, our understanding of capitulum development and evolution is limited. This review highlights our current perspective on capitulum evolution through the lens of both its molecular and developmental underpinnings. We attempt to summarize our understanding of the capitulum by focusing on two key characteristics: patterning (arrangement of florets on a capitulum) and floret identity specification. Note that these two features are interconnected such that the identity of florets depends on their position along the inflorescence axis. Phytohormones such as auxin seemingly determine both pattern progression and floret identity specification through unknown mechanisms. Floret morphology in a head is controlled by differential expression of floral symmetry genes regulating floret identity specification. We briefly summarize the applicability of the ABCE quartet model of flower development in regulating the floret organ identity of a capitulum in Asteraceae. Overall, there have been promising advancements in our understanding of capitula; however, comprehensive functional genetic analyses are necessary to fully dissect the molecular pathways and mechanisms involved in capitulum development.

不同植物品系的花序结构差异很大,但对于促进繁殖成功却至关重要。菊科的头状花序是该科多样化和扩展之前的一项关键形态创新。尽管头状花序具有重要的进化意义,但我们对其发育和进化的了解仍然有限。这篇综述通过分子和发育基础的视角,强调了我们目前对头状花序进化的看法。我们试图通过关注两个关键特征来总结我们对头状花序的理解:图案化(小花在头状花序上的排列)和小花特征规格化。请注意,这两个特征是相互关联的,小花的特征取决于它们沿花序轴的位置。植物激素(如植物生长素)似乎通过未知的机制决定着花型的发展和小花特征的确定。头状花序中的小花形态由调控小花特征规格的花对称基因的差异表达控制。我们简要总结了花发育 ABCE 四重奏模型在调控菊科头状花序小花器官特征方面的适用性。总之,我们对头状花序的了解取得了可喜的进展;然而,要全面剖析头状花序发育的分子途径和机制,还需要进行全面的功能基因分析。
{"title":"Putting heads together: Developmental genetics of the Asteraceae capitulum","authors":"Vandana Gurung,&nbsp;Sarita Muñoz-Gómez,&nbsp;Daniel S. Jones","doi":"10.1016/j.pbi.2024.102589","DOIUrl":"https://doi.org/10.1016/j.pbi.2024.102589","url":null,"abstract":"<div><p>Inflorescence architecture is highly variable across plant lineages yet is critical for facilitating reproductive success. The capitulum-type inflorescence of the Asteraceae is marked as a key morphological innovation that preceded the family's diversification and expansion. Despite its evolutionary significance, our understanding of capitulum development and evolution is limited. This review highlights our current perspective on capitulum evolution through the lens of both its molecular and developmental underpinnings. We attempt to summarize our understanding of the capitulum by focusing on two key characteristics: patterning (arrangement of florets on a capitulum) and floret identity specification. Note that these two features are interconnected such that the identity of florets depends on their position along the inflorescence axis. Phytohormones such as auxin seemingly determine both pattern progression and floret identity specification through unknown mechanisms. Floret morphology in a head is controlled by differential expression of floral symmetry genes regulating floret identity specification. We briefly summarize the applicability of the ABCE quartet model of flower development in regulating the floret organ identity of a capitulum in Asteraceae. Overall, there have been promising advancements in our understanding of capitula; however, comprehensive functional genetic analyses are necessary to fully dissect the molecular pathways and mechanisms involved in capitulum development.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102589"},"PeriodicalIF":8.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141481183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parental dialectic: Epigenetic conversations in endosperm 父母的辩证法:胚乳中的表观遗传对话。
IF 8.3 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-06-29 DOI: 10.1016/j.pbi.2024.102591
Souraya Khouider , Mary Gehring

Endosperm is a major evolutionary innovation of flowering plants, and its proper development critically impacts seed growth and viability. Epigenetic regulators have a key function in parental control of endosperm development. Notably, epigenetic regulation of parental genome dosage is a major determinant of seed development success, and disruption of this balance can produce inviable seed, as observed in some interploidy and interspecific crosses. These postzygotic reproduction barriers are also a potent driver of speciation. The molecular machinery and regulatory architecture governing endosperm development is proposed to have evolved under parental conflict. In this review, we emphasize parental conflict as a dialectic conflict and discuss recent findings about the epigenetic molecular machinery that mediates parental conflict in the endosperm.

胚乳是有花植物的一大进化创新,它的正常发育对种子的生长和存活率有着至关重要的影响。表观遗传调控因子在亲本控制胚乳发育方面具有关键作用。值得注意的是,亲本基因组剂量的表观遗传调控是种子发育成功与否的主要决定因素,破坏这种平衡会产生不能存活的种子,正如在一些杂交和种间杂交中观察到的那样。这些合子后繁殖障碍也是物种分化的强大驱动力。有人认为,胚乳发育的分子机制和调控结构是在亲本冲突下进化而来的。在这篇综述中,我们强调亲本冲突是一种辩证冲突,并讨论了最近关于在胚乳中介导亲本冲突的表观遗传分子机制的发现。
{"title":"Parental dialectic: Epigenetic conversations in endosperm","authors":"Souraya Khouider ,&nbsp;Mary Gehring","doi":"10.1016/j.pbi.2024.102591","DOIUrl":"10.1016/j.pbi.2024.102591","url":null,"abstract":"<div><p>Endosperm is a major evolutionary innovation of flowering plants, and its proper development critically impacts seed growth and viability. Epigenetic regulators have a key function in parental control of endosperm development. Notably, epigenetic regulation of parental genome dosage is a major determinant of seed development success, and disruption of this balance can produce inviable seed, as observed in some interploidy and interspecific crosses. These postzygotic reproduction barriers are also a potent driver of speciation. The molecular machinery and regulatory architecture governing endosperm development is proposed to have evolved under parental conflict. In this review, we emphasize parental conflict as a dialectic conflict and discuss recent findings about the epigenetic molecular machinery that mediates parental conflict in the endosperm.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102591"},"PeriodicalIF":8.3,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141466817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of the sporophyte shoot axis and functions of TALE HD transcription factors in stem development 孢子体芽轴的进化和 TALE HD 转录因子在茎发育中的功能。
IF 8.3 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-06-28 DOI: 10.1016/j.pbi.2024.102594
Katsutoshi Tsuda

The stem is one of the major organs in seed plants and is important for plant survival as well as in agriculture. However, due to the lack of clear external landmarks in many species, its developmental and evolutionary processes are understudied compared to other organs. Recent approaches tackling these problems, especially those focused on KNOX1 and BLH transcription factors belonging to the TALE homeodomain superfamily have started unveiling the patterning process of nodes and internodes by connecting previously accumulated knowledge on lateral organ regulators. Fossil records played crucial roles in understanding the evolutionary process of the stem. The aim of this review is to introduce how the stem evolved from ancestorial sporophyte axes and to provide frameworks for future efforts in understanding the developmental process of this elusive but pivotal organ.

茎是种子植物的主要器官之一,对植物的生存和农业都很重要。然而,由于许多物种缺乏明确的外部标志,与其他器官相比,茎的发育和进化过程研究不足。最近解决这些问题的方法,尤其是以 TALE 同源域超家族的 KNOX1 和 BLH 转录因子为重点的方法,通过连接以前积累的有关侧生器官调节因子的知识,开始揭示节和节间的模式化过程。化石记录在理解茎的进化过程中发挥了至关重要的作用。本综述旨在介绍茎是如何从祖先孢子叶轴演化而来的,并为今后理解这一难以捉摸但至关重要的器官的发育过程提供框架。
{"title":"Evolution of the sporophyte shoot axis and functions of TALE HD transcription factors in stem development","authors":"Katsutoshi Tsuda","doi":"10.1016/j.pbi.2024.102594","DOIUrl":"10.1016/j.pbi.2024.102594","url":null,"abstract":"<div><p>The stem is one of the major organs in seed plants and is important for plant survival as well as in agriculture. However, due to the lack of clear external landmarks in many species, its developmental and evolutionary processes are understudied compared to other organs. Recent approaches tackling these problems, especially those focused on KNOX1 and BLH transcription factors belonging to the TALE homeodomain superfamily have started unveiling the patterning process of nodes and internodes by connecting previously accumulated knowledge on lateral organ regulators. Fossil records played crucial roles in understanding the evolutionary process of the stem. The aim of this review is to introduce how the stem evolved from ancestorial sporophyte axes and to provide frameworks for future efforts in understanding the developmental process of this elusive but pivotal organ.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102594"},"PeriodicalIF":8.3,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141466815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blooming balloons: Searching for mechanisms of the inflated calyx 盛开的气球寻找充气花萼的机理。
IF 8.3 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-06-28 DOI: 10.1016/j.pbi.2024.102595
Jia He , Joyce Van Eck , Zachary B. Lippman

Studying morphological novelties offers special insights into developmental biology and evolution. The inflated calyx syndrome (ICS) is a largely unrecognized but fascinating feature of flower development, where sepals form balloon-like husks that encapsulate fruits. Despite its independent emergence in many lineages of flowering plants, the genetic and molecular mechanisms of ICS remain unknown. Early studies in the Solanaceae genus Physalis put forth key roles of MADS-box genes in ICS. However, recent work suggests these classical floral identity transcription factors were false leads. With newfound capabilities that allow rapid development of genetic systems through genomics and genome editing, Physalis has re-emerged as the most tractable model species for dissecting ICS. This review revisits current understanding of ICS and highlights how recent advancements enable a reset in the search for genetic and molecular mechanisms using unbiased, systematic approaches.

研究形态学上的新奇现象可以为发育生物学和进化提供特殊的见解。膨大花萼综合征(ICS)是花卉发育过程中的一个基本未被认识但却引人入胜的特征,在这种情况下,萼片会形成气球状的外壳,将果实包裹起来。尽管胀萼综合征在有花植物的许多品系中独立出现,但其遗传和分子机制仍不为人知。对茄科 Physalis 属的早期研究提出了 MADS-box 基因在 ICS 中的关键作用。然而,最近的研究表明,这些经典的花特征转录因子是错误的线索。通过基因组学和基因组编辑技术,新发现的能力使基因系统得以快速发展, Physalis 已重新成为剖析 ICS 的最易研究的模式物种。本综述重新审视了目前对 ICS 的认识,并重点介绍了最近的进展如何使人们能够利用无偏见的系统方法重新寻找遗传和分子机制。
{"title":"Blooming balloons: Searching for mechanisms of the inflated calyx","authors":"Jia He ,&nbsp;Joyce Van Eck ,&nbsp;Zachary B. Lippman","doi":"10.1016/j.pbi.2024.102595","DOIUrl":"10.1016/j.pbi.2024.102595","url":null,"abstract":"<div><p>Studying morphological novelties offers special insights into developmental biology and evolution. The inflated calyx syndrome (ICS) is a largely unrecognized but fascinating feature of flower development, where sepals form balloon-like husks that encapsulate fruits. Despite its independent emergence in many lineages of flowering plants, the genetic and molecular mechanisms of ICS remain unknown. Early studies in the Solanaceae genus <em>Physalis</em> put forth key roles of MADS-box genes in ICS. However, recent work suggests these classical floral identity transcription factors were false leads. With newfound capabilities that allow rapid development of genetic systems through genomics and genome editing, <em>Physalis</em> has re-emerged as the most tractable model species for dissecting ICS. This review revisits current understanding of ICS and highlights how recent advancements enable a reset in the search for genetic and molecular mechanisms using unbiased, systematic approaches.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102595"},"PeriodicalIF":8.3,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141466813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamics of DNA methylation and its impact on plant embryogenesis DNA 甲基化的动态及其对植物胚胎发生的影响。
IF 8.3 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-06-27 DOI: 10.1016/j.pbi.2024.102593
Jennifer M. Frost , Ji Hoon Rhee , Yeonhee Choi

Flowering plants exhibit unique DNA methylation dynamics during development. Particular attention can be focused on seed development and the embryo, which represents the starting point of the sporophytic life cycle. A build-up of CHH methylation is now recognized as highly characteristic of embryo development. This process is thought to occur in order to silence potentially harmful transposable element expression, though roles in promoting seed dormancy and dessication tolerance have also been revealed. Recent studies show that increased CHH methylation in embryos inhabits both novel loci, unmethylated elsewhere in the plant, as well as shared loci, exhibiting more dense methylation. The role of DNA methylation in cis-regulatory gene regulation in plants is less well established compared to mammals, and here we discuss both transposable element regulation and the potential role of DNA methylation in dynamic gene expression.

开花植物在发育过程中表现出独特的 DNA 甲基化动态。种子的发育和胚胎是孢子体生命周期的起点,因此应特别关注。目前,CHH 甲基化的积累已被认为是胚胎发育的高度特征。这一过程的发生被认为是为了抑制潜在有害的转座元件表达,不过也发现了其在促进种子休眠和耐干旱方面的作用。最近的研究表明,胚胎中增加的 CHH 甲基化既存在于植物其他部位未甲基化的新基因座上,也存在于共享基因座上,表现出更密集的甲基化。与哺乳动物相比,DNA甲基化在植物顺式调控基因调控中的作用尚不十分明确,在此我们将讨论转座元件调控和DNA甲基化在动态基因表达中的潜在作用。
{"title":"Dynamics of DNA methylation and its impact on plant embryogenesis","authors":"Jennifer M. Frost ,&nbsp;Ji Hoon Rhee ,&nbsp;Yeonhee Choi","doi":"10.1016/j.pbi.2024.102593","DOIUrl":"10.1016/j.pbi.2024.102593","url":null,"abstract":"<div><p>Flowering plants exhibit unique DNA methylation dynamics during development. Particular attention can be focused on seed development and the embryo, which represents the starting point of the sporophytic life cycle. A build-up of CHH methylation is now recognized as highly characteristic of embryo development. This process is thought to occur in order to silence potentially harmful transposable element expression, though roles in promoting seed dormancy and dessication tolerance have also been revealed. Recent studies show that increased CHH methylation in embryos inhabits both novel loci, unmethylated elsewhere in the plant, as well as shared loci, exhibiting more dense methylation. The role of DNA methylation in cis-regulatory gene regulation in plants is less well established compared to mammals, and here we discuss both transposable element regulation and the potential role of DNA methylation in dynamic gene expression.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102593"},"PeriodicalIF":8.3,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369526624000840/pdfft?md5=b5e086b0ba1aa6b46eadfe00a665c8bb&pid=1-s2.0-S1369526624000840-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141466814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How chromatin senses plant hormones 染色质如何感知植物激素
IF 8.3 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-06-27 DOI: 10.1016/j.pbi.2024.102592
Zhengyao Shao , Chia-Yang Chen , Hong Qiao

Plant hormones activate receptors, initiating intracellular signaling pathways. Eventually, hormone-specific transcription factors become active in the nucleus, facilitating hormone-induced transcriptional regulation. Chromatin plays a fundamental role in the regulation of transcription, the process by which genetic information encoded in DNA is converted into RNA. The structure of chromatin, a complex of DNA and proteins, directly influences the accessibility of genes to the transcriptional machinery. The different signaling pathways and transcription factors involved in the transmission of information from the receptors to the nucleus have been readily explored, but not so much for the specific mechanisms employed by the cell to ultimately instruct the chromatin changes necessary for a fast and robust transcription activation, specifically for plant hormone responses. In this review, we will focus on the advancements in understanding how chromatin receives plant hormones, facilitating the changes necessary for fast, robust, and specific transcriptional regulation.

植物激素激活受体,启动细胞内信号传导途径。最终,激素特异性转录因子在细胞核内活跃起来,促进激素诱导的转录调控。染色质在转录调控中发挥着根本性的作用,转录是将 DNA 中编码的遗传信息转化为 RNA 的过程。染色质是 DNA 和蛋白质的复合物,其结构直接影响基因对转录机制的可及性。从受体到细胞核的信息传递过程中涉及的不同信号通路和转录因子已经得到了充分的探讨,但对于细胞最终指示染色质发生必要的变化以快速、稳健地激活转录(特别是植物激素反应)所采用的具体机制,探讨却不多。在本综述中,我们将重点介绍在了解染色质如何接收植物激素、促进快速、稳健和特异性转录调控所需的变化方面取得的进展。
{"title":"How chromatin senses plant hormones","authors":"Zhengyao Shao ,&nbsp;Chia-Yang Chen ,&nbsp;Hong Qiao","doi":"10.1016/j.pbi.2024.102592","DOIUrl":"10.1016/j.pbi.2024.102592","url":null,"abstract":"<div><p>Plant hormones activate receptors, initiating intracellular signaling pathways. Eventually, hormone-specific transcription factors become active in the nucleus, facilitating hormone-induced transcriptional regulation. Chromatin plays a fundamental role in the regulation of transcription, the process by which genetic information encoded in DNA is converted into RNA. The structure of chromatin, a complex of DNA and proteins, directly influences the accessibility of genes to the transcriptional machinery. The different signaling pathways and transcription factors involved in the transmission of information from the receptors to the nucleus have been readily explored, but not so much for the specific mechanisms employed by the cell to ultimately instruct the chromatin changes necessary for a fast and robust transcription activation, specifically for plant hormone responses. In this review, we will focus on the advancements in understanding how chromatin receives plant hormones, facilitating the changes necessary for fast, robust, and specific transcriptional regulation.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102592"},"PeriodicalIF":8.3,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369526624000839/pdfft?md5=4518fa0393debbb50449d459ea058099&pid=1-s2.0-S1369526624000839-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141466749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The diversification of the shoot branching system: A quantitative and comparative perspective in meristem determinacy 芽分枝系统的多样化:分生组织决定性的定量和比较视角。
IF 8.3 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-06-24 DOI: 10.1016/j.pbi.2024.102574
Jiajia Li , Xiani Yao , Huan Lai , Xuelian Zhang , Jinshun Zhong

Reiterative shoot branching largely defines important yield components of crops and is essentially controlled by programs that direct the initiation, dormancy release, and differentiation of meristems in the axils of leaves. Here, we focus on meristem determinacy, defining the number of reiterations that shape the shoot architectures and exhibit enormous diversity in a wide range of species. The meristem determinacy per se is hierarchically complex and context-dependent for the successively emerged meristems, representing a crucial mechanism in shaping the complexity of the shoot branching. In addition, we have highlighted that two key components of axillary meristem developmental programs may have been co-opted in controlling flower/ear number of an axillary inflorescence in legumes/maize, hinting at the diversification of axillary-meristem-patterning programs in different lineages. This begs the question how axillary meristem patterning programs may have diversified during plant evolution and hence helped shape the rich variation in shoot branching systems.

芽的重复分枝在很大程度上决定了农作物的重要产量成分,而且基本上是由叶腋中的分生组织的萌发、休眠释放和分化程序控制的。在这里,我们将重点放在分生组织的决定性上,它定义了形成嫩枝结构的重复次数,并在多种物种中表现出巨大的多样性。对于连续出现的分生组织来说,分生组织决定性本身就具有层次复杂性和环境依赖性,是形成嫩枝分枝复杂性的关键机制。此外,我们还强调了腋生分生组织发育程序的两个关键组成部分可能在控制豆科植物/玉米腋生花序的花/穗数量时被共同使用,这暗示了腋生分生组织模式程序在不同品系中的多样化。这就提出了一个问题:在植物进化过程中,腋生分生组织模式程序是如何实现多样化的,从而帮助形成了丰富的芽分枝系统变异?
{"title":"The diversification of the shoot branching system: A quantitative and comparative perspective in meristem determinacy","authors":"Jiajia Li ,&nbsp;Xiani Yao ,&nbsp;Huan Lai ,&nbsp;Xuelian Zhang ,&nbsp;Jinshun Zhong","doi":"10.1016/j.pbi.2024.102574","DOIUrl":"10.1016/j.pbi.2024.102574","url":null,"abstract":"<div><p>Reiterative shoot branching largely defines important yield components of crops and is essentially controlled by programs that direct the initiation, dormancy release, and differentiation of meristems in the axils of leaves. Here, we focus on meristem determinacy, defining the number of reiterations that shape the shoot architectures and exhibit enormous diversity in a wide range of species. The meristem determinacy <em>per se</em> is hierarchically complex and context-dependent for the successively emerged meristems, representing a crucial mechanism in shaping the complexity of the shoot branching. In addition, we have highlighted that two key components of axillary meristem developmental programs may have been co-opted in controlling flower/ear number of an axillary inflorescence in legumes/maize, hinting at the diversification of axillary-meristem-patterning programs in different lineages. This begs the question how axillary meristem patterning programs may have diversified during plant evolution and hence helped shape the rich variation in shoot branching systems.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102574"},"PeriodicalIF":8.3,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141450025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell type-specific control and post-translational regulation of specialized metabolism: opening new avenues for plant metabolic engineering 细胞类型特异性控制和特化代谢的翻译后调控:为植物代谢工程开辟新途径
IF 9.5 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-06-19 DOI: 10.1016/j.pbi.2024.102575
Nikolaos Ntelkis , Alain Goossens , Krešimir Šola

Although plant metabolic engineering enables the sustainable production of valuable metabolites with many applications, we still lack a good understanding of many multi-layered regulatory networks that govern metabolic pathways at the metabolite, protein, transcriptional and cellular level. As transcriptional regulation is better understood and often reviewed, here we highlight recent advances in the cell type-specific and post-translational regulation of plant specialized metabolism. With the advent of single-cell technologies, we are now able to characterize metabolites and their transcriptional regulators at the cellular level, which can refine our searches for missing biosynthetic enzymes and cell type-specific regulators. Post-translational regulation through enzyme inhibition, protein phosphorylation and ubiquitination are clearly evident in specialized metabolism regulation, but not frequently studied or considered in metabolic engineering efforts. Finally, we contemplate how advances in cell type-specific and post-translational regulation can be applied in metabolic engineering efforts in planta, leading to optimization of plants as metabolite production vehicles.

尽管植物代谢工程能够持续生产具有多种应用价值的代谢物,但我们仍然缺乏对许多多层次调控网络的充分了解,这些网络在代谢物、蛋白质、转录和细胞水平上调控着代谢途径。由于人们对转录调控有了更深入的了解,并经常对其进行回顾,因此我们在此重点介绍植物特化代谢的细胞类型特异性调控和翻译后调控方面的最新进展。随着单细胞技术的出现,我们现在能够在细胞水平上描述代谢物及其转录调控因子的特征,这可以完善我们对缺失的生物合成酶和细胞类型特异性调控因子的搜索。通过酶抑制、蛋白质磷酸化和泛素化进行翻译后调控在特异性代谢调控中非常明显,但在代谢工程工作中却不常研究或考虑。最后,我们将探讨如何将细胞特异性和翻译后调控方面的进展应用于植物体内的代谢工程,从而优化植物作为代谢物生产载体的作用。
{"title":"Cell type-specific control and post-translational regulation of specialized metabolism: opening new avenues for plant metabolic engineering","authors":"Nikolaos Ntelkis ,&nbsp;Alain Goossens ,&nbsp;Krešimir Šola","doi":"10.1016/j.pbi.2024.102575","DOIUrl":"https://doi.org/10.1016/j.pbi.2024.102575","url":null,"abstract":"<div><p>Although plant metabolic engineering enables the sustainable production of valuable metabolites with many applications, we still lack a good understanding of many multi-layered regulatory networks that govern metabolic pathways at the metabolite, protein, transcriptional and cellular level. As transcriptional regulation is better understood and often reviewed, here we highlight recent advances in the cell type-specific and post-translational regulation of plant specialized metabolism. With the advent of single-cell technologies, we are now able to characterize metabolites and their transcriptional regulators at the cellular level, which can refine our searches for missing biosynthetic enzymes and cell type-specific regulators. Post-translational regulation through enzyme inhibition, protein phosphorylation and ubiquitination are clearly evident in specialized metabolism regulation, but not frequently studied or considered in metabolic engineering efforts. Finally, we contemplate how advances in cell type-specific and post-translational regulation can be applied in metabolic engineering efforts <em>in planta</em>, leading to optimization of plants as metabolite production vehicles.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102575"},"PeriodicalIF":9.5,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141424523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spur development and evolution: An update 刺的发展和演变:最新进展
IF 9.5 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-06-18 DOI: 10.1016/j.pbi.2024.102573
Shuixian Li , Jiannan Fan , Cheng Xue , Hongyan Shan , Hongzhi Kong

Floral spurs, widely recognized as a classic example of key morphological and functional innovation and thought to have promoted the origin and adaptive evolution of many flowering plant lineages, have attracted the attention of researchers for centuries. Despite this, the mechanisms underlying the development and evolution of these structures remain poorly understood. Recent studies have discovered the phytohormones and transcription factor genes that play key roles in regulating patterns of cell division and cell expansion during spur morphogenesis. Spur morphogenesis was also found to be tightly linked with the programs specifying floral zygomorphy, floral organ identity determination, and nectary development. Independent origins and losses of spurs in different flowering plant lineages, therefore, may be attributed to changes in the spur program and/or its upstream ones.

花刺被广泛认为是关键形态和功能创新的经典范例,并被认为促进了许多开花植物品系的起源和适应性进化,数百年来一直吸引着研究人员的注意力。尽管如此,人们对这些结构的发育和进化机制仍然知之甚少。最近的研究发现,在距形态发生过程中,植物激素和转录因子基因在调节细胞分裂和细胞扩增模式方面发挥着关键作用。研究还发现,花刺的形态发生与花的左右形态、花器官特征的确定以及蜜腺的发育等程序密切相关。因此,不同开花植物系中花刺的独立起源和消失可能归因于花刺程序和/或其上游程序的变化。
{"title":"Spur development and evolution: An update","authors":"Shuixian Li ,&nbsp;Jiannan Fan ,&nbsp;Cheng Xue ,&nbsp;Hongyan Shan ,&nbsp;Hongzhi Kong","doi":"10.1016/j.pbi.2024.102573","DOIUrl":"https://doi.org/10.1016/j.pbi.2024.102573","url":null,"abstract":"<div><p>Floral spurs, widely recognized as a classic example of key morphological and functional innovation and thought to have promoted the origin and adaptive evolution of many flowering plant lineages, have attracted the attention of researchers for centuries. Despite this, the mechanisms underlying the development and evolution of these structures remain poorly understood. Recent studies have discovered the phytohormones and transcription factor genes that play key roles in regulating patterns of cell division and cell expansion during spur morphogenesis. Spur morphogenesis was also found to be tightly linked with the programs specifying floral zygomorphy, floral organ identity determination, and nectary development. Independent origins and losses of spurs in different flowering plant lineages, therefore, may be attributed to changes in the spur program and/or its upstream ones.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102573"},"PeriodicalIF":9.5,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141424522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Where R-SNAREs like to roam - the vesicle-associated membrane proteins VAMP721 & VAMP722 in trafficking hotspots R-SNARE喜欢漫游的地方--贩运热点中的囊泡相关膜蛋白VAMP721和VAMP722
IF 9.5 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-06-18 DOI: 10.1016/j.pbi.2024.102571
Cecilia Cermesoni , Christopher Grefen , Martiniano M. Ricardi

VAMP721 and VAMP722, play crucial roles in membrane fusion at post-Golgi compartments. They are involved in cell plate formation, recycling, endocytosis, and secretion. While individual SNARE actors and regulators exhibit significant overlap, specificity is achieved through distinct combinations of these components. Cytokinesis-related SNAREs traffic as preformed CIS-complexes, which require disassembly by the NSF/αSNAP chaperoning complex to facilitate subsequent homotypic fusion at the cell plate. Recent findings suggest a similar mechanism may operate during secretion. Regulation of VAMP721 activity involves interactions with tethers, GTPases, and Sec1/Munc18 proteins, along with a newly discovered phosphorylation at Tyrosine residue 57. These advances provide valuable insights into the fascinating world of cellular trafficking and membrane fusion.

VAMP721 和 VAMP722 在高尔基体后区室的膜融合过程中发挥着至关重要的作用。它们参与细胞板的形成、循环、内吞和分泌。虽然单个 SNARE 参与者和调节者表现出明显的重叠,但特异性是通过这些成分的不同组合实现的。与细胞分裂相关的 SNARE 以预成的 CIS 复合物形式运输,需要 NSF/αSNAP 合子复合物将其分解,以促进随后在细胞板上的同型融合。最近的研究结果表明,在分泌过程中也可能存在类似的机制。VAMP721 活性的调控涉及与系链、GTP 酶和 Sec1/Munc18 蛋白的相互作用,以及新发现的酪氨酸残基 57 的磷酸化。这些研究进展为我们了解迷人的细胞运输和膜融合世界提供了宝贵的见解。
{"title":"Where R-SNAREs like to roam - the vesicle-associated membrane proteins VAMP721 & VAMP722 in trafficking hotspots","authors":"Cecilia Cermesoni ,&nbsp;Christopher Grefen ,&nbsp;Martiniano M. Ricardi","doi":"10.1016/j.pbi.2024.102571","DOIUrl":"https://doi.org/10.1016/j.pbi.2024.102571","url":null,"abstract":"<div><p>VAMP721 and VAMP722, play crucial roles in membrane fusion at post-Golgi compartments. They are involved in cell plate formation, recycling, endocytosis, and secretion. While individual SNARE actors and regulators exhibit significant overlap, specificity is achieved through distinct combinations of these components. Cytokinesis-related SNAREs traffic as preformed CIS-complexes, which require disassembly by the NSF/αSNAP chaperoning complex to facilitate subsequent homotypic fusion at the cell plate. Recent findings suggest a similar mechanism may operate during secretion. Regulation of VAMP721 activity involves interactions with tethers, GTPases, and Sec1/Munc18 proteins, along with a newly discovered phosphorylation at Tyrosine residue 57. These advances provide valuable insights into the fascinating world of cellular trafficking and membrane fusion.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102571"},"PeriodicalIF":9.5,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141424533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current opinion in plant biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1